JPH0448578B2 - - Google Patents

Info

Publication number
JPH0448578B2
JPH0448578B2 JP59118743A JP11874384A JPH0448578B2 JP H0448578 B2 JPH0448578 B2 JP H0448578B2 JP 59118743 A JP59118743 A JP 59118743A JP 11874384 A JP11874384 A JP 11874384A JP H0448578 B2 JPH0448578 B2 JP H0448578B2
Authority
JP
Japan
Prior art keywords
axis
polishing
grindstone
displacement
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59118743A
Other languages
Japanese (ja)
Other versions
JPS60263662A (en
Inventor
Seido Koda
Koji Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP11874384A priority Critical patent/JPS60263662A/en
Publication of JPS60263662A publication Critical patent/JPS60263662A/en
Publication of JPH0448578B2 publication Critical patent/JPH0448578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は表面研磨方法および装置に関するもの
であり、更に詳しくは、倣いフライス盤等の倣い
制御装置を有する工作機械におけるワーク表面の
定圧研磨方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for surface polishing, and more particularly to a method and apparatus for constant-pressure polishing of the surface of a workpiece in a machine tool having a profile control device such as a copy milling machine. It is something.

従来の技術 自由曲面を有するワークの加工、例えば金型の
製作に際しては、普通まず倣いフライス盤等の倣
い制御装置を有する工作機械により荒仕上げを施
し、この後ハンドグラインダー等の手動研磨工具
により平滑化加工、所謂、表面研磨加工を施す。
荒仕上げに際しては高度に自動化された工作機械
を使用するため、極めて能率の高い自動加工が可
能である。反面、表面研磨加工に於いては作業者
の手仕上げに依存しているのが実情であり、表面
研磨加工工程を自動化し、作業能率と製品の寸法
的な精度を向上させるうえに大きな制約が認めら
れていた。当然、斯かる表面研磨加工工程の自動
化の要請に対して種々の方策が提案されている。
その一例として倣い工作機械の主軸に研磨砥石軸
を装着し、主軸の回転を利用してワーク、例えば
金型の表面に研磨加工を施す方法が知られてい
る。以下、第4図に基づいて倣いフライス盤によ
る表面研磨加工の公知例を説明すする。第4図は
公知の倣いフライス盤によるワーク3の表面の荒
加工、つまり、切削加工を模式的に表示するもの
である。テーブル1上にはワーク3と、ワーク3
に形成すべき荒仕上げ面に対応した曲面形状を有
するモデル2が固着されており、これに対して倣
いフライス盤の主軸頭4には、先端にトレーサヘ
ツド6を装着した片持梁状のトレーサアーム5が
固定されている。倣い切削加工に際しては、該該
トレーサヘツド6の先端部に装着されたフイーラ
7をモデル2の表面に接触させながら移動させ、
倣い動作を実行する。この倣い動作によつてトレ
ーサヘツド6から発信された変位検出信号Ex、
Ey、およびEzは、倣いフライス盤に付設された
公知の倣い制御装置8で演算処理され、倣いフラ
イス盤の主軸頭4およびテーブル1を駆動するサ
ーボモータ9に移動指令として送出される。該移
動指令に基づくサーボモータ9の回転駆動力は、
送りねじ10を介して主軸頭4およびテーブル1
に伝達され、フイーラ7にモデル2の表面に沿う
移動を生ぜしめる。主軸頭4には、例えばボール
エンドミル等の切削工具12を装着した主軸11
が回転自在に軸支されているから、切削工具12
には前記主軸頭4と同一の倣い動作が伝達され、
ワーク3は上記倣い動作によつてモデル2と同一
の表面形状に切削加工される。
Conventional technology When machining a workpiece with a free-form surface, for example, when manufacturing a mold, the rough finishing is usually first performed using a machine tool equipped with a copy control device such as a copy milling machine, and then smoothed using a manual polishing tool such as a hand grinder. Perform processing, so-called surface polishing.
Since highly automated machine tools are used for rough finishing, highly efficient automatic machining is possible. On the other hand, the reality is that surface polishing relies on manual finishing by workers, which poses major constraints in automating the surface polishing process and improving work efficiency and product dimensional accuracy. It was recognized. Naturally, various measures have been proposed in response to the demand for automation of such surface polishing process.
As an example, a method is known in which a polishing wheel shaft is attached to the main shaft of a copying machine tool, and the rotation of the main shaft is used to polish the surface of a workpiece, such as a mold. Hereinafter, a known example of surface polishing using a copy milling machine will be explained based on FIG. FIG. 4 schematically shows rough machining, ie, cutting, of the surface of the workpiece 3 by a known copy milling machine. Work 3 and work 3 are on table 1.
A model 2 having a curved surface shape corresponding to the rough finished surface to be formed is fixed to the model 2, and a cantilever-shaped tracer arm with a tracer head 6 attached to the tip is attached to the spindle head 4 of the copy milling machine. 5 is fixed. During copy cutting, the feeler 7 attached to the tip of the tracer head 6 is moved while being in contact with the surface of the model 2,
Execute copying motion. The displacement detection signal Ex transmitted from the tracer head 6 by this tracing operation,
Ey and Ez are processed by a known copy control device 8 attached to the copy milling machine, and sent as a movement command to the servo motor 9 that drives the spindle head 4 and table 1 of the copy milling machine. The rotational driving force of the servo motor 9 based on the movement command is:
Spindle head 4 and table 1 via feed screw 10
This causes the feeler 7 to move along the surface of the model 2. The spindle head 4 includes a spindle 11 equipped with a cutting tool 12 such as a ball end mill.
Since the cutting tool 12 is rotatably supported, the cutting tool 12
The same copying motion as that of the spindle head 4 is transmitted to
The workpiece 3 is cut into the same surface shape as the model 2 by the above-described copying operation.

以上、ボールエンドミルによる標準的な倣い切
削加工プロセスに関して説明したが、第4図に示
す倣いフライス盤で表面研磨加工を行なう場合に
は、以下に記述する方法が採用される。即ち、切
削工具12の代わりに研磨砥石を主軸11に装着
し、上記の倣い切削加工と同一の要領に従つてモ
デル2の表面の倣い動作を実行させ、研磨砥石に
よるワーク表面の研磨加工を行なう。
The standard copy cutting process using a ball end mill has been described above, but when surface polishing is performed using the copy milling machine shown in FIG. 4, the method described below is adopted. That is, a polishing wheel is attached to the main spindle 11 instead of the cutting tool 12, and a tracing operation is performed on the surface of the model 2 according to the same procedure as the copying cutting process described above, and the surface of the workpiece is polished with the polishing wheel. .

発明が解決しようとする課題 上記倣いフライス盤によるワーク表面の研磨加
工プロセスに於いて、研磨砥石の中心移動軌跡は
モデル2とフイーラ7の間の倣い動作によつて一
義的に決められるが、この倣い動作のみによつて
は実用上満足し得る寸法精度を備えた自由曲面が
得られないのが実情である。この理由としては下
記の要因が考えられる。
Problems to be Solved by the Invention In the process of polishing the surface of a workpiece using the copy milling machine, the center movement locus of the polishing wheel is uniquely determined by the copying motion between the model 2 and the filler 7. The reality is that it is not possible to obtain a free-form surface with dimensional accuracy that satisfies practical requirements only through motion. The following factors are considered to be the reason for this.

研磨砥石は一般に切削工具に比較して剛性が
低く、また研磨砥石の摩耗度は切削工具の摩耗
度に比較して桁違いに大きい。このため、研磨
砥石に切削工具と同一の移動軌跡を与えても、
摩耗による砥石形状の変化により空研磨状態に
なる場合がある。
A grinding wheel generally has lower rigidity than a cutting tool, and the degree of wear of a grinding wheel is an order of magnitude greater than that of a cutting tool. For this reason, even if the polishing wheel is given the same movement trajectory as the cutting tool,
There are cases where the grinding wheel becomes idle due to changes in the shape of the grindstone due to wear.

接触圧の付与下に研磨砥石をワークに対し相
対変位させることにより初めて切粉が排出され
る。この機能を持続させるためには常に一定の
接触圧作用が作用するように研磨砥石とワーク
との相対位置を調整する必要がある。しかしな
がら、研磨砥石そのものが可成りの弾性を備え
ており、また、研磨砥石の摩耗が進行するにつ
れて該研磨砥石の形状や寸法が不規則に変化す
るため接触圧を一定に保持することは実際上極
めて困難である。
Chips are discharged only by displacing the grinding wheel relative to the workpiece while applying contact pressure. In order to maintain this function, it is necessary to adjust the relative position between the grinding wheel and the workpiece so that a constant contact pressure is always applied. However, since the grinding wheel itself has considerable elasticity, and the shape and dimensions of the grinding wheel change irregularly as the grinding wheel wears, it is practically impossible to maintain a constant contact pressure. It is extremely difficult.

倣い制御装置にフイーラ7の変位量即ち、フ
イーラ7がモデル2に接触したときの押込量を
一定に維持する機構を組込み、研磨砥石の摩耗
量に応じてフイーラ7の変位量を漸次増大させ
る方法が知られているが、この方法では作業者
がその都度フイーラ7の変位量を手動調整する
必要があり、しかも調整すべき変位量そのもの
が暖味なため、接触圧を一定の水準に維持する
ことが難しく、当然のことながら、研磨工程の
自動化ならびにワークの加工精度の向上が阻害
される。
A method of incorporating a mechanism that maintains a constant amount of displacement of the feeler 7, that is, the amount of pushing when the feeler 7 contacts the model 2 into the copying control device, and gradually increasing the amount of displacement of the feeler 7 according to the amount of wear of the grinding wheel. However, this method requires the operator to manually adjust the amount of displacement of the feeler 7 each time, and since the amount of displacement to be adjusted is itself warm, it is necessary to maintain the contact pressure at a constant level. This naturally hinders the automation of the polishing process and the improvement of workpiece machining accuracy.

本発明の主要な目的は、在来の倣い工作機械に
よるワーク表面の研磨手段に認められた上記の如
き不都合を解消し得る新規な表面研磨方法および
装置を提供することにある。
A main object of the present invention is to provide a novel surface polishing method and apparatus that can overcome the above-mentioned disadvantages observed in workpiece surface polishing means using conventional copying machine tools.

課題を解決するための手段 本発明の方法は、先端に砥石を有する砥石回転
軸を研磨工具本体に対してX軸、Y軸およびZ軸
方向に弾性変位自在に支持し、この研磨工具本体
を工作機械の主軸に装着して先端の砥石をワーク
表面に一定圧力で押圧し、この状態で工作機械の
主軸を倣い動作させ、前記砥石とワークとの接触
による砥石回転軸のX軸、Y軸およびZ軸方向の
弾性変位量を検出し、該検出変位量の合成値が一
定値となるように上記工作機械の主軸の倣い動作
を制御してワーク表面を定圧研磨するようにした
ものである。
Means for Solving the Problems The method of the present invention supports a grinding wheel rotating shaft having a grinding wheel at its tip so as to be elastically displaceable in the X-axis, Y-axis, and Z-axis directions with respect to the polishing tool body. The grindstone attached to the main spindle of a machine tool presses the tip of the grindstone against the surface of the workpiece with a constant pressure, and in this state, the main spindle of the machine tool is moved along the X-axis and Y-axis of the grindstone rotation axis due to the contact between the grindstone and the workpiece. and the amount of elastic displacement in the Z-axis direction, and controls the tracing motion of the main shaft of the machine tool so that the composite value of the detected displacement amounts becomes a constant value, thereby polishing the surface of the workpiece under constant pressure. .

また、本発明の装置は、先端に砥石を有する砥
石回転軸を、浮遊支持機構を介してX軸、Y軸お
よびZ軸方向に弾性変位自在に支持する研磨工具
本体と、この研磨工具本体を装着し、先端の砥石
をワーク表面に一定圧力で押圧して倣い動作し乍
らワーク表面を定圧研磨させる工作機械の主軸
と、前記砥石回転軸のX軸、Y軸および軸方向に
対する各弾性変位を砥石回転軸の軸線方向の変位
量に変換し、電気的な信号として検出する検出機
構と、この検出機構で得られた検出信号を合成
し、この合成値が一定値となるように前記工作機
械の主軸を倣い制御する倣い制御装置とを具備さ
せたものである。
The device of the present invention also includes a polishing tool body that supports a grindstone rotating shaft having a grindstone at its tip so as to be elastically displaceable in the X-axis, Y-axis, and Z-axis directions via a floating support mechanism, and the polishing tool body. The main shaft of a machine tool that is installed and presses the grindstone at the tip against the surface of the workpiece under a constant pressure and performs a copying operation while polishing the surface of the workpiece under a constant pressure, and each elastic displacement of the grindstone rotation axis in the X-axis, Y-axis, and axial direction. A detection mechanism converts the amount of displacement in the axial direction of the grinding wheel rotation axis and detects it as an electrical signal, and the detection signal obtained by this detection mechanism is synthesized, and the said machining is performed so that this synthesized value becomes a constant value. It is equipped with a copying control device that controls the copying of the main shaft of the machine.

作 用 本発明の方法によれば、研磨工具本体を工作機
械の主軸を介してワーク表面に倣い動作させ、そ
の際、研磨工具のX軸、Y軸およびZ軸方向の変
位を検出して、その合成変位量が一定となるよう
に工作機械の主軸の倣い動作を制御してワーク表
面を定圧研磨していることになり、要するに、ワ
ークの形状変化を、砥石が接触している点で直接
検出し乍らワーク表面を研磨しているから、接触
圧を自動的に常一定に保持させて能率よく表面研
磨をすることができる。
Effects According to the method of the present invention, the polishing tool body is moved to follow the surface of the workpiece via the main axis of the machine tool, and at that time, displacements of the polishing tool in the X-axis, Y-axis, and Z-axis directions are detected, The workpiece surface is polished at a constant pressure by controlling the tracing motion of the main spindle of the machine tool so that the resulting amount of displacement remains constant.In short, changes in the shape of the workpiece are directly detected at the point where the grinding wheel is in contact with the workpiece. Since the surface of the workpiece is being polished while being detected, the contact pressure can be automatically kept constant and surface polishing can be carried out efficiently.

また、装置発明の場合は、上記方法発明と同一
の作用でワークの表面を研磨することができる。
Furthermore, in the case of the device invention, the surface of the workpiece can be polished with the same effect as the method invention described above.

実施例 第1図は本発明装置を例示する倣いフライス盤
の全体構造を示す正面図であり、第2図は定圧研
磨ヘツドの構造を模式的に表示する部分縦断面図
である。これらの図面に於いて参照番号21は研
磨工具の本体を表示し、図示しないツールシヤン
ク部を工作機械の主軸の形状に合せて動作するこ
とにより、任意の工作機械の主軸に装着すること
ができる。参照番号22は砥石回転を表示し、本
実施例に於いては空気モータ方式(ベーンタイ
プ)のものが使用されている。即ち、砥石回転軸
22の基端部に設けられた空気入口23から高圧
の圧縮空気を導入することにより砥石24には
10000RPM以上の高速回転が与えられる。砥石回
転軸22の胴部には、該砥石回転軸の軸線に対し
直交する方向に延びるフランジ25が設けられて
おり、該フランジ25の砥石24側表面には円錐
状の受圧面26が形成されている。これらのフラ
ンジ25および受圧面26は、鋼球28a、28
bならびに29を介してホルダー27に対し弾性
変位自在に浮遊支持されている。更に詳しく説明
すると、フランジ25は同一円周上に対向配置さ
れた複数個の鋼球28aおよび28bによつて回
転自在に支持されており、これによつて砥石回転
軸22は、研磨工具の本体21に対しXY平面内
で自由に変位し得るように浮遊支持されている。
また円錐状の受圧面26上には、複数個の鋼球2
9が略等間隔を置いて同一円周上に配置されてお
り、これらの鋼球29はリテーナ30内に嵌装さ
れたコイルスプリング31の圧縮反力によりZ軸
のマイナス方向に向つて常時受圧面26を押圧し
ている。斯かる浮遊支持構造Sを採用することに
よつて、砥石回転軸22は力学的に安定なゼロ点
に自動的に位置決めされることになる。
Embodiment FIG. 1 is a front view showing the overall structure of a copy milling machine illustrating the apparatus of the present invention, and FIG. 2 is a partial vertical sectional view schematically showing the structure of a constant pressure polishing head. In these drawings, reference numeral 21 indicates the main body of the polishing tool, which can be mounted on the main shaft of any machine tool by moving a tool shank (not shown) in accordance with the shape of the main shaft of the machine tool. Reference number 22 indicates the rotation of the grindstone, and in this embodiment, an air motor type (vane type) is used. That is, by introducing high-pressure compressed air from the air inlet 23 provided at the base end of the whetstone rotating shaft 22, the whetstone 24 is heated.
High speed rotation of 10000RPM or more is provided. A flange 25 extending in a direction perpendicular to the axis of the whetstone rotation shaft is provided on the body of the whetstone rotation shaft 22, and a conical pressure receiving surface 26 is formed on the surface of the flange 25 on the whetstone 24 side. ing. These flanges 25 and pressure receiving surfaces 26 are connected to steel balls 28a, 28
It is floatingly supported on the holder 27 via b and 29 so as to be elastically displaceable. More specifically, the flange 25 is rotatably supported by a plurality of steel balls 28a and 28b arranged oppositely on the same circumference. 21 so that it can be freely displaced within the XY plane.
Moreover, on the conical pressure receiving surface 26, a plurality of steel balls 2
9 are arranged on the same circumference at approximately equal intervals, and these steel balls 29 constantly receive pressure in the negative direction of the Z-axis due to the compression reaction force of the coil spring 31 fitted in the retainer 30. The surface 26 is pressed. By employing such a floating support structure S, the grindstone rotating shaft 22 is automatically positioned at a dynamically stable zero point.

ワーク3の研磨時に於て砥石24にワーク3と
の接触に起因する反力が発生すると、砥石回転軸
22はXY平面内でホルダー27に対して相対変
位しようとするが、該相対変位に伴なつて鋼球2
9およびコイルスプリング31はZ軸のプラス方
向に圧縮され移動する。従つて砥石回転軸22に
は、円錐状受圧面26の傾斜角およびコイルスプ
リング31の圧縮反力に対応する移動抵抗が発生
する。
When a reaction force is generated on the grindstone 24 due to contact with the workpiece 3 during polishing of the workpiece 3, the grindstone rotating shaft 22 tends to be displaced relative to the holder 27 in the XY plane, but due to this relative displacement, Natsute Steel Ball 2
9 and the coil spring 31 are compressed and moved in the positive direction of the Z axis. Therefore, movement resistance corresponding to the inclination angle of the conical pressure receiving surface 26 and the compression reaction force of the coil spring 31 is generated on the grindstone rotating shaft 22 .

またホルダー27はボールスライド等の直線案
内要素32を介してZ軸方向に直線移動自在に支
持され、コイルスプリング33によりZ軸のプラ
ス方向に常時押圧されている。従つて、砥石24
にZ軸のマイナス方向の接触反力が発生した場合
には、砥石回転軸22全体が前記直線案内要素3
2に案内されてZ軸のマイナス方向に後退する。
本発明に係る表面研磨装置、殊にその定圧研磨ヘ
ツドは以上の如く構成されているで、砥石回転軸
22には力学的に安定なゼロ位置に向つて自動復
帰する自己復元性が常時作用し、また砥石24に
働く研磨抵抗の方向と大きさに応じて任意の方向
へ変位が許容される。更に、コイルスプリング3
1,31には砥石回転軸22の撓み量に比例した
反力が発生しているので、砥石24に与えられる
負荷と砥石回転軸22の変位との間には比例的な
相対関係が成立している。
Further, the holder 27 is supported so as to be linearly movable in the Z-axis direction via a linear guide element 32 such as a ball slide, and is constantly pressed in the positive direction of the Z-axis by a coil spring 33. Therefore, the grindstone 24
If a contact reaction force occurs in the negative direction of the Z-axis, the entire grinding wheel rotation shaft 22 is moved toward the linear guide element 3.
2 and retreat in the negative direction of the Z axis.
Since the surface polishing apparatus according to the present invention, particularly its constant pressure polishing head, is constructed as described above, the grindstone rotating shaft 22 has a self-restoring property that automatically returns to a dynamically stable zero position at all times. , and displacement in any direction is allowed depending on the direction and magnitude of the polishing resistance acting on the grindstone 24. Furthermore, coil spring 3
1 and 31, a reaction force proportional to the amount of deflection of the grinding wheel rotation shaft 22 is generated, so a proportional relative relationship is established between the load applied to the grinding wheel 24 and the displacement of the grinding wheel rotation shaft 22. ing.

以上の説明から理解し得る如く、砥石回転軸2
2に掛かる負荷は砥石回転軸22の弾性変位とし
て現われるので、ここで弾性変位の検出機構Dに
ついて説明する。参照番号34は、砥石回転軸2
2の変位を検出する3個の変位検出器35,3
7,41を内側に固定してなる検出器ホルダーで
あつて、該検出器ホルダーは研磨工具の本体21
に適当な固着手段を介して固定されている。砥石
回転軸22のX軸方向の変位を検出する第1の検
出器35は、XY平面内に於ける砥石回転軸22
のX軸方向変位を、該砥石回転軸22の胴部に形
成された基準リング40に接する測定子39およ
び変位変換レバー37を介してZ軸方向の変位に
変換して検出する検出機構を形成している。前記
変位変換レバー37は、ピン38を回転中心とし
て揺動自在に支持されており、その揺動運動を介
して砥石回転軸22のX軸方向変位、つまり半径
方向変位をZ軸方向の変位、つまり軸線方向の変
位に変換している。XY平面内に於ける砥石回転
軸22のY軸方向変位も上記同様の構造を有する
第2の検出器(図示せず)によつて検出される。
但し、第2の検出器は、その測定子の配設位置を
前記第1の検出器35に於ける測定子39の配設
位置に対し90゜ずらせるようにその固定位置が調
整されている。参照番号41は砥石回転軸22の
Z軸方向に沿う変位を検出するための第3の検出
器で、該検出器に固定された測定子42がホルダ
ー27に接触してホルダー27のZ軸方向、つま
り砥石24のZ軸方向に沿う変位を検出し得るよ
うに構成されている。また研磨工具の本体21に
は、系外の圧空源から供給された高圧の圧縮空気
を接続口43を介して導入するための導入口23
および前記3個の変位検出器からの電気的な変位
検出信号Ex,EyおよびEzを工作機械の倣い制御
装置(図示せず)に送出するための電気コネクタ
44が設けられている。
As can be understood from the above explanation, the grinding wheel rotation shaft 2
Since the load applied to the grinding wheel 2 appears as an elastic displacement of the grindstone rotating shaft 22, the elastic displacement detection mechanism D will be explained here. Reference number 34 is the grindstone rotating shaft 2
Three displacement detectors 35, 3 detecting the displacement of
7, 41 fixed inside, the detector holder is a polishing tool main body 21.
It is fixed to via suitable fixing means. A first detector 35 that detects the displacement of the whetstone rotation shaft 22 in the X-axis direction is configured to detect the displacement of the whetstone rotation shaft 22 in the XY plane.
Forms a detection mechanism that converts the displacement in the X-axis direction into a displacement in the Z-axis direction via the measuring element 39 that contacts the reference ring 40 formed on the body of the grindstone rotating shaft 22 and the displacement conversion lever 37. are doing. The displacement conversion lever 37 is swingably supported around a pin 38 as a center of rotation, and through its swinging movement, the displacement in the X-axis direction, that is, the radial displacement, of the grindstone rotating shaft 22 is converted into the displacement in the Z-axis direction, In other words, it is converted into displacement in the axial direction. A displacement in the Y-axis direction of the grindstone rotating shaft 22 in the XY plane is also detected by a second detector (not shown) having the same structure as described above.
However, the fixed position of the second detector is adjusted so that the position of the measuring point is shifted by 90 degrees with respect to the position of the measuring point 39 of the first detector 35. . Reference number 41 is a third detector for detecting the displacement of the grinding wheel rotating shaft 22 along the Z-axis direction. In other words, it is configured to be able to detect the displacement of the grindstone 24 along the Z-axis direction. The main body 21 of the polishing tool also has an inlet 23 for introducing high-pressure compressed air supplied from an external compressed air source through a connection port 43.
An electrical connector 44 is provided for sending electrical displacement detection signals Ex, Ey, and Ez from the three displacement detectors to a tracing control device (not shown) of the machine tool.

第3図は第2図に例示する定圧研磨ヘツドを倣
いフライス盤の主軸11に装着して倣い研磨を行
なう方法を説明する模式図である。以下の記述に
於いては理解を容易にするため研磨工具として円
形砥石24を用いる場合を説明する。第3図に於
いて参照番号Suはボールエンドミル等の切削工
具により荒仕上げされたワーク3の表面を表示す
る。表面Suに対して法線方向に砥石24の半径
に等しい量rだけオフセツトを与えられた状態
で、該砥石24が軌跡Lo上を移動するものと仮
定すると、砥石24に研磨に必要な回転駆動力が
伝達されたとしても、砥石24とワーク3との間
に働く接触圧は殆んどゼロとなるから正常な研磨
は実行されない。またこの状態では、第2図に例
示した研磨ヘツド内に組込まれた3個の変位検出
器による検出信号の出力は当然のことながらゼロ
となるため、倣い動作そのものが実行不能にな
る。本発明に於いては、公知の倣い制御と同様
に、合成変位Eが一定値を保持するように砥石2
4をワーク3に対して押込み、これと同時に前記
合成変位Eの水準が実質上変化しないように砥石
24の移動軌跡を制御する。一般に合成変位E
は、E=√222として表示されるが、
理解を容易にするため第3図に示す実施態様に於
いてはXZ平面内に於いてのみ変位が発生するも
のと仮定し、第2図の定圧研磨ヘツドがバネ定数
kx、kzを有する2個のコイルスプリングによつ
て弾性的浮遊支持されているものとする。砥石2
4をワーク3に対して合成変位E=√22
に相当する長さだけ押込むと、接触反力の大きさ
と方向に応じてバネ定数kx、kzを有するコイル
スプリングが圧縮される。前記kx、kzはそれぞ
れコイルスプリングのX軸およびZ軸方向のバネ
定数であり、通常、kx=kzとなるように調整さ
れている。
FIG. 3 is a schematic diagram illustrating a method of performing copy polishing by attaching the constant pressure polishing head illustrated in FIG. 2 to the main shaft 11 of a copy milling machine. In the following description, a case will be described in which a circular grindstone 24 is used as the polishing tool to facilitate understanding. In FIG. 3, the reference number Su indicates the surface of the workpiece 3 that has been roughly finished by a cutting tool such as a ball end mill. Assuming that the whetstone 24 moves on a locus Lo with an offset r equal to the radius of the whetstone 24 in the normal direction to the surface Su, the whetstone 24 has the rotational drive necessary for polishing. Even if force is transmitted, the contact pressure acting between the grindstone 24 and the workpiece 3 is almost zero, so normal polishing is not performed. Furthermore, in this state, the output of the detection signals from the three displacement detectors incorporated in the polishing head illustrated in FIG. 2 is naturally zero, so that the copying operation itself becomes impossible. In the present invention, similarly to known copying control, the grinding wheel 2 is adjusted so that the resultant displacement E is maintained at a constant value.
4 into the workpiece 3, and at the same time, the locus of movement of the grindstone 24 is controlled so that the level of the composite displacement E does not substantially change. Generally, the resultant displacement E
is expressed as E=√ 2 + 2 + 2 , but
For ease of understanding, in the embodiment shown in Fig. 3, it is assumed that displacement occurs only in the XZ plane, and the constant pressure polishing head shown in Fig. 2 has a spring constant.
Assume that it is elastically suspended and supported by two coil springs having kx and kz. Whetstone 2
4 with respect to workpiece 3 E = √ 2 + 2
When pushed in by a length corresponding to , a coil spring with spring constants kx and kz is compressed depending on the magnitude and direction of the contact reaction force. The kx and kz are spring constants of the coil spring in the X-axis and Z-axis directions, respectively, and are usually adjusted so that kx=kz.

該コイルスプリングのX軸方向変位Ex及びZ
軸方向変位Ezは変位検出器35および41によ
り電気的な信号として検出され、倣いフライ盤の
倣い制御装置8に送出される。倣い制御装置8
は、前記検出信号を砥石回転軸22の移動指令に
変換する演算機構を内蔵しており、前記変位検出
信号ExとEzの合成変位を常に一定の水準に維持
するように第1図に於いて参照番号9で表示する
X軸サーボモータならびにZ軸サーボモータに回
転指令を送出する。X軸サーボモータならびにZ
軸サーボモータの回転により砥石回転軸22に
は、前記変位検出信号ExおよびEzに対応する倣
い動作が伝達され、砥石24の表面の包絡線は、
第3図に於いて二点鎖線で表示するSoなる曲面
を画く。該曲面Soに沿つて砥石24を回転駆動
下に移動させることにより、該砥石はワーク3の
表面Suに対し一定の接触圧で接触し、該ワーク
の表面を倣動作の実行下に定圧研磨する。
The displacement Ex and Z of the coil spring in the X-axis direction
The axial displacement Ez is detected as an electrical signal by the displacement detectors 35 and 41, and sent to the copying control device 8 of the copying milling machine. Copying control device 8
has a built-in arithmetic mechanism that converts the detection signal into a movement command for the grinding wheel rotating shaft 22, and is designed to maintain the composite displacement of the displacement detection signals Ex and Ez at a constant level at all times as shown in FIG. A rotation command is sent to the X-axis servo motor and Z-axis servo motor indicated by reference number 9. X-axis servo motor and Z
Due to the rotation of the shaft servo motor, a copying motion corresponding to the displacement detection signals Ex and Ez is transmitted to the grindstone rotating shaft 22, and the envelope of the surface of the grindstone 24 is
In Fig. 3, we draw a curved surface called So, which is indicated by a chain double-dashed line. By moving the grindstone 24 along the curved surface So under rotational drive, the grindstone contacts the surface Su of the workpiece 3 with a constant contact pressure, and polishes the surface of the workpiece 3 under constant pressure while performing a copying operation. .

本発明方法に於いては、ワーク加工の進行に伴
なつて砥石24が摩耗しても、砥石回転軸の変位
は常に一定になるように制御されているから、砥
石24の摩耗量の如何に拘わらず、ワーク3と砥
石24の間の接触圧は実質上殆んど変化しない。
従つて、ワーク3は定圧研磨に基づく良好な表面
精度を取得することができる。
In the method of the present invention, even if the grinding wheel 24 wears out as the workpiece machining progresses, the displacement of the grinding wheel rotating shaft is always controlled to be constant. Regardless, the contact pressure between the workpiece 3 and the grindstone 24 does not substantially change.
Therefore, the workpiece 3 can obtain good surface accuracy based on constant pressure polishing.

発明の効果 本発明の方法によれば、ワークの形状変化を砥
石で直接検出し乍ら倣い制御してワーク表面を研
磨するものであるから、ワーク表面に対し、常に
一定の接触圧を保持して砥石を圧接することがで
き、能率よく表面研磨を行うことができる。
Effects of the Invention According to the method of the present invention, a change in the shape of a workpiece is directly detected with a grindstone and the surface of the workpiece is polished by controlling the tracing, so that a constant contact pressure is always maintained on the surface of the workpiece. The grindstone can be pressed against the grinding wheel, and the surface can be polished efficiently.

また、本発明の装置によれば、研磨工具本体内
に砥石回転軸を、X軸、Y軸およびZ軸方向に弾
性変位自在に浮遊支持するようにすると共に、こ
れら各方向変位の検出機構を装備させたものを用
いて工作機械の主軸に装着し、この工作機械の主
軸を、上記検出機構からの検出値の合成値が一定
となるように倣い制御するものであるから、構成
が非常に簡単であり、従来の倣い工作機械をその
まま利用してワークの表面研磨を自動的に能率良
く高精度で行うことが可能となる。
Further, according to the device of the present invention, the grindstone rotating shaft is floatingly supported within the polishing tool body so as to be elastically displaceable in the X-axis, Y-axis, and Z-axis directions, and a detection mechanism for displacement in each of these directions is provided. The structure is very simple because it is attached to the main shaft of a machine tool and controls the main shaft of the machine tool so that the composite value of the detected values from the above detection mechanism is constant. It is simple and allows the surface polishing of a workpiece to be performed automatically, efficiently, and with high accuracy by using a conventional copying machine tool as is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を例示する倣いフライス盤
の全体構造を示す正面図であり、第2図は定圧研
磨ヘツドの構造を模式的に表示する部分縦断面図
である。また、第3図は本発明方法の模式説明図
である。第4図は倣いフライス盤による公知の表
面研磨加工を例示する説明図である。 22……砥石回転軸、24……砥石、8……倣
い制御装置、3……ワーク、S……浮遊支持機
構、D……弾性変位の検出機構。
FIG. 1 is a front view showing the overall structure of a copy milling machine illustrating the apparatus of the present invention, and FIG. 2 is a partial vertical sectional view schematically showing the structure of a constant pressure polishing head. Moreover, FIG. 3 is a schematic explanatory diagram of the method of the present invention. FIG. 4 is an explanatory diagram illustrating a known surface polishing process using a copy milling machine. 22... Grinding wheel rotating shaft, 24... Grinding wheel, 8... Copying control device, 3... Workpiece, S... Floating support mechanism, D... Elastic displacement detection mechanism.

Claims (1)

【特許請求の範囲】 1 先端に砥石を有する砥石回転軸を研磨工具本
体に対してX軸、Y軸およびZ軸方向に弾性変位
自在に支持し、この研磨工具本体を工作機械の主
軸に装着して先端の砥石をワーク表面に一定圧力
で押圧し、この状態で工作機械の主軸を倣い動作
させ、前記砥石とワークとの接触による砥石回転
軸のX軸、Y軸およびZ軸方向の弾性変位量を検
出し、該検出変位量の合成値が一定値となるよう
に上記工作機械の主軸の倣い動作を制御してワー
ク表面を定圧研磨することを特徴とする表面研磨
方法。 2 先端に砥石を有する砥石回転軸を、浮遊支持
機構を介してX軸、Y軸およびZ軸方向に弾性変
位自在に支持する研磨工具本体と、この研磨工具
本体を装着し、先端の砥石をワーク表面に一定圧
力で押圧して倣い動作し乍らワーク表面を定圧研
磨させる工作機械の主軸と、前記砥石回転軸のX
軸、Y軸およびZ軸方向に対する各弾性変位を砥
石回転軸の軸線方向の変位量に変換し、電気的な
信号として検出する検出機構と、この検出機構で
得られた検出信号を合成し、この合成値が一定値
となるように前記工作機械の主軸を倣い制御する
倣い制御装置とを具備したことを特徴とする表面
研磨装置。
[Claims] 1. A grindstone rotating shaft having a grindstone at its tip is supported so as to be elastically displaceable in the X-axis, Y-axis, and Z-axis directions relative to the polishing tool body, and the polishing tool body is mounted on the main shaft of the machine tool. The grindstone at the tip is pressed against the surface of the workpiece with a constant pressure, and in this state, the main shaft of the machine tool is moved to follow, and the elasticity of the grindstone rotation axis in the X-axis, Y-axis, and Z-axis directions due to the contact between the grindstone and the workpiece is measured. A surface polishing method comprising: detecting the amount of displacement, and controlling the tracing operation of the main shaft of the machine tool so that a composite value of the detected displacement amounts becomes a constant value, thereby polishing the surface of the workpiece at a constant pressure. 2. A polishing tool body that supports a whetstone rotating shaft having a whetstone at the tip so that it can be elastically displaced in the X-axis, Y-axis, and Z-axis directions via a floating support mechanism, and this polishing tool body is attached, and the whetstone at the tip is attached. The main shaft of a machine tool that presses against the work surface with a constant pressure and performs a copying operation while polishing the work surface under a constant pressure, and the X of the grindstone rotation axis.
A detection mechanism that converts each elastic displacement in the axis, Y-axis, and Z-axis directions into an amount of displacement in the axial direction of the grindstone rotation axis and detects it as an electrical signal, and a detection signal obtained by this detection mechanism is synthesized, A surface polishing apparatus comprising: a tracing control device that controls the main axis of the machine tool to trace so that the composite value becomes a constant value.
JP11874384A 1984-06-08 1984-06-08 Surface polishing method and device Granted JPS60263662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11874384A JPS60263662A (en) 1984-06-08 1984-06-08 Surface polishing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11874384A JPS60263662A (en) 1984-06-08 1984-06-08 Surface polishing method and device

Publications (2)

Publication Number Publication Date
JPS60263662A JPS60263662A (en) 1985-12-27
JPH0448578B2 true JPH0448578B2 (en) 1992-08-07

Family

ID=14743959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11874384A Granted JPS60263662A (en) 1984-06-08 1984-06-08 Surface polishing method and device

Country Status (1)

Country Link
JP (1) JPS60263662A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245363A (en) * 1987-03-31 1988-10-12 Nippei Toyama Corp Profile grinding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563173A (en) * 1979-06-25 1981-01-13 Hitachi Ltd Automatic grinding device
JPS57201162A (en) * 1981-05-29 1982-12-09 Toshiba Corp Curved surface profiling automatic grinding device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563173A (en) * 1979-06-25 1981-01-13 Hitachi Ltd Automatic grinding device
JPS57201162A (en) * 1981-05-29 1982-12-09 Toshiba Corp Curved surface profiling automatic grinding device

Also Published As

Publication number Publication date
JPS60263662A (en) 1985-12-27

Similar Documents

Publication Publication Date Title
US2478607A (en) Grinding machine
US4928435A (en) Apparatus for working curved surfaces on a workpiece
CN108972343B (en) Two-degree-of-freedom grinding and polishing contact force control method and system
CN102107373A (en) Multifunctional built-in determinating device for processing machinery
US5213348A (en) Workpart chuck positioning mechanism with independent shoes
JP6689275B2 (en) Sizing and steadying device for supporting and measuring the work center region, a grinding machine equipped with such a working and steadying device, and a method for supporting and measuring the work center region
WO1992009401A1 (en) Workpart chuck positioning mechanism with independent shoes
CN106041740A (en) Automatic tool setting method and device for precision trimming of grinding wheel
CN109605102B (en) Machine tool
JPH0448578B2 (en)
CN215092930U (en) High-precision valve grinder grinding wheel frame component
CN112935949A (en) Valve fine conical surface grinding machine
CN113319687B (en) Controlling contact force in machine tool
CN212169921U (en) Pressure type flexible compliant tool for polishing and deburring
CN211760513U (en) Gantry grinding machine
JPS59192457A (en) Positioner
CN215092486U (en) Valve fine conical surface grinding machine
JPH057144B2 (en)
JPH04183569A (en) Self profiling polishing equipment
JPH0335064B2 (en)
JP3834493B2 (en) Compound grinding method and apparatus
JPS60259374A (en) Low pressure polishing device
WO2023058107A1 (en) Machining device
JPS61241055A (en) Precision grinding device
JPH02284865A (en) Internal grinding attachment