JPS60263663A - Surface polishing method and device - Google Patents

Surface polishing method and device

Info

Publication number
JPS60263663A
JPS60263663A JP11874484A JP11874484A JPS60263663A JP S60263663 A JPS60263663 A JP S60263663A JP 11874484 A JP11874484 A JP 11874484A JP 11874484 A JP11874484 A JP 11874484A JP S60263663 A JPS60263663 A JP S60263663A
Authority
JP
Japan
Prior art keywords
polishing
axis
grindstone
workpiece
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11874484A
Other languages
Japanese (ja)
Other versions
JPH057144B2 (en
Inventor
Seido Koda
幸田 盛堂
Koji Ishibashi
幸治 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP11874484A priority Critical patent/JPS60263663A/en
Publication of JPS60263663A publication Critical patent/JPS60263663A/en
Publication of JPH057144B2 publication Critical patent/JPH057144B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To improve dimensional accuracy of a work by its stable contact pressure, by correcting a locus to polish the work by a fixed pressure in accordance with a program containing a moving instruction in which a detection signal of elastic change in X, Y, Z axis directions of a wheel rotary shaft is converted by a computer. CONSTITUTION:A fixed pressure polishing head under a condition of polishing time X4-X7 detects a change corresponding to a resultant displacement preset value E0 as a displacement detection signal, and the displacement detection signal, being distributed by a distributor into each axis component and compared with a command register of each axis, corrects an instruction value of the work processing program previously input to a computer. That is, the surface of a wheel draws a moving locus S2, in which a correction part DELTAE1-DELTAE4 is added to or subtracted from a moving locus S1, as a result holding a contact pressure P to a fixed level b'. Accordingly, work surface accuracy is improved by polishing a work under stable application of the fixed contact pressure.

Description

【発明の詳細な説明】 イ0発明の目的 庄1」J■u1止肚 本発明は表面研磨方法および装置に関するものであり、
更に詳しくは、コンピュータを接続した数値制御工作機
械に於けるワーク表面の定圧研磨方法および装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface polishing method and apparatus,
More specifically, the present invention relates to a method and apparatus for constant-pressure polishing of the surface of a workpiece in a numerically controlled machine tool connected to a computer.

従来夏伎丘 自由曲面を有するワーク、例えば金型の製作に際しては
、まず倣いフライス盤もしくはマシニングセンタ等の工
作機械により荒仕上げを施し、この後ハンドグラインダ
等の手動工具により事情化加工、所謂、研磨加工を施す
のが普通である。荒仕上げについては高度に自由化され
た数値制御工作機械や倣い工作機械を使用しているため
、極めて高能率な自動加工が可能である。しながら、研
磨加工に於いては手動工具による手仕上げに依存してい
るのが実情であり、研磨工程の自動化ならびにワークの
寸法精度の向上を図る上に看過することのできない障害
が認められた。
Conventionally, when manufacturing a workpiece with a free-form curved surface, such as a mold, first rough finishing is performed using a machine tool such as a copy milling machine or a machining center, and then processing is performed using a manual tool such as a hand grinder, so-called polishing processing. It is common to apply For rough finishing, we use highly liberalized numerically controlled machine tools and copying machine tools, making it possible to perform extremely highly efficient automatic machining. However, the reality is that polishing relies on manual finishing using hand tools, and it has been recognized that this is an obstacle that cannot be overlooked when trying to automate the polishing process and improve the dimensional accuracy of workpieces. .

斯かる研摩工程の自動化を達成するため、これ迄に種々
の方策が提案さている。その−例として、マシニングセ
ンタの主軸に研磨砥石を装着し、主軸の回転によりワー
ク表面を研磨する方法が知られている。しかじな、がら
、この方法では砥石回転軸の移動軌跡がコンピュータに
予めインプットされているワークの加ニブログラムに規
定されており、該加ニブログラムに従って砥石を移動す
るだけでは充分な寸法精度を備えた研磨加工面が得られ
ないのが実情である。
In order to achieve automation of such a polishing process, various measures have been proposed so far. As an example, a method is known in which a grindstone is attached to the main shaft of a machining center and the surface of the workpiece is polished by rotation of the main shaft. However, in this method, the locus of movement of the grinding wheel rotation axis is defined in the cutting program of the workpiece, which is input into the computer in advance, and simply moving the grinding wheel according to the cutting program can provide sufficient dimensional accuracy. The reality is that a polished surface cannot be obtained.

■ < ゞ しよ゛と る。。■ <ゞゞ゛゛. .

上記数値制御工作機械によるワーク表面の研磨加工に於
いて実用上充分な寸法精度が得られない理由として下記
の要因が挙げられる。
The reasons why practically sufficient dimensional accuracy cannot be obtained in polishing the surface of a workpiece using the above-mentioned numerically controlled machine tool include the following factors.

■ 砥石は一般に切削工具に比較して剛性が低く、しか
も砥石の摩耗量は桁違いに大きい。このため、研磨工具
に切削工具と同一の移動軌跡を与えても、砥石の摩耗お
よび形状の変化により空研磨状態になる場合が少なくな
い。
■ Grinding wheels generally have lower rigidity than cutting tools, and the amount of wear on them is an order of magnitude greater. For this reason, even if the polishing tool is given the same movement locus as the cutting tool, it often ends up in an empty polishing state due to wear and changes in the shape of the grindstone.

■ 砥石表面とワークの間に所定の接触圧を与えながら
両者を相対移動させることによって初めて@磨表面から
切粉が排出される。この切粉排出機能を持続するために
は、砥石の表面とワークの間に働く接触圧を當に一定の
水準に維持する必要がある。しかるに砥石そのものが弾
性体であり、且つ、砥石摩耗の進行に伴なって砥石の形
状が不規則に変化する。研磨加工の目的は、荒仕上げ工
程で得られたワークの寸法精度をでき得る堰り維持しな
がら表面あらさを改善することであり、このためには上
記接触圧を常に一定の水準に維持し得ることが必要条件
となる。しかるに、在来の数値制御工作機械によるワー
クの自由曲面の研磨に於いては、砥石摩耗の進行に伴な
ってワークと砥石の間の接触圧が常に変化し、このため
、ワークの寸法精度が著しく損われていた。
■ Chips are discharged from the grinding surface only by applying a predetermined contact pressure between the grinding wheel surface and the workpiece and moving them relative to each other. In order to maintain this chip evacuation function, it is necessary to maintain the contact pressure between the surface of the grinding wheel and the workpiece at a constant level. However, the grindstone itself is an elastic body, and the shape of the grindstone changes irregularly as the grindstone wears. The purpose of polishing is to improve the surface roughness while maintaining the dimensional accuracy of the workpiece obtained in the rough finishing process, and for this purpose, the above contact pressure must always be maintained at a constant level. This is a necessary condition. However, when polishing a free-form surface of a workpiece using a conventional numerically controlled machine tool, the contact pressure between the workpiece and the grindstone constantly changes as the grindstone wears, and as a result, the dimensional accuracy of the workpiece decreases. It was severely damaged.

本発明の主要な目的は、公知の数値制御工作機械による
ワーク表面の研磨方法に認められた上記の如き問題点を
解消し得る表面研磨方法および装置を提供することにあ
る。
A main object of the present invention is to provide a surface polishing method and apparatus which can solve the above-mentioned problems observed in the known methods of polishing the surface of a workpiece using a numerically controlled machine tool.

本発明の他の主要な目的は、定圧研磨ヘッドから発信さ
れる砥石回転軸の変位検出信号により砥石の移動軌跡を
自動修正し得るようにした、数値制御装置に付加的な倣
い機能を具備せしめた表面研磨装置を提供することにあ
る。
Another main object of the present invention is to provide a numerical control device with an additional tracing function that can automatically correct the movement trajectory of the grindstone based on the displacement detection signal of the grindstone rotation axis transmitted from the constant pressure polishing head. The object of the present invention is to provide a surface polishing device with improved surface polishing properties.

口4発明の構成 ロ −をゞ るための 本発明は、数値制御工作機械の主軸(26)に装着され
た研磨工具(1)によるワーク表面のgf磨加工に於い
て、砥石回転軸(2)のX軸、Y軸およびZ軸方向の弾
性変位の検出信号を、前記数値制御工作機械に接続され
たコンピュータで砥石回転軸(2)の移動指令に変換し
、該移動指令を含むワーク加ニブログラムに従って砥石
回転軸の移動軌跡を修正しながらワークの表面を定圧研
磨する表面研磨方法を第1の要旨とするものである。
4. Configuration of the Invention The present invention provides a grindstone rotating shaft (2) in gf polishing of a work surface by a polishing tool (1) mounted on the main shaft (26) of a numerically controlled machine tool. ) is converted into a movement command for the grinding wheel rotation axis (2) by a computer connected to the numerically controlled machine tool, and the workpiece processing including the movement command is performed. The first aspect is a surface polishing method for polishing the surface of a workpiece under constant pressure while correcting the movement locus of the grindstone rotating shaft according to the nib program.

本発明はまた、数値制御工作機械の主軸(26)に装着
された砥石回転軸(2)をX軸、Y軸およびZ軸方向に
弾性変位自在に支持する浮遊支持機構(S)と、前記砥
石回転軸(2)の弾性変位量の検出機構(D)と、前記
数値制御工作機械に接続されたコンピュータによって定
圧研磨機構を形成してなる表面研磨装置を第2の要旨と
するものである。
The present invention also includes a floating support mechanism (S) that supports a grindstone rotating shaft (2) mounted on a main shaft (26) of a numerically controlled machine tool so as to be elastically displaceable in the X-axis, Y-axis, and Z-axis directions; The second gist is a surface polishing device in which a constant pressure polishing mechanism is formed by a detection mechanism (D) for the amount of elastic displacement of the grindstone rotating shaft (2) and a computer connected to the numerically controlled machine tool. .

実見皿 本発明の立脚点は、汎用の数値制御工作機械、例えばマ
シニングセンタの主軸(26)に、砥石回転軸(2)に
作用する研磨抵抗の検出装置を内蔵した定圧研磨ヘッド
、つまり研磨工具の本体(1)を装着し、ワーク加ニブ
ログラムとして予め設定された数値制御プログラムに於
いて前記研磨工具の移動軌跡を上記検出装置からの弾性
変位検出信号に応じて自動修正しながらワーク表面をF
fF磨することに置かれている。
The basis of the present invention is a constant-pressure polishing head, in other words, a polishing tool, which has a built-in device for detecting the polishing resistance acting on the grinding wheel rotating shaft (2) in the main shaft (26) of a general-purpose numerically controlled machine tool, such as a machining center. The main body (1) is attached, and the workpiece surface is F-shaped while automatically correcting the movement locus of the polishing tool according to the elastic displacement detection signal from the detection device in a numerical control program preset as a workpiece nib program.
It is placed on fF polishing.

第1図は本発明に係る表面研磨装置の要部構造を例示す
る部分縦断面図であり、第2図は本発明方法の模式的説
明図である。
FIG. 1 is a partial longitudinal cross-sectional view illustrating the main structure of a surface polishing apparatus according to the present invention, and FIG. 2 is a schematic explanatory diagram of the method of the present invention.

第1図に於いて、参照番号(1)は定圧Q磨ヘッド、つ
まり研磨工具の本体を表示する。該研磨工具の本体は、
図示しないツールシャンク部を数値制御工作機械の主軸
(26)の形状に合わせて製作することにより、同一の
主軸構造を有する任意の数値制御工作機械に装着するこ
とができる。研磨工具の本体(1)内には、例えば、空
気モータ方式(ベーンタンプ)の砥石回転軸(2)がX
軸、Y軸ならびにZ軸方向に弾性変位自在に浮遊支持さ
れている。砥石回転軸の基端部には、系外の圧空源から
供給された高圧の圧縮空気を該砥石回転軸の内部に導入
し砥石(4)を高速回転させるための空気導入口(3)
が設けられている。砥石回転軸(2)の側胴部には、該
砥石回転軸の軸線に対して直交方向に延びるフランジ(
5)が設けられており、該フランジの砥石(4)側基端
部にはその全周に亘って円錐状の受圧面(6)が形成さ
れている。ホルダー(7)内で同一円周上に位置し得る
ようる配置された複数個の鋼球(8a)は、前記フラン
ジ(5)を挟んで該鋼球(8a)に対向配置された複数
個の鋼球(8b)と一対を為してフランジ(5)を挟持
し、砥石回転軸(2)の浮遊支持機構(S)の一部分を
形成している。即ち、対向配置された鋼球(8a)およ
び(8b)によってフランジ(5)を浮遊支持すること
によって、砥石回転軸(2)にはXY平面内での自由な
弾性変位が許容される。一方、前記ホルダー(7)には
、コイルスプリング(11)によって付勢された鋼球(
9)の保持部材としてリテーナ(lO)が取付けられて
いる。コイルスプリング(11)によってバネ付勢され
た鋼球(9)は、前記円錐状の受圧面(6)に対してZ
軸のマイナス方向押圧力を作用させるように後記第2の
コイルスプリング(13)ならびにホルダー(7)と共
働して砥石回転軸(2)の浮遊支持機構(S)の残余の
部分を形成している。従って、砥石回転軸(2)は、コ
イルスプリング(11)および鋼球(9)の圧縮反力に
より常時Z軸のマイナス方向に押圧され、力学的に安定
なゼロ点に自動的に復帰し得る自己復元機能を与えられ
ている。研磨加工時に砥石(4)がワーク(W)に接触
し、研磨荷重の反力が掛かると、受圧面(6)はXY平
面内で弾性変位し、該弾性変位に伴なって鋼球(9)お
よびコイルスプリング(11)は圧縮されてZ軸のプラ
ス方向に移動する。斯くして砥石回転軸(2)には、円
錐状受圧面(6)の傾斜角およびコイルスプリング(1
1)の圧縮反力によって一義的に規定される移動抵抗が
発生する。
In FIG. 1, reference number (1) designates the constant pressure Q-polishing head, ie, the body of the polishing tool. The main body of the polishing tool is
By manufacturing the tool shank portion (not shown) to match the shape of the main shaft (26) of the numerically controlled machine tool, it can be mounted on any numerically controlled machine tool having the same main shaft structure. Inside the main body (1) of the polishing tool, for example, an air motor type (vane tamp) whetstone rotating shaft (2) is installed.
It is floatingly supported so as to be elastically displaceable in the axial, Y-axis, and Z-axis directions. At the base end of the grindstone rotation shaft, there is an air introduction port (3) for introducing high-pressure compressed air supplied from a compressed air source outside the system into the inside of the grindstone rotation shaft to rotate the grindstone (4) at high speed.
is provided. The side body of the grinding wheel rotation shaft (2) has a flange (
5), and a conical pressure receiving surface (6) is formed at the base end of the flange on the grindstone (4) side over its entire circumference. A plurality of steel balls (8a) arranged so that they can be positioned on the same circumference within the holder (7) are a plurality of steel balls (8a) arranged opposite to the steel balls (8a) with the flange (5) in between. The flange (5) is sandwiched between the steel ball (8b) and a part of the floating support mechanism (S) of the grindstone rotating shaft (2). That is, by floatingly supporting the flange (5) by the opposingly arranged steel balls (8a) and (8b), the grindstone rotating shaft (2) is allowed to freely elastically displace within the XY plane. On the other hand, the holder (7) has a steel ball (
A retainer (lO) is attached as a holding member of 9). A steel ball (9) biased by a coil spring (11) is placed at a Z angle with respect to the conical pressure receiving surface (6).
The remaining part of the floating support mechanism (S) of the grindstone rotation shaft (2) is formed in cooperation with the second coil spring (13) and the holder (7) described later so as to apply a negative direction pressing force of the shaft. ing. Therefore, the grindstone rotating shaft (2) is constantly pressed in the negative direction of the Z-axis by the compression reaction force of the coil spring (11) and steel ball (9), and can automatically return to a mechanically stable zero point. It is endowed with self-recovery capabilities. When the grindstone (4) comes into contact with the workpiece (W) during polishing and a reaction force of the polishing load is applied, the pressure receiving surface (6) is elastically displaced within the XY plane, and along with the elastic displacement, the steel ball (9) ) and the coil spring (11) are compressed and move in the positive direction of the Z axis. In this way, the grinding wheel rotation shaft (2) has the inclination angle of the conical pressure receiving surface (6) and the coil spring (1).
A movement resistance uniquely defined by the compression reaction force (1) occurs.

またホルダー(7)はポールスライド等の直線案内要素
(12)によりZ軸方向に直線移動自在に支持された状
態で、コイルスプリング(13)によりZ軸のプラス方
向に常時押圧されている。従って砥石(4)にZ軸のマ
イナス方向の接触反力が生じた場合には、砥石回転軸(
2)全体が前記直線案内要素(12)に案内されてZ軸
のマイナス方向に後退する。以上の説明から理解し得る
如く、砥石回転軸(2)は、研磨負荷の作用時に力学的
に安定なゼロ位置へ自動的に復帰する自己復元性を備え
ており、しかも砥石(4)に掛かる抵抗の方向と大きさ
に対応して任意の方向に弾性変位し得るように構成され
ている。また前記コイルスプリング(11)および(1
3)には撓み量に比例した反力が発生するので、砥石(
4)に掛かる研磨負荷と砥石回転軸(2)に発生する弾
性変位との間には比例的な相対関係が成立している。
Further, the holder (7) is supported by a linear guide element (12) such as a pole slide so as to be linearly movable in the Z-axis direction, and is constantly pressed in the positive direction of the Z-axis by a coil spring (13). Therefore, if a contact reaction force occurs in the negative direction of the Z-axis on the grinding wheel (4), the grinding wheel rotation axis (
2) The entire body is guided by the linear guide element (12) and retreats in the negative direction of the Z axis. As can be understood from the above explanation, the grinding wheel rotation shaft (2) has a self-righting property that automatically returns to a mechanically stable zero position when a polishing load is applied, and moreover, It is configured so that it can be elastically displaced in any direction depending on the direction and magnitude of resistance. Further, the coil springs (11) and (1)
3), a reaction force proportional to the amount of deflection is generated, so the grinding wheel (
A proportional relationship exists between the polishing load applied to 4) and the elastic displacement generated in the grindstone rotating shaft (2).

このように砥石回転軸(2)に掛かる研磨抵抗は、該砥
石回転軸の弾性変位として検出されるから、該弾性変位
をコンピュータに予めインプットされているワーク加ニ
ブログラムに砥石回転軸の移動軌跡の修正パラメータと
して伝達することにより、砥石(4)の摩耗量の如何に
拘らず常時一定の接触圧を維持し得る定圧研磨機構を形
成することができる。以下、砥石回転軸(2)の弾性変
位の検出機構(D)について説明する。参照番号(14
)は弾性変位の検出器のホルダーで研磨工具の本体(1
)に適当な方法で固定されている。検出器ホルダー(1
4)の内部には、X軸、Y軸およびZ軸方向に沿う砥右
回転軸(2)の弾性変位を検出する3個の変位検出器、
例えば差動トランスが固着されている。第1の検出器 
(15)は、砥石回転軸(2)のX軸方向の弾性変位を
検出する検出手段であって、砥石回転軸(2)のXY平
面内に於ける弾性変位を、該砥石回転軸の側胴1部に形
成された基準リング(20)に接する第1の測定子(1
9)と変位変換レバー(17)を介してX軸方向の変位
に変換して検出するように構成されている。
In this way, the polishing resistance applied to the grinding wheel rotation shaft (2) is detected as the elastic displacement of the grinding wheel rotation shaft, so the elastic displacement is recorded in the workpiece grinding program that is input into the computer in advance to show the movement trajectory of the grinding wheel rotation shaft. By transmitting it as a correction parameter, it is possible to form a constant pressure polishing mechanism that can always maintain a constant contact pressure regardless of the amount of wear of the grindstone (4). The elastic displacement detection mechanism (D) of the grindstone rotating shaft (2) will be described below. Reference number (14
) is the holder of the elastic displacement detector and the body of the polishing tool (1
) is fixed in an appropriate manner. Detector holder (1
4) includes three displacement detectors for detecting the elastic displacement of the right rotation shaft (2) along the X-axis, Y-axis, and Z-axis directions;
For example, a differential transformer is fixed. first detector
(15) is a detection means for detecting the elastic displacement of the grinding wheel rotation shaft (2) in the X-axis direction, and detects the elastic displacement of the grinding wheel rotation shaft (2) in the The first measuring element (1) is in contact with the reference ring (20) formed on the body 1.
9) and a displacement conversion lever (17), the displacement is converted into a displacement in the X-axis direction and detected.

変位変換レバー(17)は、ピン(18)を回転中心と
して揺動自在に支承されており、該揺動運動を利用して
砥石回転軸(2)の半径方向変位をX軸方向の変位に変
換する。参照番号(16)で表示する測定子は、上記第
1の検出器(15)の先端部に固着された第2の測定素
子である。
The displacement conversion lever (17) is swingably supported around a pin (18) as a center of rotation, and uses the swinging motion to convert a radial displacement of the grindstone rotation shaft (2) into a displacement in the X-axis direction. Convert. The measuring element indicated by reference number (16) is a second measuring element fixed to the tip of the first detector (15).

砥石回転軸(2)のY軸方向に沿う弾性変位も、上記第
1の検出器(15)と同様の構造を有する第2の検出器
(図示せず)によって検出される。しかしながら、該第
2の検出器は、その角度位置が第1の検出器(15)に
対して略90°ずれるように配置されてい゛る。参照番
号(21)で表示する第3の検出器は、砥石回転軸(2
)のX軸方向に沿う弾性変位を検出する目的で設けられ
たものであり、該検出器に固定された第3の測定子(2
2)をホルダー(7)に接触させ、該ホルダーのX軸方
向変位、つまり砥石(4)のX軸方向に沿う弾性変位を
検出し得るように構成されている。
The elastic displacement of the grindstone rotating shaft (2) along the Y-axis direction is also detected by a second detector (not shown) having the same structure as the first detector (15). However, the second detector is arranged such that its angular position is offset by approximately 90° with respect to the first detector (15). The third detector, designated by the reference number (21), is located at the grinding wheel rotation axis (2
) is provided for the purpose of detecting the elastic displacement along the X-axis direction of the detector.
2) is brought into contact with the holder (7) to detect the displacement of the holder in the X-axis direction, that is, the elastic displacement of the grindstone (4) along the X-axis direction.

一方、研磨工具の本体(1)には、砥石回転軸(2)の
X軸、Y軸およびX軸方向に沿う弾性変位を検出するた
めの3個の変位検出器から発信された電気信号をコンピ
ュータに向けて送出するための信号取出し装置が付設さ
れている。更に詳しく説明すると、第1図は、上記定圧
研磨ヘッド(1)をマシニングセンタの主軸(26)に
接続した状態を示すものであって、参照番号(23)は
、研磨工具の本体(1)に突設されたアームを示し、ま
た参照番号(24)は、前記アーム(23)の軸線に対
して略直交する方向に延びる信号送出ロッドを示す。変
位検出器(15)、(21)等から発信された電気信号
は、アーム(23) 、信号送出ロッド(24)に付設
された電気コネクタ(25)に伝達される。一方、主軸
(26)の周囲には、主軸へラド(図示せず)の前面に
固着された主軸キャップ(27)が配設されており、該
主軸キャップには信号取出しブロック(28)および電
気コネクタ(29)が位置決めされた状態で取付けられ
ている。従って、公知の自動工具交換装置により工具マ
ガジンから主軸(26)に上記定圧研磨ヘッド(1)が
装着されるのと同時に、3個の変位検出器から延びる電
気信号ケーブルが、マシニングセンタに接続されたコン
ピュータ(図示せず)の接続端子に対して自動的に接続
されることになる。空気モータ型式の砥石回転軸(2)
への圧縮空気の供給経路も、上記電気信号系と同様に、
主軸(26)への定圧研磨ヘッド(1)の装着と同時に
連通状態を取得する。
On the other hand, the main body (1) of the polishing tool is equipped with electrical signals transmitted from three displacement detectors for detecting the elastic displacement of the grinding wheel rotation shaft (2) along the X-axis, Y-axis, and X-axis directions. A signal extraction device is attached for sending out to the computer. To explain in more detail, FIG. 1 shows the constant pressure polishing head (1) connected to the main shaft (26) of the machining center, and the reference number (23) is the one attached to the main body (1) of the polishing tool. A projecting arm is shown, and reference number (24) indicates a signal emitting rod extending in a direction substantially perpendicular to the axis of said arm (23). Electrical signals transmitted from the displacement detectors (15), (21), etc. are transmitted to the electric connector (25) attached to the arm (23) and the signal sending rod (24). On the other hand, around the main shaft (26), a main shaft cap (27) fixed to the front surface of a main shaft head (not shown) is provided, and the main shaft cap includes a signal extraction block (28) and an electrical The connector (29) is installed in a positioned state. Therefore, at the same time as the constant pressure polishing head (1) is mounted on the spindle (26) from the tool magazine by a known automatic tool changer, the electric signal cables extending from the three displacement detectors are connected to the machining center. It will automatically be connected to a connection terminal of a computer (not shown). Air motor model grinding wheel rotation shaft (2)
Similarly to the electrical signal system mentioned above, the compressed air supply route to
The communication state is acquired at the same time as the constant pressure polishing head (1) is attached to the main shaft (26).

以下、第2図に基づいて本発明装置によるワークの表面
研磨方法を説明する。尚、以下の記述に於いては理解を
容易にするため円形砥石を用いた場合について説明を進
める。第2図は単純化して考えるために第1図に示す定
圧研磨ヘッド、即ち研磨工具の本体(1)に、XZ平面
内に於いてのみ弾性変位が発生している場合を模式的に
表示するものである。定圧研磨ヘッド(1)はバネ定数
(Kx )および(Kz )を有する2個のコイルスプ
リングで弾性支持されているが、通常、X軸方向のバネ
定数(Kx )とX軸方向のバネ定数(Kz ) 、更
にY軸方向のバネ定数(Ky )は、互いに等しくなる
ように調整されている。第2図に於ける参照符号(Su
 )は、前工程に於いてボールエンドミル等の切削工具
によって荒仕上げされたワーク(W)の表面を表示する
。該表面(Su )に対して法線方向に砥石(4)の半
径(r)に等しい量だけオフセットを与えた軌跡(LO
)上を、砥石(4)に回転を与えながら移動させたとし
ても、該砥石とワークの間に働らく接触圧は殆んどゼロ
であるから、実質上研磨は実行されない。従って、この
状態では変位検出器(15)および(21)の出力信号
は殆んどゼロになる。
Hereinafter, a method for polishing the surface of a workpiece using the apparatus of the present invention will be explained based on FIG. In the following description, in order to facilitate understanding, the case where a circular grindstone is used will be explained. For simplification, Figure 2 schematically shows the case where elastic displacement occurs only in the XZ plane in the constant pressure polishing head shown in Figure 1, that is, the main body (1) of the polishing tool. It is something. The constant pressure polishing head (1) is elastically supported by two coil springs having spring constants (Kx) and (Kz). Kz) and the spring constant (Ky) in the Y-axis direction are adjusted to be equal to each other. Reference symbol (Su
) displays the surface of the workpiece (W) that has been roughly finished with a cutting tool such as a ball end mill in the previous process. A locus (LO) with an offset equal to the radius (r) of the grindstone (4) in the normal direction to the surface (Su
) on the workpiece while rotating the grindstone (4), the contact pressure acting between the grindstone and the workpiece is almost zero, so that no polishing is actually performed. Therefore, in this state, the output signals of the displacement detectors (15) and (21) become almost zero.

ここで、砥石(4)とワーク(W)の間に研磨の実行に
必要な接触圧を付加するため、ワークの荒仕上げ表面(
Su’)に対して合成変位E=Jrrr丁百T1なる押
し込み量を与え(但し、Exは砥石回転軸(2)のX軸
方向に沿う弾性変位であり、またEzば砥石回転軸(2
)のX軸方向に沿う弾性変位である)、砥石(4)の表
面の包絡線が(So )となるように該砥石(4)を移
動させる。斯くして、合成変位(E)に対応した接触圧
の維持下にワークの表面研磨が実行される。
Here, in order to apply the contact pressure necessary for polishing between the grinding wheel (4) and the workpiece (W), the roughly finished surface of the workpiece (
Su') is given a pushing amount of resultant displacement E = Jrrr 100 T1 (where, Ex is the elastic displacement along the X-axis direction of the grinding wheel rotation axis (2), and Ez is the elastic displacement along the
), and the grindstone (4) is moved so that the envelope of the surface of the grindstone (4) becomes (So). In this way, the surface of the workpiece is polished while maintaining the contact pressure corresponding to the resultant displacement (E).

この際考慮すべき技術的問題点とし、て下記の3項目が
挙げられる。
The following three technical issues should be considered at this time.

■ 一定の接触圧を作用せしめるための押し込み量、つ
まり合成変位(E)の設定精度、■ 砥石半径(r)の
測定精度、ならびに■ 使用時間の経過に伴う砥石摩耗
量の増大。
■ The setting accuracy of the pushing amount to apply a constant contact pressure, that is, the resultant displacement (E), ■ The measurement accuracy of the grindstone radius (r), and ■ The increase in the amount of grindstone wear over time.

上記3項目は何れも、接触圧の設定に際し無視すること
のできない要因であるが、それらの定量的な把握が困難
なため、在来の研磨工程に於いては作業者の経験に頼り
試行錯誤によりその都度接触圧を修正する必要があった
。即ち、砥石(4)そのものが弾性体であるため、直径
(2r)の測定精度が必らずしも高くなく、また摩耗に
よる砥石の直径および形状の変化が一様でなく、その定
量的な把握が不可能であることに起因して、在来の研磨
工程に於いては接触圧を一定の水準に維持する上に大き
な障害が認められていた。
All of the above three items are factors that cannot be ignored when setting the contact pressure, but since it is difficult to understand them quantitatively, conventional polishing processes rely on the operator's experience and rely on trial and error. Therefore, it was necessary to correct the contact pressure each time. In other words, since the grinding wheel (4) itself is an elastic body, the measurement accuracy of the diameter (2r) is not necessarily high, and the change in the diameter and shape of the grinding wheel due to wear is not uniform, so it is difficult to quantify it. Due to this inability to maintain contact pressure at a constant level, conventional polishing processes have experienced major obstacles.

本発明方法を採用することにより、上記の問題点は一挙
に解消され、砥石の弾性変位や摩耗量に影響されること
なく、砥石(4)とワーク表面(Su )の間に常に一
定の接触圧を保持せしめることができる。
By adopting the method of the present invention, the above problems are solved at once, and constant contact is maintained between the grinding wheel (4) and the workpiece surface (Su) without being affected by the elastic displacement or amount of wear of the grinding wheel. The pressure can be maintained.

以下、第2図に於ける砥石表面の包絡線の移動軌跡(S
o )をX軸方向に沿う微小区間(ΔX)で細分化して
表示した直交座標線図を第3図として、また、そのとき
の砥石回転軸(2)の合成変位(E)と接触圧P(=に
−E)との関係を模式的に表示したグラフを第4図とし
て、本発明の特色を詳述する。在来の表面研磨方法では
コンピュータに前辺ってインプントされたワーク(W)
の加ニブログラムにより砥石(4)の移動軌跡が規定さ
れているために、ワーク形状の変化や砥石の摩耗状態と
は無関係に砥石(4)が第3図に於いて参照番号(So
 )で表示するように移動する。砥石(4)がX4乃至
X7の位置に移動するにつれて漸次摩耗量が増大するも
のと仮定すると、砥石表面の実際の移動軌跡は(S1〕
のように変化するから、摩耗量に対応して合成変位なら
びに接触圧Pは第4図の(a)、(b)のように変化す
ることになり正常な研磨が実行されない。
Below, the movement locus of the envelope of the grinding wheel surface in Fig. 2 (S
Fig. 3 is an orthogonal coordinate diagram in which o) is subdivided and displayed in minute sections (ΔX) along the X-axis direction, and the resultant displacement (E) of the grinding wheel rotation axis (2) at that time and the contact pressure P The features of the present invention will be described in detail with reference to FIG. 4, which is a graph schematically showing the relationship between (= and -E). In the conventional surface polishing method, the front side of the workpiece (W) is imprinted on the computer.
Since the movement locus of the grinding wheel (4) is defined by the grinding wheel program in Fig. 3, the grinding wheel (4) has the reference number (So
) to move it to display. Assuming that the amount of wear gradually increases as the grindstone (4) moves from position X4 to X7, the actual movement trajectory of the grindstone surface is (S1)
Therefore, the resultant displacement and the contact pressure P change as shown in FIG. 4(a) and (b) in response to the amount of wear, and normal polishing is not performed.

これに対し本発明方法に於いては、第5図に見られる如
(前記X4乃至X2の状態で、定圧研磨ヘッド(1)に
、合成変位設定値(Eo )に対応する変化(偏差信号
)が変位検出信号として検出されており、該変位検出信
号を図示しない分配器によって各軸成分に分配し各軸の
コマンドレジスタと比較することによって、コンピュー
タに予めインプットされているワーク加ニブログラムの
指令値が修正される。即ち、砥石(4)の表面は、移動
軌跡(S+)に修正分ΔE1乃至ΔE4を加算もしくは
減算された移動軌′7a(S2)を画き、この結果、接
触圧CP”)は、第4図に於いて参照番号(b”)で示
すように一定の水準に保持されることになる。
On the other hand, in the method of the present invention, as shown in FIG. is detected as a displacement detection signal, and by distributing the displacement detection signal into each axis component by a distributor (not shown) and comparing it with the command register of each axis, the command value of the workpiece machining program that is input into the computer in advance is determined. In other words, the surface of the grindstone (4) draws a movement trajectory '7a (S2) that is the movement trajectory (S+) plus or subtracted by corrections ΔE1 to ΔE4, and as a result, the contact pressure CP'') will be held at a constant level as indicated by reference numeral (b'') in FIG.

第5図は、第4図に於ける修正動作の信号の流れを説明
するフローチャートであって、細線矢印で表示する信号
の流れが標準の加ニブログラムによって与えられる砥石
回転軸(2)の移動指令の送出経路であり、また、太線
矢印で表示する信号の流れが本発明方法により修正され
た砥石回転軸(2)の移動指令の送出経路である。
FIG. 5 is a flowchart illustrating the signal flow of the correction operation in FIG. 4, in which the signal flow indicated by the thin arrow is a movement command for the grinding wheel rotation axis (2) given by a standard Canadian program. Furthermore, the signal flow indicated by the bold line arrow is the sending path of the movement command for the grindstone rotating shaft (2) corrected by the method of the present invention.

ハ8発明の効果 以上の説明から理解し得る如く、数値制御工作機械に接
続されたコンピュータに定圧研磨へンドから発信される
砥石回転軸の弾性変位の検出信号を入力することにより
、砥石とワークの間の接触圧を常に一定の水準に維持せ
しめた表面研磨条件が取得される。本発明によれば、砥
石の摩耗や形状の変化に対してワークの加ニブログラム
、殊に砥石回転軸の移動軌跡が自動的に修正されるから
、安定した一定の接触圧の作用下に研磨プロセスが遂行
される。従って、在来の研磨方法に圧絞してワーク表面
の寸法精度が大幅(、こ向上する。更に、上記弾性変位
の検出信号をモニタリングすることにより、砥石とワー
クとの間に働く接触圧を(★出し、砥石の摩耗量を定量
的に管理することが可能になる。また、公知の数値制御
装置の外部ワークオフセット機構、工具径オフセント機
構を用いれば、汎用の数値制御工作機械に定圧研磨ヘッ
ドを装着するだけで数値制御倣いVr磨を実行すること
ができる。
C8 Effects of the invention As can be understood from the above explanation, by inputting the detection signal of the elastic displacement of the grinding wheel rotating shaft transmitted from the constant pressure polishing hand to the computer connected to the numerically controlled machine tool, the grinding wheel and the workpiece can be Surface polishing conditions are obtained in which the contact pressure between the two surfaces is maintained at a constant level. According to the present invention, the grinding program of the workpiece, especially the movement locus of the grinding wheel rotation axis, is automatically corrected in response to wear or changes in the shape of the grinding wheel, so that the grinding process can be carried out under the action of a stable and constant contact pressure. is carried out. Therefore, the dimensional accuracy of the workpiece surface can be greatly improved by reducing the pressure to the conventional polishing method.Furthermore, by monitoring the detection signal of the above-mentioned elastic displacement, the contact pressure acting between the grinding wheel and the workpiece can be reduced. (★It becomes possible to quantitatively control the wear amount of the grinding wheel.Also, by using the external work offset mechanism and tool diameter offset mechanism of the known numerical control device, constant pressure grinding can be performed on general-purpose numerically controlled machine tools. Numerical control copying VR polishing can be performed simply by attaching the head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る表面研磨装置の要部構造を例示
する部分縦断面図であ2r)、第2図は、本発明方法の
模式的説明図である。また第3図は、上記第2図に於け
る砥石表面の包絡線の移動!1iILisをX軸方向に
沿う微小区間(ΔX)で細分化して表示する直交座標線
図であり、第4図は、砥石回転軸の合成変位と接触圧と
の関係を模式的に表示するグラフである。更に第5図は
、第4図に於ける修正動作の信号の流れを説明するフロ
ーチャートである。 (1)・−研磨工具、(2)−・・砥石回転軸、(S)
・−砥石回転軸の浮遊支持機構、(D)−・弾性変位量
検出機構、(26) −数値制御工作機械の主軸。
FIG. 1 is a partial vertical cross-sectional view illustrating the main structure of a surface polishing apparatus according to the present invention (2r), and FIG. 2 is a schematic explanatory diagram of the method of the present invention. Also, Figure 3 shows the movement of the envelope of the grinding wheel surface in Figure 2 above! 1iILis is an orthogonal coordinate diagram that subdivides and displays it in minute sections (ΔX) along the X-axis direction, and FIG. 4 is a graph that schematically displays the relationship between the resultant displacement of the grinding wheel rotation axis and the contact pressure. be. Further, FIG. 5 is a flowchart illustrating the signal flow of the correction operation in FIG. 4. (1) - Polishing tool, (2) - Grinding wheel rotation axis, (S)
- Floating support mechanism for grinding wheel rotating shaft, (D) - Elastic displacement detection mechanism, (26) - Main shaft of numerically controlled machine tool.

Claims (1)

【特許請求の範囲】 (11数値制御工作機械の主軸に装着された工具による
ワーク表面の研磨加工に、於いて、砥石回転軸のX軸、
Y軸およびZ軸方向の弾性変位の検出信号を、前記数値
制御工作機械に接続されたコンピュータで砥石回転軸の
移動指令に変換し、該移動指令を含むワーク加ニブログ
ラムに従って砥石回転軸の移動軌路を修正しながらワー
クの表面を定圧研磨することを特徴とする表面研磨方法
。 (2)数値制御工作機械の主軸に装着された砥石回転軸
をX軸、Y軸およびZ軸方向に弾性変位自在に支持する
浮遊支持機構と、前記砥石回転軸の弾性変位量の検出機
構と、前記数値制御工作機械に接続されたコンピュータ
によって定圧研磨機構を形成したことを特徴とする表面
研磨装置。
[Claims] (11) In polishing the surface of a workpiece using a tool attached to the main shaft of a numerically controlled machine tool,
A computer connected to the numerically controlled machine tool converts the detection signals of elastic displacement in the Y-axis and Z-axis directions into a movement command for the grindstone rotation axis, and the movement trajectory of the grindstone rotation axis is determined according to the workpiece machining program including the movement command. A surface polishing method characterized by polishing the surface of a workpiece under constant pressure while correcting the path. (2) a floating support mechanism that supports a grindstone rotating shaft attached to the main shaft of a numerically controlled machine tool such that it can be elastically displaced in the X-axis, Y-axis, and Z-axis directions; and a detection mechanism for detecting the amount of elastic displacement of the grindstone rotating shaft; . A surface polishing apparatus characterized in that a constant pressure polishing mechanism is formed by a computer connected to the numerically controlled machine tool.
JP11874484A 1984-06-08 1984-06-08 Surface polishing method and device Granted JPS60263663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11874484A JPS60263663A (en) 1984-06-08 1984-06-08 Surface polishing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11874484A JPS60263663A (en) 1984-06-08 1984-06-08 Surface polishing method and device

Publications (2)

Publication Number Publication Date
JPS60263663A true JPS60263663A (en) 1985-12-27
JPH057144B2 JPH057144B2 (en) 1993-01-28

Family

ID=14743981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11874484A Granted JPS60263663A (en) 1984-06-08 1984-06-08 Surface polishing method and device

Country Status (1)

Country Link
JP (1) JPS60263663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440262A (en) * 1987-07-31 1989-02-10 Nippei Toyama Corp Copy grinding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563173A (en) * 1979-06-25 1981-01-13 Hitachi Ltd Automatic grinding device
JPS57201162A (en) * 1981-05-29 1982-12-09 Toshiba Corp Curved surface profiling automatic grinding device
JPS5976761A (en) * 1982-10-22 1984-05-01 Sugino Mach:Kk Teaching playback automatic grinder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563173A (en) * 1979-06-25 1981-01-13 Hitachi Ltd Automatic grinding device
JPS57201162A (en) * 1981-05-29 1982-12-09 Toshiba Corp Curved surface profiling automatic grinding device
JPS5976761A (en) * 1982-10-22 1984-05-01 Sugino Mach:Kk Teaching playback automatic grinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440262A (en) * 1987-07-31 1989-02-10 Nippei Toyama Corp Copy grinding device

Also Published As

Publication number Publication date
JPH057144B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
US7455569B2 (en) Grinding and polishing machine for grinding and/or polishing workpieces to an optical quality
US4802285A (en) Method and apparatus for ascertaining the radial location of a new wheel profile to be produced by a reprofiling operation
US4551950A (en) Truing apparatus for a grinding wheel with rounded corners
CN109968127B (en) Grinding device
CN102107373A (en) Multifunctional built-in determinating device for processing machinery
KR20170094248A (en) Measuring steady rest for supporting and measuring central workpiece regions, grinding machine with such a measuring steady rest, and method for supporting and measuring central workpiece regions
US4417490A (en) Lathe tool calibrator and method
US5335454A (en) Procedure for the numerical control of a workpiece on a grinding machine
JPH01171761A (en) Abrasion compensation of abraded tool
JPS60263663A (en) Surface polishing method and device
CN109605102B (en) Machine tool
JPH06114702A (en) Automatic taper correcting device
GB2103129A (en) Arrangement in a coordinate grinding machine of a measuring apparatus for determining the position of a workpiece surface which is being ground
JPS59192457A (en) Positioner
WO2021191589A1 (en) Calibration device and method
GB2154163A (en) Cylindrical grinding machine having position detection probe
JPH0448578B2 (en)
JP2597219B2 (en) NC grinding machine
US7103441B2 (en) Calibration procedures and such using an erosion and grinding machine
JP2006021277A (en) Tool centering method and tool measuring method
JP7501943B1 (en) Grinding wheel measuring means, dressing system using the same, and grinding machine
US3704557A (en) Machine tool and gaging apparatus
JP3834493B2 (en) Compound grinding method and apparatus
JPH0521707B2 (en)
JPH071332A (en) Grinding wheel position detecting and correcting device