WO2023058107A1 - Machining device - Google Patents

Machining device Download PDF

Info

Publication number
WO2023058107A1
WO2023058107A1 PCT/JP2021/036792 JP2021036792W WO2023058107A1 WO 2023058107 A1 WO2023058107 A1 WO 2023058107A1 JP 2021036792 W JP2021036792 W JP 2021036792W WO 2023058107 A1 WO2023058107 A1 WO 2023058107A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
dynamic stiffness
contact
data
grinding wheel
Prior art date
Application number
PCT/JP2021/036792
Other languages
French (fr)
Japanese (ja)
Inventor
久修 小林
知也 森
淳司 久原
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to CN202180102381.2A priority Critical patent/CN117940250A/en
Priority to PCT/JP2021/036792 priority patent/WO2023058107A1/en
Publication of WO2023058107A1 publication Critical patent/WO2023058107A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/16Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the load

Definitions

  • the present disclosure relates to processing equipment.
  • Patent Document 1 describes a grinding simulation device. Grinding simulation calculates the removal amount of the workpiece based on the relative position of the workpiece and the grinding wheel, calculates the grinding resistance based on the removal amount, and calculates the correction amount of the relative position based on the grinding resistance. This is done by repeating In calculating the correction amount, the support stiffness for supporting the workpiece and the support stiffness for supporting the grinding wheel, which have been measured in advance, are used.
  • Patent Document 2 describes that when a workpiece is ground by a grinding wheel, the depth of the grinding marks on the workpiece is calculated by taking into consideration the contact static rigidity between the workpiece and the grinding wheel. There is The static contact stiffness used here is calculated using the theoretical static contact stiffness during grinding, not the value measured when the grinding wheel is stationary. Contact static stiffness is represented by the spring constant K between the workpiece and the grinding wheel.
  • the support rigidity of the workpiece support member that supports the workpiece is considered.
  • the rigidity of the support structure for the workpiece by the workpiece support member varies depending not only on the rigidity of the workpiece support member, but also on the state of contact between the workpiece and the workpiece support member.
  • the devices described in Patent Literatures 1 and 2 do not consider the change in contact state, and an error occurs in the estimation result of the estimation target.
  • the present disclosure seeks to provide a processing apparatus that takes into account the state of contact between the workpiece and the workpiece support member and performs desired processing.
  • One aspect of the present disclosure is a processing apparatus for processing a workpiece supported by a workpiece support member with a tool, Using contact dynamic stiffness data between the workpiece and the workpiece support member exerted by contact between the workpiece and the workpiece support member, machining is controlled, or the workpiece during machining
  • the processing apparatus includes a processing unit that estimates at least one of the state of the tool, the shape of the workpiece, the shape of the tool, and the mechanical state of the processing apparatus.
  • the processing unit uses contact dynamic stiffness data between the workpiece and the workpiece support member to perform desired processing.
  • the desired target process is a process of controlling machining, or a process of estimating at least one of the state of the workpiece or tool during machining, the shape of the workpiece, the shape of the tool, and the mechanical state of the processing device. is.
  • the contact dynamic stiffness data is represented by the spring constant and damping coefficient between the workpiece and the workpiece support member exerted by the contact between the workpiece and the workpiece support member. In this way, by using the contact dynamic stiffness data including the spring constant and the damping coefficient, desired processing can be performed with high accuracy.
  • FIG. 1 is a diagram showing a processing apparatus according to Embodiment 1;
  • FIG. 3 is a functional block diagram of a processing estimation device that constitutes the processing device;
  • FIG. 4 is a schematic diagram showing the state of interference between a workpiece and a grinding wheel during grinding.
  • FIG. 4 is a diagram showing the shape of a workpiece in a grinding simulation by a group of radial line segments, and a diagram showing a state in which the workpiece shown by the radial line segments interferes with the outer peripheral line of the grinding wheel during grinding. be.
  • FIG. 3 is a schematic diagram showing workpiece-side dynamic rigidity and tool-side dynamic rigidity in grinding.
  • FIG. 3 is a schematic diagram showing workpiece-side dynamic rigidity and tool-side dynamic rigidity in grinding.
  • FIG. 4 is a diagram for explaining the relationship between a workpiece, a support member, and contact dynamic stiffness; It is a figure which shows the contact dynamic rigidity table acquired by actual measurement.
  • FIG. 10 is a diagram showing a dynamic contact stiffness table obtained by actual measurement and interpolation processing; It is a figure which shows the processing apparatus of Embodiment 2.
  • FIG. 4 is a schematic diagram showing workpiece-side dynamic rigidity and tool-side dynamic rigidity in cutting.
  • the processing apparatus 1 is intended for a processing apparatus that performs grinding processing.
  • the processing device 1 includes a grinder body 2 as a processing device body and a processing section 3 .
  • the grinding machine main body 2 rotates the workpiece W, rotates a grinding wheel T as a tool that is a rotating body, and rotates the grinding wheel T relative to the workpiece W in a direction intersecting the axis of the workpiece W.
  • the outer peripheral surface or the inner peripheral surface of the workpiece W is ground by bringing the workpiece W closer to the surface.
  • a table traverse type grinder, a wheelhead traverse type grinder, or the like can be applied to the grinder main body 2 .
  • a cylindrical grinder, a cam grinder, or the like can be applied to the grinder main body 2 .
  • the workpiece W is, for example, a shaft-shaped member.
  • the workpiece W is not limited to an axial shape, and may be of any shape.
  • the workpiece W includes, as an example, a shaft portion Wa as a non-processed portion and a plurality of processed portions Wb whose outer peripheral surface is to be ground.
  • the processed portion Wb has, for example, a cylindrical outer peripheral surface coaxial with the shaft portion Wa.
  • the workpiece W shown in FIG. 1 is only an example, and the grinder main body 2 can grind workpieces having various shapes.
  • the workpiece W has a spindle-side center hole Wc on one axial end face and a tailstock-side center hole Wd on the other axial end face.
  • the processing unit 3 includes a control device 3a that controls the grinder body 2, and a machining estimation device 3b that estimates an estimation target related to machining.
  • the control device 3a can control the grinding process by controlling the grinder main body 2 .
  • the machining estimating device 3b determines the state of the workpiece W or the grinding wheel T, the shape of the workpiece W, the shape of the grinding wheel T, the shape of the workpiece W, the shape of the grinding wheel T, and the mechanical state of the processing device 1 (grinding machine body 2 machine states).
  • the machining estimating device 3b performs the estimation processing of the estimation target by inputting information used for grinding and performing a simulation.
  • the machining estimation device 3b can function as a simulation device independent of the grinder main body 2 and the control device 3a, or can function as a simulation device that operates in conjunction with the grinder main body 2 and the control device 3a. .
  • the machining estimation device 3b can determine the optimum grinding conditions without actually grinding the workpiece W, for example.
  • the machining estimating device 3b processes in parallel with the grinding of the workpiece W by the grinder main body 2, for example, to correct the grinding conditions and to affect various controls. can operate.
  • the machining estimation device 3b can be an integrated system of the grinder main body 2 and the control device 3a.
  • a table traverse type cylindrical grinder is taken as an example of the grinder main body 2 . That is, the grinding machine main body 2 is configured to move the workpiece W in the axial direction of the workpiece W and to move the grinding wheel T in the direction crossing the axis of the workpiece W. Further, in the present embodiment, the case where the grinder main body 2 grinds the cylindrical outer peripheral surface of the workpiece W with the grinding wheel T is taken as an example.
  • the grinder body 2 includes a bed 10, a table 20, a spindle device 30, a tailstock device 40, a grindstone base 50, and a rest device 60.
  • the table 20, the spindle device 30, the tailstock device 40, and the rest device 60 function as workpiece support members that support the workpiece W.
  • the grinding wheel head 50 functions as a tool support member that supports the grinding wheel T.
  • the grinder main body 2 grinds the workpiece W supported by the workpiece support member with the grinding wheel T supported by the tool support member.
  • the grinder main body 2 may further include a sizing device (not shown).
  • the grinder main body 2 can also be configured without the rest device 60 .
  • the constituent elements of the grinder body 2 will be described in detail below.
  • the bed 10 is installed on the installation surface.
  • the bed 10 has a long width (length in the Z-axis direction) on the front side in the X-axis direction (lower side in FIG. 1) and a short width on the rear side in the X-axis direction (upper side in FIG. 1). It is
  • the bed 10 has a Z-axis guide surface 11 extending in the Z-axis direction on the upper surface on the front side in the X-axis direction. Further, the bed 10 has a Z-axis drive mechanism 12 that drives along a Z-axis guide surface 11 .
  • the Z-axis driving mechanism 12 includes a ball screw mechanism 12a and a Z-axis motor 12b.
  • a ball screw mechanism 12a extends parallel to the Z-axis guide surface 11, and a Z-axis motor 12b drives the ball screw mechanism 12a.
  • a Z-axis drive circuit In order to drive the Z-axis drive mechanism 12, a Z-axis drive circuit and a Z-axis detector 12c (not shown) are provided.
  • the Z-axis drive circuit includes an amplifier circuit and drives the Z-axis motor 12b.
  • the Z-axis detector 12c is, for example, an angle detector such as an encoder in this embodiment, and detects the angle of the rotating shaft of the Z-axis motor 12b. It should be noted that the Z-axis drive mechanism 12 may employ a linear motor or the like instead of the configuration including the ball screw mechanism 12a.
  • the bed 10 also includes a guide surface 13 extending in a direction crossing the Z-axis direction on the upper surface on the back side in the X-axis direction.
  • the guide surface 13 is an X-axis guide surface extending in the X-axis direction orthogonal to the Z-axis.
  • the bed 10 is provided with an X-axis drive mechanism 14 that drives along the X-axis guide surface 13 .
  • the X-axis driving mechanism 14 is provided with a ball screw mechanism 14a and an X-axis motor 14b.
  • a ball screw mechanism 14a extends parallel to the X-axis guide surface 13, and an X-axis motor 14b drives the ball screw mechanism 14a.
  • an X-axis drive circuit (not shown) and an X-axis detector 14c are provided.
  • the X-axis drive circuit includes an amplifier circuit and drives the X-axis motor 14b.
  • the X-axis detector 14c is, for example, an angle detector such as an encoder in this embodiment, and detects the angle of the rotating shaft of the X-axis motor 14b.
  • the X-axis drive mechanism 14 can also employ a linear motor or the like instead of the configuration including the ball screw mechanism 14a.
  • the table 20 is formed in an elongated shape, and is supported by the Z-axis guide surface 11 of the bed 10 so as to be movable in the Z-axis direction (horizontal left-right direction). Also, the table 20 is fixed to the ball screw nut of the Z-axis ball screw mechanism 12a, and is moved in the Z-axis direction by rotational driving of the Z-axis motor 12b.
  • the spindle device 30 constitutes a workpiece support member.
  • the spindle device 30 supports the workpiece W and drives the workpiece W to rotate.
  • the spindle device 30 is arranged on one end side of the table 20 in the Z-axis direction.
  • the spindle device 30 includes a spindle housing 31, a spindle 32, a spindle motor 33, a spindle center 34, a spindle detector 35, and a spindle drive circuit (not shown).
  • the spindle housing 31 is fixed on the table 20.
  • the main shaft 32 is rotatably supported by the main shaft housing 31 via bearings.
  • the spindle motor 33 drives the spindle 32 to rotate.
  • the spindle center 34 (corresponding to the support center) supports the end surface of the workpiece W at one end in the axial direction (the left end in FIG. 1). Specifically, the spindle center 34 supports the workpiece W in a state of being pressed in the axial direction against a spindle-side center hole Wc formed in the end surface of the workpiece W at one end in the axial direction. In this case, the spindle center 34 supports the spindle-side center hole Wc as one of the elements of the supported portion of the workpiece W. As shown in FIG.
  • the spindle center 34 is fixed to the spindle 32 and provided rotatably with respect to the spindle housing 31 .
  • the spindle device 30 is provided with a rotating member such as an unillustrated blade, the spindle center 34 is fixed to the spindle housing 31 so as to be non-rotatable with respect to the spindle housing 31 .
  • the spindle device 30 may be provided with a chuck for gripping the workpiece W instead of the spindle center 34 .
  • the chuck is rotationally driven by being connected to the main shaft 32 .
  • the spindle detector 35 and the spindle drive circuit are provided to drive the spindle motor 33 .
  • the spindle detector 35 is, for example, an angle detector such as an encoder in this embodiment, and detects the angle of the rotating shaft of the spindle motor 33 .
  • the spindle drive circuit includes an amplifier circuit and drives the spindle motor 33 .
  • the tailstock device 40 constitutes a workpiece support member together with the spindle device 30 .
  • the tailstock device 40 is arranged on the other end side of the table 20 in the Z-axis direction.
  • the tailstock device 40 is provided movably on the table 20 in the Z-axis direction.
  • the tailstock device 40 includes a tailstock center 41 and an adjustment mechanism 42 . When the grinder main body 2 grinds the inner peripheral surface of the workpiece W, the tailstock device 40 is unnecessary.
  • the tailstock center 41 (corresponding to the support center) supports the end surface of the other end in the axial direction of the workpiece W (the right end in FIG. 1). Specifically, the tailstock center 41 supports the workpiece W while being pressed in the axial direction against a tailstock-side center hole Wd formed in the end face of the other axial end of the workpiece W. As shown in FIG. In this case, the tailstock center 41 supports the tailstock-side center hole Wd as one of the elements of the supported portion of the workpiece W. As shown in FIG.
  • the tailstock center 41 may be provided so as not to rotate, or may be provided so as to be rotatable.
  • the tailstock center 41 may be positioned at a fixed position with respect to the workpiece W, or may be provided movably with respect to the workpiece W in the axial direction of the workpiece W. Also good. In the latter case, the tailstock center 41 may be configured so that the pressing force of the workpiece W in the axial direction can be adjusted.
  • the pressing force may be controllable by means of adjusting spring force, means of adjusting fluid pressure, or the like.
  • the tailstock device 40 is provided with an adjustment mechanism 42.
  • the adjustment mechanism 42 is composed of, for example, a spring, and the tailstock center 41 is configured to exert a pressing force.
  • the spindle center 34 also exerts a pressing force on the workpiece W as a reaction.
  • the tailstock center 41 and the spindle center 34 are configured to be able to adjust the axial pressing force of the workpiece W against the workpiece W by the adjustment mechanism 42 . That is, the tailstock center 41 and the spindle center 34 are configured to be able to adjust the supporting force of the workpiece W by the adjustment mechanism 42 .
  • the pressing force against the workpiece W by the tailstock center 41 and the spindle center 34 can be adjusted by an actuator, or can be adjusted by the operator.
  • the grinding wheel head 50 includes a grinding wheel T, and drives the grinding wheel T to rotate.
  • the grinding wheel head 50 includes a grinding wheel body 51, a grinding wheel shaft 52, a grinding wheel motor 53, and a grinding wheel driving circuit (not shown).
  • the grinding wheel T is shaped like a disc.
  • the grinding wheel T is used to grind the outer peripheral surface or the inner peripheral surface of the workpiece W.
  • the grinding wheel T is configured by fixing a plurality of abrasive grains with a binder.
  • abrasive grains general abrasive grains made of ceramic materials such as alumina and silicon carbide, and superabrasive grains such as diamond and CBN are applied.
  • Binders include vitrified (V), resinoid (B), rubber (R), silicate (S), shellac (E), metal (M), electrodeposition (P), magnesia cement (Mg), and the like.
  • the grinding wheel T has a structure having pores and a structure having no pores.
  • the grinding wheel T may be elastically deformable or substantially non-elastically deformable.
  • the elastic modulus of the elastically deformable grinding wheel T varies depending on the type of binder, the presence or absence of pores, the porosity, and the like.
  • the wheelhead main body 51 is formed, for example, in a rectangular shape in plan view, and is supported by the X-axis guide surface 13 of the bed 10 so as to be movable in the X-axis direction (horizontal front-back direction).
  • the wheelhead main body 51 is fixed to the ball screw nut of the X-axis ball screw mechanism 14a, and is moved in the X-axis direction by the rotational drive of the X-axis motor 14b.
  • the grinding wheel head main body 51 constitutes a tool support member that supports the grinding wheel T. As shown in FIG.
  • the grindstone shaft 52 is rotatably supported by the grindstone head main body 51 via bearings.
  • a grinding wheel T is fixed to the tip of the grinding wheel shaft 52 , and the grinding wheel T rotates as the grinding wheel shaft 52 rotates.
  • the grinding wheel motor 53 rotates the grinding wheel shaft 52 .
  • a hydrostatic bearing, a rolling bearing, or the like is used as the bearing.
  • the grinding wheel motor 53 transmits rotational driving force to the grinding wheel shaft 52 via, for example, a belt. However, the grinding wheel motor 53 may be arranged coaxially with the grinding wheel shaft 52 . In general, the rotation speed of the grinding wheel T driven by the grinding wheel motor 53 is higher than the rotation speed of the workpiece W driven by the spindle motor 33 .
  • the grinding wheel drive circuit is provided to drive the grinding wheel motor 53 .
  • the grinding wheel drive circuit includes an amplifier circuit and drives the grinding wheel motor 53 .
  • the rest device 60 is provided on the upper surface of the bed 10 and constitutes a workpiece support member that supports the outer peripheral surface of the workpiece W as one of the elements of the supported portion of the workpiece W.
  • the rest device 60 is configured to be able to adjust the pressing force against the outer peripheral surface of the workpiece W by, for example, including a spring or the like. That is, the rest device 60 is configured so that the rigidity value of the workpiece W can be adjusted.
  • the pressing force applied to the outer peripheral surface of the workpiece W by the rest device 60 can be adjusted by an actuator, or can be adjusted by the operator.
  • the control device 3a is a CNC (Computer Numerical Control) device and a PLC (Programmable Logic Controller) device that execute machining control. That is, the control device 3a controls the positions of the table 20 and the wheelhead 50 by driving the Z-axis driving mechanism 12 and the X-axis driving mechanism 14 as moving devices based on the grinding program. In other words, the control device 3a moves the workpiece W and the grinding wheel T relatively closer to each other and away from each other by controlling the positions of the table 20, the grinding wheel head 50, and the like. Further, the control device 3 a controls the spindle device 30 and the wheelhead 50 . That is, the control device 3a controls the rotation of the spindle 32 and the rotation of the grinding wheel T. As shown in FIG.
  • CNC Computer Numerical Control
  • PLC Programmable Logic Controller
  • the control device 3a controls the actuator to adjust the axial pressing force. can be adjusted. Further, when the radial pressing force exerted by the rest device 60 on the outer peripheral surface of the workpiece W can be adjusted by an actuator, the control device 3a adjusts the radial pressing force by controlling the actuator. can do.
  • the machining estimation device 3b includes a command value acquisition unit 101, an estimation unit 102, a workpiece-side dynamic stiffness table storage unit 103, a grinding wheel-side dynamic stiffness table storage unit 104, a dynamic stiffness determination condition acquisition unit 105, a dynamic stiffness determination unit 106, A correction amount calculation unit 107 and an output unit 108 are provided.
  • the command value acquisition unit 101 acquires a command value for controlling the grinder body 2 in grinding.
  • the command value acquiring unit 101 inputs the grinding processing program and the configuration information of the grinding machine main body 2, A command value for controlling each part of the grinder main body 2 is generated by calculation.
  • the command value acquisition unit 101 acquires the command value directly from the control device 3a. can do.
  • the estimating unit 102 performs a grinding simulation using the command value acquired by the command value acquiring unit 101 to obtain the state of the workpiece W or the grinding wheel T, the shape of the workpiece W, the grinding wheel At least one of the shape of T and the mechanical state of the grinder body 2 is estimated.
  • the state of the workpiece W includes, for example, the vibration state and temperature state of the workpiece W.
  • the state of the grinding wheel T includes, for example, the vibration state and temperature state of the grinding wheel T, the grinding resistance generated in each part of the outer peripheral surface of the grinding wheel T, the sharpness of the grinding wheel T, and the state of the abrasive grains constituting the grinding wheel T. and so on.
  • the state of abrasive grains includes, for example, the average protrusion amount of abrasive grains, the distribution of abrasive grains, and the like.
  • the shape of the workpiece W includes a shape at an intermediate stage of grinding and a shape at the end of grinding.
  • the shape of the grinding wheel T includes a shape at an intermediate stage of grinding and a shape at the end of grinding.
  • the mechanical state of the grinder body 2 includes the vibration state, temperature state, and the like of the parts constituting the grinder body 2 .
  • the estimating unit 102 sequentially changes the shape of the workpiece W through a grinding simulation, thereby obtaining the shape of the workpiece W, the state of the workpiece W, and the mechanical state of the grinder main body 2.
  • the grinding simulation is performed assuming that the grinding wheel T does not deform.
  • the estimating section 102 can also estimate the grinding resistance generated for each portion of the outer peripheral surface of the grinding wheel T, in addition to the estimation target.
  • the estimation unit 102 includes an interference amount calculation unit 111 , a grinding efficiency calculation unit 112 , a grinding characteristic determination unit 113 and a grinding resistance calculation unit 114 .
  • the interference amount calculator 111 calculates the relative position between the workpiece W and the grinding wheel T, the shape of the outer peripheral surface of the workpiece W, and the outer periphery of the grinding wheel T obtained by using the command value acquired by the command value acquiring unit 101.
  • the amount of interference between the workpiece W and the grinding wheel T is calculated based on the surface shape.
  • the amount of interference corresponds to the amount of grinding in the radial direction of the workpiece W at each portion of the workpiece W in the circumferential direction.
  • the amount of interference is the amount of removal of the workpiece W ground by the grinding wheel T, more specifically, the amount of removal in the radial direction of the workpiece W at each portion of the workpiece W in the circumferential direction.
  • the amount of interference as shown in FIG. 3, is the volume of the portion where the workpiece W and the grinding wheel T interfere (hatched area in FIG. 3: interference region).
  • the interference amount calculation unit 111 geometrically calculates the interference amount through arithmetic processing.
  • the interference amount calculator 111 stores the shape of the outer peripheral surface of the workpiece W and the shape of the outer peripheral surface of the grinding wheel T.
  • FIG. As shown in the right part of FIG. 4, the outer peripheral surface shape of the workpiece W is represented by a plurality of radial line segment groups on the polar coordinates with the rotation center Ow of the workpiece W as the origin. That is, the interference amount calculation unit 111 calculates a plurality of points connecting the division points (white points in FIG. 4) on the outer peripheral surface obtained by dividing the workpiece W into equal angles ( ⁇ ) and the rotation center Ow (origin) of the workpiece W. A group of line segments is stored as the shape of the outer peripheral surface of the workpiece W. Division points indicated by white dots in FIG.
  • the interference amount calculator 111 calculates each line segment of the workpiece W and the line representing the shape of the outer peripheral surface of the grinding wheel T from the relative position (the distance between the axes) of the workpiece W and the grinding wheel T and the shape of the outer peripheral surface of the grinding wheel T. (black dots in FIG. 4).
  • the interference amount calculator 111 stores the determined intersection point (black point in FIG. 4) as the shape of the outer peripheral surface of the workpiece W after the workpiece W has been removed by the grinding wheel T.
  • FIG. the interference amount calculator 111 changes the shape of the outer peripheral surface of the workpiece W that is stored.
  • the interference amount calculation unit 111 calculates the area of a triangle ⁇ Ow-a1-a2 formed by adjacent points a1 and a2 among the points defining the outer peripheral surface shape of the workpiece W before removal and the origin Ow.
  • the area of a triangle ⁇ Ow-b1-b2 consisting of the points b1 and b2 (the intersection with the grinding wheel T) and the origin Ow is subtracted.
  • the area after subtraction is calculated for all adjacent points that define the outer peripheral surface shape of the workpiece W.
  • the interference amount calculation unit 111 integrates the areas after each subtraction, and multiplies the integrated total area by the thickness of the workpiece W to calculate the interference amount (removal amount).
  • the area of the portion to be removed is calculated by calculating the areas of the two types of triangles and calculating the difference between the areas.
  • the area of the removed portion may be calculated by directly calculating the rectangle a1-a2-b1-b2.
  • the grinding efficiency calculator 112 calculates the grinding efficiency Z′ based on the interference amount calculated by the interference amount calculator 111 .
  • the grinding efficiency Z' is calculated by calculating the amount of interference per unit time, that is, the volume of the workpiece W ground by the grinding wheel T in the unit time.
  • the grinding characteristic determination unit 113 determines the grinding characteristic kc based on the material of the workpiece W, the types of abrasive grains and binder of the grinding wheel T, the state of the outer peripheral surface of the grinding wheel T, and the like.
  • the state of the outer peripheral surface of the grinding wheel T is expressed using an index representing, for example, the wear state and sharpness of the abrasive grains of the grinding wheel T.
  • the grinding characteristic determination unit 113 stores grinding characteristics in each state in advance through experiments, analyses, or the like.
  • the grinding resistance calculator 114 calculates the grinding resistance Fn in the normal direction (X-axis direction) of the outer peripheral surface of the workpiece W based on the grinding efficiency Z' and the grinding characteristics kc.
  • the grinding characteristic kc has a substantially linear relationship such that the grinding resistance Fn in the normal direction (X-axis direction) increases as the grinding efficiency Z' increases.
  • the relationship of the grinding characteristic kc changes when, for example, the grinding wheel T wears. For example, when the grinding wheel T wears, the grinding resistance Fn in the normal direction increases with respect to the grinding efficiency Z'.
  • the workpiece-side dynamic rigidity table storage unit 103 stores dynamic rigidity data Cw and Kw regarding the workpiece W side when the workpiece W side and the grinding wheel T side are divided by using the machining part as a boundary.
  • the workpiece-side dynamic rigidity table storage unit 103 includes a dynamic rigidity table storage unit 103a related to the workpiece W, a dynamic rigidity table storage unit 103b related to the workpiece support members (20, 30, 40, 60), and a contact dynamic rigidity table storage unit 103c. including.
  • the dynamic stiffness table storage unit 103a relating to the workpiece W stores dynamic stiffness data Cwa, Kwa of the workpiece W (hereinafter referred to as workpiece dynamic stiffness data).
  • the workpiece dynamic stiffness data Cwa, Kwa can be acquired by, for example, known hammering of the workpiece W, FEM analysis, and the like.
  • the dynamic stiffness table storage unit 103a stores workpiece dynamic stiffness data Cwa and Kwa for each of the multiple types of workpieces W.
  • the dynamic stiffness table storage unit 103b for the workpiece support members (20, 30, 40, 60) stores the dynamic stiffness data Cwb, Kwb (hereinafter referred to as support member dynamic stiffness data) of the workpiece support members (20, 30, 40, 60). ) is stored.
  • the support member dynamic stiffness data Cwb and Kwb can be acquired by hammering, FEM analysis, etc., on each of the spindle device 30, the tailstock device 40, and the rest device 60, which constitute the workpiece support member.
  • the dynamic rigidity table storage unit 103b stores a plurality of types of work support members (20, 60). 30, 40, 60) are stored.
  • the support member dynamic stiffness data Cwb and Kwb change according to the processing conditions and the like
  • the dynamic stiffness table storage unit 103b stores the correspondence relationship between the processing conditions and the support member dynamic stiffness data Cwb and Kwb. do.
  • the contact dynamic stiffness table storage unit 103c stores contact dynamic stiffness data Cwc, Kwc between the workpiece W and the workpiece support members (20, 30, 40, 60). Since the contact dynamic stiffness data Cwc and Kwc change according to the processing conditions and the like, the contact dynamic stiffness table storage unit 103c stores the correspondence relationship between the processing conditions and the contact dynamic stiffness data Cwc and Kwc.
  • the contact dynamic stiffness data Cwc, Kwc include contact dynamic stiffness data between the center holes Wc, Wd and the support centers 34, 41. If the grinder main body 2 has a chuck for gripping the workpiece W, the contact dynamic stiffness data Cwc, Kwc will include the contact dynamic stiffness data between the workpiece W and the chuck. Further, the contact dynamic stiffness data Cwc, Kwc include contact dynamic stiffness data between the outer peripheral surface of the workpiece W and the rest device 60 . If the grinder main body 2 does not have the rest device 60 , the contact dynamic stiffness data Cwc, Kwc do not include the contact dynamic stiffness data between the outer peripheral surface of the workpiece W and the rest device 60 .
  • the grinding wheel side dynamic stiffness table storage unit 104 stores dynamic stiffness data Ct and Kt (tool side dynamic stiffness data) on the grinding wheel T side when the work piece W side and the grinding wheel T side are divided by using the machining part as a boundary. memorize That is, the grinding wheel side dynamic stiffness table storage unit 104 stores the dynamic stiffness data Ct and Kt of the grinding wheel head 50 including the grinding wheel T. FIG. The grinding wheel dynamic stiffness table storage unit 104 stores grinding wheel dynamic stiffness data Ct and Kt for each type of grinding wheel T, for example.
  • the grinding wheel side dynamic stiffness table storage unit 104 may store the damping coefficient Ct and the spring constant Kt according to the pressure of the hydrostatic bearing as the processing condition.
  • the grinding wheel dynamic stiffness table storage unit 104 stores the correspondence relationship between the machining conditions and the grinding wheel dynamic stiffness data Ct and Kt. .
  • the workpiece side dynamic stiffness (Cw, Kw) and the grinding wheel side dynamic stiffness (Ct, Kt) will be described with reference to FIG.
  • the workpiece side dynamic stiffness (Cw, Kw) includes the workpiece W and is the workpiece W side dynamic stiffness regarding the table 20 , the spindle device 30 , the tailstock device 40 and the rest device 60 .
  • the workpiece-side dynamic rigidity (Cw, Kw) is the dynamic rigidity exerted when the workpiece W is supported by the spindle device 30, the tailstock device 40, and the rest device 60 as workpiece support members constituting the grinder body 2.
  • Workpiece side dynamic stiffness (Cw, Kw) is defined by damping coefficient Cw and spring constant Kw.
  • the damping coefficient Cw is a value that represents the relationship between the relative speed of the workpiece W with respect to the reference position of the grinder body 2 and the external force that the workpiece W receives.
  • the spring constant Kw is a value that represents the relationship between the relative position of the workpiece W with respect to the reference position of the grinder body 2 and the external force that the workpiece W receives.
  • the workpiece side dynamic stiffness (Cw, Kw) consists of workpiece dynamic stiffness (Cwa, Kwa), support member dynamic stiffness (Cwb, Kwb), workpiece W and workpiece support member ( 20, 30, 40, 60) and contact dynamic stiffness (Cwc, Kwc).
  • the contact dynamic stiffness (Cwc, Kwc) is the dynamic stiffness between the workpiece W and the workpiece support members (20, 30, 40, 60), which is the workpiece W and the workpiece support members (20, 30, 60). 40, 60).
  • Contact dynamic stiffness (Cwc, Kwc) is defined by damping coefficient Cwc and spring constant Kwc.
  • the damping coefficient Cwc is a value that represents the relationship between the relative speed between the workpiece W and the workpiece support members (20, 30, 40, 60) and the external force that the workpiece W receives.
  • the spring constant Kwc is a value that represents the relationship between the relative position between the workpiece W and the workpiece support members (20, 30, 40, 60) and the external force that the workpiece W receives.
  • the contact dynamic stiffness (Cwc, Kwc) differs depending on the adjustment factor relating to the support force of the workpiece support members (20, 30, 40, 60) and the factors of the workpiece W to be supported.
  • the relationship between the contact dynamic stiffness (Cwc, Kwc), the supporting force adjusting element, and the supported portion of the workpiece W will be described with reference to FIG.
  • FIG. 6(a) shows a case where the workpiece W is a small-diameter shaft, and the sizes (opening diameters) of the spindle-side center hole Wc and the tailstock-side center hole Wd formed in both end surfaces of the workpiece W are small. indicates In FIG. 6(b), the workpiece W is a large-diameter shaft, and the sizes (opening diameters) of the spindle-side center hole Wc and the tailstock-side center hole Wd formed in both end surfaces of the workpiece W are large. indicate the case.
  • the sizes of the center holes Wc and Wd use the opening diameters of the center holes Wc and Wd as indices.
  • the axial pressing force against the workpiece W by the spindle center 34 and the tailstock center 41 is F1.
  • the radial pressing force of the rest device 60 against the outer peripheral surface of the workpiece W is F2.
  • the axial pressing force on the workpiece W by the spindle center 34 and the tailstock center 41 is F11.
  • the radial pressing force of the rest device 60 against the outer peripheral surface of the workpiece W is F12.
  • the relationship between the pressing forces is F1 ⁇ F11 and F2 ⁇ F12.
  • the contact areas between the center holes Wc, Wd and the support centers 34, 41 are larger in FIG. 6(b) than in FIG. 6(a).
  • the contact area between the outer peripheral surface of the workpiece W and the rest device 60 is larger in FIG. 6(b) than in FIG. 6(a).
  • the contact dynamic stiffness (Cwc, Kwc) changes depending on the forces that the contacting members press against each other.
  • the contact state between the center holes Wc and Wd of the work piece W and the support centers 34 and 41 changes due to changes in the axial pressing force exerted on the work piece W by the spindle center 34 and the tailstock center 41. changes, the dynamic contact stiffness (Cwc, Kwc) changes.
  • the contact state between the outer peripheral surface of the workpiece W and the rest device 60 changes due to the change in the radial pressing force applied to the workpiece W by the rest device 60, and the contact dynamic stiffness (Cwc, Kwc) changes.
  • the contact state between the workpiece W and the chuck changes due to changes in the gripping force of the chuck with respect to the workpiece W, and contact movement occurs as the contact state changes.
  • the stiffness (Cwc, Kwc) changes.
  • the contact dynamic stiffness (Cwc, Kwc) also changes depending on the contact area.
  • the contact area changes due to the difference in the size of the support surface of the rest device 60 and the outer diameter of the workpiece W, and the contact dynamic stiffness (Cwc, Kwc) changes as the contact area changes. .
  • the contact area between the workpiece W and the chuck changes due to the difference in the size of the gripping surface of the chuck and the gripping diameter of the workpiece W. changes, the dynamic contact stiffness (Cwc, Kwc) changes.
  • the grinding wheel side dynamic stiffness is the dynamic stiffness related to the grinding wheel T and the grinding wheel head 50 .
  • Grinding wheel side dynamic stiffness is defined by damping coefficient Ct and spring constant Kt.
  • the damping coefficient Ct is a value that represents the relationship between the relative speed of the grinding wheel T with respect to the reference position on the grinding wheel head 50 and the external force that the grinding wheel T receives.
  • the spring constant Kt is a value that represents the relationship between the relative position of the grinding wheel T with respect to the reference position on the grinding wheel head 50 and the external force that the grinding wheel T receives.
  • the grinding wheel side dynamic stiffness (Ct, Kt) is the dynamic stiffness (Cta, Kta) of the grinding wheel T and the dynamic stiffness (Ctb, Ktb) exerted when the grinding wheel T is supported by the grinding wheel head main body 51. including.
  • the contact dynamic stiffness table storage unit 103c stores a contact dynamic stiffness table including contact dynamic stiffness data Cwc, Kwc.
  • the dynamic contact stiffness table includes conditions A1, A2, and A3 for adjustment elements relating to the supporting force of the workpiece W, and conditions for elements of the supported portion of the workpiece W. It is a table containing contact dynamic stiffness data Cwc and Kwc corresponding to B1, B2 and B3.
  • the contact dynamic stiffness table may be a table including mass M in addition to damping coefficient Cwc and spring constant Kw.
  • the adjustment elements related to the support force of the workpiece W are the adjustment elements related to the support force of the workpiece W by the workpiece support members (20, 30, 40, 60).
  • the supporting force adjustment element includes the center pressing force by the spindle center 34 and the tailstock center 41 .
  • the supporting force adjustment element includes the pressing force by the rest device 60 . Therefore, the conditions A1, A2, and A3 for the adjustment elements of the supporting force are conditions in which the center pressing force and the rest pressing force are changed.
  • the rest device 60 when the workpiece support member is a chuck that grips the workpiece W and is configured to be able to adjust the gripping force, the adjusting element related to the supporting force of the workpiece W is the gripping force of the chuck. becomes.
  • the elements of the supported portion of the workpiece W are the elements of the portion of the workpiece W that come into contact with the spindle center 34, the tailstock center 41, and the rest device 60.
  • the elements of the supported portion of the workpiece W include the sizes (opening diameters) of the center holes Wc and Wd.
  • the element of the supported portion of the workpiece W includes the area of the portion of the outer peripheral surface of the workpiece W that contacts the rest device 60 (rest contact area).
  • the rest contact area varies depending on the configuration of the rest device 60, the outer diameter of the workpiece W, and the like. Therefore, the conditions B1, B2, B3 for the elements of the supported portion of the workpiece W are conditions in which the size of the center holes Wc, Wd and the rest contact area are changed.
  • the rest contact area is not considered.
  • the workpiece supporting member is a chuck that grips the workpiece W
  • the element of the supported portion of the workpiece W is the gripping area of the chuck.
  • the contact dynamic stiffness table shown in FIG. 7 is a data table obtained by actually measuring the first conditions (conditions A1, A2, A3 and conditions B1, B2, B3). It becomes a table limited to one condition.
  • the dynamic contact stiffness table shown in FIG. 7 may not be sufficient. Therefore, the hatched portion in FIG. 8 is supplemented by performing interpolation processing using the contact dynamic stiffness table obtained by actual measurement.
  • the contact dynamic stiffness table storage unit 103c stores the first conditions (conditions A1, A2, A3 and conditions B1, B2, B3) and the actually measured contact dynamic stiffness data Cwc , Kwc is stored in advance. Then, by performing interpolation processing using the contact dynamic stiffness data Cwc, Kwc for the first conditions (conditions A1, A2, A3, and conditions B1, B2, B3), a second condition different from the first condition Contact dynamic stiffness data Cwc, Kwc for (conditions A1h, A2h and conditions B1h, B2h) are generated.
  • the contact dynamic stiffness table storage unit 103c additionally stores the generated contact dynamic stiffness data Cwc and Kwc.
  • the interpolation process can use, for example, an empirical formula that defines the relationship between the supporting force adjustment element of the workpiece W, the element of the supported portion of the workpiece W, the damping coefficient Cwc, and the spring constant Kwc. Also, the interpolation processing may use machine learning, theoretical calculation, or the like.
  • the dynamic stiffness determining condition acquisition unit 105 acquires the dynamic stiffness determining condition when performing the grinding process with the grinder body 2 . Specifically, the dynamic stiffness determination condition acquisition unit 105 acquires the dynamic stiffness determination condition at the time of estimation by the estimation unit 102 (at the time of processing).
  • the dynamic stiffness determination condition acquired by the dynamic stiffness determination condition acquisition unit 105 is information used by the dynamic stiffness determination unit 106 to calculate each dynamic stiffness.
  • the dynamic stiffness determination conditions to be acquired include, for example, the type of workpiece W, the type of workpiece support member, the type of grinding wheel T, the pressing force by the support centers 34 and 41, the pressing force by the rest device 60, and the like.
  • the dynamic stiffness determination condition acquisition unit 105 inputs the mechanical configuration of the grinder main body 2 and the grinding program to obtain the dynamic stiffness Get the conditions for determining Further, when the machining estimating device 3b functions as a simulation device that operates in conjunction with grinding by the grinder body 2, the dynamic stiffness determination condition acquisition unit 105 obtains the mechanical configuration of the grinder body 2 from the control device 3a. and the conditions for determining the dynamic stiffness may be obtained by inputting a grinding program, or information on the conditions may be obtained directly from the control device 3a of the grinder main body 2.
  • the dynamic stiffness determination unit 106 determines dynamic stiffness data that affects the grinding process.
  • the dynamic stiffness determining unit 106 separately determines the workpiece side dynamic stiffness data Cw, Kw and the grinding wheel side dynamic stiffness data Ct, Kt. That is, the dynamic stiffness determining section 106 includes a workpiece side dynamic stiffness determining section 121 and a grinding wheel side dynamic stiffness determining section 122 .
  • the workpiece side dynamic stiffness determination unit 121 corresponds to the type of workpiece W acquired by the dynamic stiffness determination condition acquisition unit 105 from the dynamic stiffness table stored in the dynamic stiffness table storage unit 103a regarding the workpiece W.
  • Workpiece dynamic rigidity data Cwa, Kwa are determined.
  • the workpiece-side dynamic stiffness determination unit 121 selects the dynamic stiffness determination condition acquisition unit 105 from the dynamic stiffness table stored in the dynamic stiffness table storage unit 103b regarding the workpiece support members (20, 30, 40, 60). Determine the support member dynamic stiffness data Cwb and Kwb corresponding to the type of workpiece support member acquired in .
  • the workpiece-side dynamic stiffness determination unit 121 acquires conditions for determining the contact dynamic stiffness data Cwc, Kwc from the dynamic stiffness determination condition acquisition unit 105 . Then, the workpiece-side dynamic stiffness determining unit 121 acquires the supporting force adjustment elements and the elements of the supported portion of the workpiece W, as shown in FIGS. 7 and 8 . The workpiece-side dynamic stiffness determination unit 121 selects the contact dynamic stiffness table stored in the contact dynamic stiffness table storage unit 103c, the supporting force adjustment element, and the contact stiffness corresponding to the element of the supported portion of the workpiece W. Determine the dynamic stiffnesses Cwc and Kwc.
  • the grinding wheel dynamic stiffness determination unit 122 selects the type of grinding wheel T acquired by the dynamic stiffness determination condition acquisition unit 105 from the grinding wheel dynamic stiffness table stored in the grinding wheel dynamic stiffness table storage unit 104. Determine the corresponding dynamic stiffness data Ct, Kt.
  • a correction amount calculation unit 107 calculates a correction amount for relative displacement of the grinding wheel T and the workpiece W in the X-axis direction due to the grinding force Fn based on each dynamic rigidity data determined by the dynamic rigidity determination unit 106. calculate.
  • a correction amount for displacement can be obtained from each dynamic rigidity data and the grinding force Fn. That is, the correction amount for the displacement can be calculated from the grinding force Fn, the workpiece side dynamic stiffness data Cw, Kw, and the grinding wheel side dynamic stiffness data Ct, Kt.
  • the workpiece side dynamic stiffness data Cw, Kw include workpiece dynamic stiffness data Cwa, Kwa, support member dynamic stiffness data Cwb, Kwb, and contact dynamic stiffness data Cwc, Kwc. That is, the correction amount for the displacement is calculated from the grinding resistance Fn, the workpiece side dynamic stiffness data Cwa, Kwa, Cwb, Kwb, Cwc, Kwc, and the grinding wheel side dynamic stiffness data Ct, Kt.
  • the correction amount calculation unit 107 outputs the calculated correction amount to the estimation unit 102 .
  • the estimation unit 102 Based on the relative position between the workpiece W and the grinding wheel T, the shape of the outer peripheral surface of the workpiece W, and the shape of the outer peripheral surface of the grinding wheel T, which are acquired by the command value acquiring unit 101, as described above, the estimation unit 102 , to estimate the estimation target. However, due to the grinding force Fn, the relative position between the workpiece W and the grinding wheel T is different from the relative position determined by the command value.
  • the estimation unit 102 uses the relative position calculated by the correction amount calculation unit 107 as the relative position between the workpiece W and the grinding wheel T in addition to the relative position acquired by the command value acquisition unit 101. A relative position to which a correction amount is added is used. That is, the estimation unit 102 estimates the estimation target based on the relative position based on the command value and the correction amount calculated using each dynamic stiffness data.
  • the correction amount calculator 107 outputs the calculated correction amount to the interference amount calculator 111 of the estimation unit 102 .
  • the interference amount calculation unit 111 calculates the relative position between the workpiece W and the grinding wheel T acquired by the command value acquisition unit 101, the shape of the outer peripheral surface of the workpiece W, and the shape of the outer peripheral surface of the grinding wheel T. Based on this, the amount of interference between the workpiece W and the grinding wheel T is calculated. However, due to the grinding force Fn, the relative position between the workpiece W and the grinding wheel T is different from the relative position determined by the command value.
  • the interference amount calculation unit 111 uses the relative position calculated by the correction amount calculation unit 107 in addition to the relative position acquired by the command value acquisition unit 101 as the relative position between the workpiece W and the grinding wheel T used to calculate the interference amount.
  • the relative position to which the correction amount is added is used. That is, the interference amount calculator 111 calculates the interference amount based on the relative position based on the command value and the correction amount calculated using each dynamic stiffness data.
  • the interference amount calculation unit 111 calculates the interference amount considering the correction amount
  • the grinding efficiency calculation unit 112 calculates the grinding characteristic determination unit 113, and the grinding resistance calculation unit 114 are calculated based on the interference amount considering the correction amount. Grinding efficiency Z', grinding characteristic kc, and grinding force Fn are obtained.
  • the output unit 108 outputs the estimation target estimated by the estimation unit 102 . That is, the output unit 108 outputs the state of the workpiece W or the grinding wheel T, the shape of the workpiece W, the shape of the grinding wheel T, and the mechanical state of the processing device 1 (the mechanical state of the grinder main body 2) during the grinding process. equivalent).
  • the output unit 108 may, for example, teach the estimation result to a teaching device (not shown).
  • the output unit 108 can also output the estimation result to the control device 3 a of the grinder body 2 . In this case, the control device 3a can correct the grinding conditions, for example, using the estimation result. That is, the control device 3a can control the grinding process using the estimation result.
  • the control device 3a can also use the estimation result to control the adjusting mechanism 42 of the tailstock device 40 to adjust the pressing force by the spindle center 34 and the tailstock center 41. Further, when the grinder main body 2 is equipped with a chuck, the control device 3a can also adjust the gripping force of the chuck using the estimation result. The control device 3a can also adjust the pressing force of the rest device 60 using the estimation result. Note that the control device 3a can appropriately select a controlled object using the estimation result.
  • control device 3a uses the estimation results to perform the various processes described above.
  • control device 3a can also control processing using various dynamic stiffnesses determined by the dynamic stiffness determination unit 106 regardless of the estimation result.
  • control device 3a adjusts the pressing force by the spindle center 34 and the tailstock center 41 and the gripping force of the chuck using various dynamic stiffnesses determined by the dynamic stiffness determination unit 106, regardless of the estimation results.
  • the pressing force of the rest device 60 can also be adjusted.
  • the control device 3a of the processing unit 3 uses the contact dynamic stiffness data Cwc, Kwc between the workpiece W and the workpiece support members (20, 30, 40, 60) to determine the desired perform the processing for the purpose of
  • the desired target process is the process of controlling the machining, or the state of the workpiece W or the grinding wheel T during machining, the shape of the workpiece W, the shape of the grinding wheel T, and the mechanical status of the processing apparatus 1. This is a process of estimating at least one.
  • the contact dynamic stiffness data Cwc and Kwc are the values of the workpiece W and the workpiece support members (20, 30, 40, 60) exerted by the contact between the workpiece W and the workpiece support members (20, 30, 40, 60). is represented by a spring constant Kwc and a damping coefficient Cwc between
  • Kwc including the spring constant Kwc and the damping coefficient Cwc in this way, desired processing can be performed with high accuracy.
  • the dynamic contact stiffness table includes adjustment elements relating to the support force of the workpiece support members (20, 30, 40, 60) and elements of the supported portion of the workpiece W. , and contact dynamic stiffness data Cwc, Kwc are stored in advance. Therefore, the workpiece-side dynamic stiffness determining unit 121 easily determines the contact dynamic stiffness data Cwc, Kwc using the adjustment elements and the elements of the supported portion at the time of processing and the correspondence stored in the contact dynamic stiffness table. can be determined to
  • the contact dynamic stiffness table storage unit 103c additionally stores contact dynamic stiffness data obtained by performing interpolation processing.
  • the contact dynamic stiffness data Cwc, Kwc By generating the contact dynamic stiffness data Cwc, Kwc for conditions that have not been actually measured in this way, it becomes possible to estimate the estimation target with high accuracy and to control the control target.
  • the workpiece side dynamic stiffness data is separated into workpiece dynamic stiffness data Cwa, Kwa, support member dynamic stiffness data Cwb, Kwb, and contact dynamic stiffness data Cwc, Kwc. Separating each dynamic stiffness data in this way facilitates determination of each dynamic stiffness data. For example, even if the workpiece W and the workpiece support members (20, 30, 40, 60) are the same, only the contact dynamic stiffness data Cwc, Kwc will be Be changed. Therefore, arithmetic processing becomes easy. For example, when the estimation processing by the machining estimation device 3b and the control of the grinding processing by the control device 3a are performed at the same time, high-precision grinding processing can be realized by performing the arithmetic processing at high speed.
  • the processing device 201 is intended for a processing device that performs cutting.
  • the processing device 201 includes a lathe body 202 as a processing device body and a processing unit 203 .
  • the lathe body 202 turns the workpiece W by rotating the workpiece W and moving the cutting tool T2 relative to the workpiece W.
  • the processing unit 203 includes a control device 203a that controls the lathe body 202, and a machining estimation device 203b that estimates an estimation target related to machining.
  • the control device 203 a can control cutting by controlling the lathe body 202 .
  • the machining estimating device 203b determines the state of the workpiece W or the cutting tool T2, the shape of the workpiece W, the shape of the cutting tool T2, and the mechanical state of the processing device 201 (the lathe body 202) during cutting by the lathe body 202. corresponding to the machine state).
  • the machining estimating device 203b performs the estimation processing of the estimation target by inputting information used for cutting and performing a simulation.
  • the lathe body 202 includes, for example, a bed 210, a spindle device 220, a tailstock device 230, a rest device 240, and a tool table 250.
  • the spindle device 220, the tailstock device 230, and the rest device 240 function as workpiece support members.
  • the spindle device 220 is fixed to the upper surface of the bed 210, supports one end of the workpiece W, and drives the workpiece W to rotate.
  • the spindle device 220 includes a spindle housing 221, a spindle 222, a spindle motor 223, a chuck 224, a spindle detector 225, and a spindle drive circuit (not shown).
  • the spindle housing 221 is fixed on the bed 210.
  • the main shaft 222 is rotatably supported by the main shaft housing 221 via bearings.
  • the spindle motor 223 drives the spindle 222 to rotate.
  • a chuck 224 is fixed to the spindle 222 and grips one end of the workpiece W.
  • the spindle detector 225 and the spindle drive circuit are provided to drive the spindle motor 223 .
  • the tailstock device 230 is arranged on the bed 210 so as to face the spindle device 220 in the Z-axis direction.
  • the tailstock device 230 is provided on the bed 210 so as to be movable in the Z-axis direction.
  • the tailstock device 230 includes a tailstock center 231 that supports the other end of the workpiece W. As shown in FIG.
  • the rest device 240 is fixed on the bed 210 and supports the outer peripheral surface of the workpiece W at the intermediate portion in the axial direction.
  • the rest device 320 is arranged at a position that resists the cutting load that the workpiece W receives from the cutting tool T2.
  • the tool rest 250 includes a Z-axis slide table 251, an X-axis slide table 252, a turret (rotary tool rest) 253, and a plurality of cutting tools T2.
  • the Z-axis slide table 251 is supported on the Z-axis guide surface 211 of the bed 210 so as to be movable in the Z-axis direction, and is moved in the Z-axis direction by the Z-axis drive mechanism 212 provided on the bed 210 .
  • the X-axis slide table 252 is supported by an X-axis guide surface 251a on a Z-axis slide table 251 so as to be movable in the X-axis direction. move to The turret 253 is rotatably provided on the X-axis slide table 252 about an axis parallel to the Z-axis direction.
  • a plurality of cutting tools T2 are fixed to the outer peripheral surface of the turret 253 .
  • the multiple cutting tools T2 can be different types of tools.
  • the control device 203a is a CNC (Computer Numerical Control) that executes machining control. Control) device and PLC (Programmable Logic Controller) device. That is, the control device 203a controls the position of the cutting tool T2 by driving the Z-axis drive mechanism 212 and the X-axis drive mechanism 251b as moving devices based on the cutting program. That is, the control device 203a relatively moves the workpiece W and the cutting tool T2 by controlling the position of the cutting tool T2. Further, the control device 203a performs rotation control of the main shaft 222 and rotation control of the turret 253.
  • a modification estimation device 203b of this embodiment has the same configuration as the modification estimation device 3b of Embodiment 1 shown in FIG. However, the grinding in Embodiment 1 is changed to cutting, and the grinding wheel T is changed to a cutting tool T2.
  • the workpiece-side dynamic stiffness (Cw, Kw) is the dynamic rigidity exerted when the workpiece W is supported by the spindle device 220, the tailstock device 230, and the rest device 240 as workpiece support members that constitute the lathe body 202.
  • Workpiece side dynamic stiffness (Cw, Kw) is defined by damping coefficient Cw and spring constant Kw.
  • the damping coefficient Cw is a value that represents the relationship between the relative speed of the workpiece W with respect to the reference positions of the spindle device 220, the tailstock device 230 and the rest device 240 and the external force that the workpiece W receives.
  • the spring constant Kw is a value that represents the relationship between the relative position of the workpiece W with respect to the reference positions of the spindle device 220, the tailstock device 230 and the rest device 240 and the external force that the workpiece W receives.
  • the workpiece side dynamic stiffness (Cw, Kw) is composed of workpiece dynamic stiffness (Cwa, Kwa), support member dynamic stiffness (Cwb, Kwb), workpiece W and workpiece support. contact dynamic stiffness (Cwc, Kwc) between members (20, 30, 40, 60).
  • the tool-side dynamic stiffness (Ct, Kt) is the dynamic stiffness related to the tool table 250 including the cutting tool T2.
  • Tool-side dynamic stiffness (Ct, Kt) is defined by damping coefficient Ct and spring constant Kt.
  • the damping coefficient Ct is a value that represents the relationship between the relative speed of the cutting tool T2 with respect to the reference position on the tool rest 250 and the external force that the cutting tool T2 receives.
  • the spring constant Kt is a value that represents the relationship between the relative position of the cutting tool T2 with respect to the reference position on the tool rest 250 and the external force that the cutting tool T2 receives.
  • the processing device 201 in this embodiment has the same effects as the processing device 1 in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

A machining device (1, 201) for machining a workpiece (W), which is supported by a workpiece supporting member (20, 30, 40, 60, 220, 230, 240), with a tool (T, T2), the machining device (1, 201) comprising a processing unit (3, 203) that controls machining, or estimates at least one of the state of the workpiece (W) or the tool (T, T2) during machining, the shape of the workpiece (W), the shape of the tool (T, T2), and a machine state of the machining device (1, 201), using contact dynamic stiffness data (Cwc, Kwc) between the workpiece (W) and the workpiece supporting member (20, 30, 40, 60, 220, 230, 240) provided by the contact between the workpiece (W) and the workpiece supporting member (20, 30, 40, 60, 220, 230, 240).

Description

加工装置processing equipment
 本開示は、加工装置に関する。 The present disclosure relates to processing equipment.
 特許文献1には、研削加工シミュレーション装置が記載されている。研削加工シミュレーションは、工作物と砥石車との相対位置に基づいて工作物の除去量を算出し、除去量に基づいて研削抵抗を算出し、研削抵抗に基づいて相対位置の補正量を算出することを繰り返すことにより行われる。そして、補正量の算出において、予め測定された工作物を支持する支持剛性および砥石車を支持する支持剛性が用いられている。 Patent Document 1 describes a grinding simulation device. Grinding simulation calculates the removal amount of the workpiece based on the relative position of the workpiece and the grinding wheel, calculates the grinding resistance based on the removal amount, and calculates the correction amount of the relative position based on the grinding resistance. This is done by repeating In calculating the correction amount, the support stiffness for supporting the workpiece and the support stiffness for supporting the grinding wheel, which have been measured in advance, are used.
 特許文献2には、工作物を砥石車により研削加工する場合に、工作物と砥石車との間の接触静剛性を加味して、工作物の研削痕深さを算出することが記載されている。ここで用いられる接触静剛性は、砥石車を静止しているときに測定した値ではなく、研削時における理論接触静剛性を用いて算出している。接触静剛性は、工作物と砥石車との間のばね定数Kにより表される。 Patent Document 2 describes that when a workpiece is ground by a grinding wheel, the depth of the grinding marks on the workpiece is calculated by taking into consideration the contact static rigidity between the workpiece and the grinding wheel. there is The static contact stiffness used here is calculated using the theoretical static contact stiffness during grinding, not the value measured when the grinding wheel is stationary. Contact static stiffness is represented by the spring constant K between the workpiece and the grinding wheel.
特開2018-153907号公報JP 2018-153907 A 特開2015-208812号公報JP 2015-208812 A
 特許文献1,2に記載の装置において、工作物を支持する工作物支持部材に関する支持剛性を考慮している。工作物支持部材による工作物の支持構造に関する剛性は、工作物支持部材としての剛性のみならず、工作物と工作物支持部材との間の接触状態によっても変化する。しかし、特許文献1,2に記載の装置においては、当該接触状態の変化を考慮しておらず、推定対象の推定結果に誤差が生じることが分かった。 In the devices described in Patent Documents 1 and 2, the support rigidity of the workpiece support member that supports the workpiece is considered. The rigidity of the support structure for the workpiece by the workpiece support member varies depending not only on the rigidity of the workpiece support member, but also on the state of contact between the workpiece and the workpiece support member. However, it has been found that the devices described in Patent Literatures 1 and 2 do not consider the change in contact state, and an error occurs in the estimation result of the estimation target.
 本開示は、工作物と工作物支持部材との間の接触状態を考慮して、所望の目的の処理を行う加工装置を提供しようとするものである。 The present disclosure seeks to provide a processing apparatus that takes into account the state of contact between the workpiece and the workpiece support member and performs desired processing.
 本開示の一態様は、工作物支持部材により支持された工作物を工具により加工する加工装置において、
 前記工作物と前記工作物支持部材との接触により発揮する前記工作物と前記工作物支持部材との間の接触動剛性データを用いて、加工の制御を行う、もしくは、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定する処理部を備える、加工装置にある。
One aspect of the present disclosure is a processing apparatus for processing a workpiece supported by a workpiece support member with a tool,
Using contact dynamic stiffness data between the workpiece and the workpiece support member exerted by contact between the workpiece and the workpiece support member, machining is controlled, or the workpiece during machining Alternatively, the processing apparatus includes a processing unit that estimates at least one of the state of the tool, the shape of the workpiece, the shape of the tool, and the mechanical state of the processing apparatus.
 上記態様によれば、処理部が、工作物と工作物支持部材との間の接触動剛性データを用いて、所望の目的の処理を行う。所望の目的の処理は、加工の制御を行う処理、もしくは、加工時における工作物または工具の状態、工作物の形状、工具の形状、および、加工装置の機械状態の少なくとも1つを推定する処理である。 According to the above aspect, the processing unit uses contact dynamic stiffness data between the workpiece and the workpiece support member to perform desired processing. The desired target process is a process of controlling machining, or a process of estimating at least one of the state of the workpiece or tool during machining, the shape of the workpiece, the shape of the tool, and the mechanical state of the processing device. is.
 接触動剛性データとは、工作物と工作物支持部材との接触により発揮する工作物と工作物支持部材との間のばね定数および減衰係数により表される。このように、ばね定数および減衰係数を含む接触動剛性データを用いることにより、所望の目的の処理を高精度に行うことができる。 The contact dynamic stiffness data is represented by the spring constant and damping coefficient between the workpiece and the workpiece support member exerted by the contact between the workpiece and the workpiece support member. In this way, by using the contact dynamic stiffness data including the spring constant and the damping coefficient, desired processing can be performed with high accuracy.
 以上のごとく、上記態様によれば、工作物と工作物支持部材との間の接触状態を考慮することにより、所望の目的の処理を行う加工装置を提供することができる。 As described above, according to the above aspect, it is possible to provide a processing apparatus that performs desired processing by considering the contact state between the workpiece and the workpiece support member.
 なお、特許請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。 It should be noted that the symbols in parentheses described in the claims indicate the correspondence with specific means described in the embodiments described later, and do not limit the technical scope of the present invention.
実施形態1の加工装置を示す図である。1 is a diagram showing a processing apparatus according to Embodiment 1; FIG. 加工装置を構成する加工推定装置の機能ブロック図である。3 is a functional block diagram of a processing estimation device that constitutes the processing device; FIG. 研削加工時における工作物と砥石車との干渉状態を示す模式図である。FIG. 4 is a schematic diagram showing the state of interference between a workpiece and a grinding wheel during grinding. 研削加工シミュレーションにおける工作物の形状を径方向の線分群にて表した図であり、研削加工時において径方向の線分で表した工作物が砥石車の外周線に干渉する状態を示す図である。FIG. 4 is a diagram showing the shape of a workpiece in a grinding simulation by a group of radial line segments, and a diagram showing a state in which the workpiece shown by the radial line segments interferes with the outer peripheral line of the grinding wheel during grinding. be. 研削加工における工作物側動剛性、工具側動剛性を示す模式図である。FIG. 3 is a schematic diagram showing workpiece-side dynamic rigidity and tool-side dynamic rigidity in grinding. 工作物および支持部材と接触動剛性との関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between a workpiece, a support member, and contact dynamic stiffness; 実測により取得した接触動剛性テーブルを示す図である。It is a figure which shows the contact dynamic rigidity table acquired by actual measurement. 実測および補間処理により取得した接触動剛性テーブルを示す図である。FIG. 10 is a diagram showing a dynamic contact stiffness table obtained by actual measurement and interpolation processing; 実施形態2の加工装置を示す図である。It is a figure which shows the processing apparatus of Embodiment 2. FIG. 切削加工における工作物側動剛性、工具側動剛性を示す模式図である。FIG. 4 is a schematic diagram showing workpiece-side dynamic rigidity and tool-side dynamic rigidity in cutting.
(実施形態1)
1.加工装置1の構成
 加工装置1について図1を参照して説明する。加工装置1は、研削加工を行う加工装置を対象とする。加工装置1は、加工装置本体としての研削盤本体2と、処理部3とを備える。
(Embodiment 1)
1. Configuration of Processing Apparatus 1 The processing apparatus 1 will be described with reference to FIG. The processing apparatus 1 is intended for a processing apparatus that performs grinding processing. The processing device 1 includes a grinder body 2 as a processing device body and a processing section 3 .
 研削盤本体2は、工作物Wを回転させ、回転体である工具としての砥石車Tを回転させ、かつ、砥石車Tを工作物Wに対して工作物Wの軸線に交差する方向に相対的に接近させることにより、工作物Wの外周面または内周面を研削する。研削盤本体2は、テーブルトラバース型の研削盤、砥石台トラバース型の研削盤などを適用可能である。また、研削盤本体2は、円筒研削盤、カム研削盤等を適用可能である。 The grinding machine main body 2 rotates the workpiece W, rotates a grinding wheel T as a tool that is a rotating body, and rotates the grinding wheel T relative to the workpiece W in a direction intersecting the axis of the workpiece W. The outer peripheral surface or the inner peripheral surface of the workpiece W is ground by bringing the workpiece W closer to the surface. A table traverse type grinder, a wheelhead traverse type grinder, or the like can be applied to the grinder main body 2 . Further, a cylindrical grinder, a cam grinder, or the like can be applied to the grinder main body 2 .
 本実施形態においては、図1に示すように、工作物Wは、例えば、軸状に形成された部材を例にあげる。ただし、工作物Wは、軸状に限られず、任意の形状とすることができる。 In this embodiment, as shown in FIG. 1, the workpiece W is, for example, a shaft-shaped member. However, the workpiece W is not limited to an axial shape, and may be of any shape.
 本実施形態においては、工作物Wは、非加工部としての軸部Waと、外周面が研削対象となる複数の加工部Wbとを備える場合を例にあげる。加工部Wbは、例えば、軸部Waと同軸の円筒外周面を有する。ただし、図1に示す工作物Wは、一例であって、研削盤本体2は、種々の形状を有する工作物を研削加工の対象とすることができる。さらに、工作物Wは、軸方向一端面に主軸側センタ穴Wc、および、軸方向他端面に心押側センタ穴Wdを備える。 In this embodiment, the workpiece W includes, as an example, a shaft portion Wa as a non-processed portion and a plurality of processed portions Wb whose outer peripheral surface is to be ground. The processed portion Wb has, for example, a cylindrical outer peripheral surface coaxial with the shaft portion Wa. However, the workpiece W shown in FIG. 1 is only an example, and the grinder main body 2 can grind workpieces having various shapes. Further, the workpiece W has a spindle-side center hole Wc on one axial end face and a tailstock-side center hole Wd on the other axial end face.
 処理部3は、研削盤本体2を制御する制御装置3a、および、加工に関する推定対象を推定する加工推定装置3bを備える。制御装置3aは、研削盤本体2を制御することにより、研削加工を制御することができる。加工推定装置3bは、研削盤本体2での研削加工時における工作物Wまたは砥石車Tの状態、工作物Wの形状、砥石車Tの形状、および、加工装置1の機械状態(研削盤本体2の機械状態に相当する)の少なくとも1つを推定する。加工推定装置3bは、研削加工に用いる情報を入力してシミュレーションを行うことにより、上記の推定対象の推定処理を行う。 The processing unit 3 includes a control device 3a that controls the grinder body 2, and a machining estimation device 3b that estimates an estimation target related to machining. The control device 3a can control the grinding process by controlling the grinder main body 2 . The machining estimating device 3b determines the state of the workpiece W or the grinding wheel T, the shape of the workpiece W, the shape of the grinding wheel T, the shape of the workpiece W, the shape of the grinding wheel T, and the mechanical state of the processing device 1 (grinding machine body 2 machine states). The machining estimating device 3b performs the estimation processing of the estimation target by inputting information used for grinding and performing a simulation.
 加工推定装置3bは、研削盤本体2および制御装置3aとは独立したシミュレーション装置として機能させることもできるし、研削盤本体2および制御装置3aと連動して動作するシミュレーション装置として機能させることもできる。前者の場合には、加工推定装置3bは、例えば、実際の工作物Wの研削加工を行うことなく、最適な研削加工条件を決定することができる。後者の場合には、加工推定装置3bは、研削盤本体2による工作物Wの研削加工と並行して処理することにより、例えば、研削加工条件を補正したり、各種制御に影響を及ぼすように動作したりすることができる。また、加工推定装置3bは、研削盤本体2および制御装置3aの組込みシステムとすることもできる。 The machining estimation device 3b can function as a simulation device independent of the grinder main body 2 and the control device 3a, or can function as a simulation device that operates in conjunction with the grinder main body 2 and the control device 3a. . In the former case, the machining estimation device 3b can determine the optimum grinding conditions without actually grinding the workpiece W, for example. In the latter case, the machining estimating device 3b processes in parallel with the grinding of the workpiece W by the grinder main body 2, for example, to correct the grinding conditions and to affect various controls. can operate. Also, the machining estimation device 3b can be an integrated system of the grinder main body 2 and the control device 3a.
2.研削盤本体2および制御装置3aの構成
 研削盤本体2および制御装置3aの構成の一例について、図1を参照して詳細に説明する。研削盤本体2は、テーブルトラバース型の円筒研削盤を例にあげる。つまり、当該研削盤本体2は、工作物Wを工作物Wの軸線方向に移動させ、かつ、砥石車Tを工作物Wの軸線に交差する方向に移動させる構成である。また、本実施形態においては、研削盤本体2は、砥石車Tにより工作物Wの円筒外周面を研削する場合を例にあげる。
2. Configuration of Grinding Machine Main Body 2 and Control Device 3a An example of the configuration of the grinding machine main body 2 and the control device 3a will be described in detail with reference to FIG. A table traverse type cylindrical grinder is taken as an example of the grinder main body 2 . That is, the grinding machine main body 2 is configured to move the workpiece W in the axial direction of the workpiece W and to move the grinding wheel T in the direction crossing the axis of the workpiece W. Further, in the present embodiment, the case where the grinder main body 2 grinds the cylindrical outer peripheral surface of the workpiece W with the grinding wheel T is taken as an example.
 研削盤本体2は、ベッド10、テーブル20、主軸装置30、心押装置40、砥石台50、レスト装置60を備える。テーブル20、主軸装置30、心押装置40、レスト装置60は、工作物Wを支持する工作物支持部材として機能する。砥石台50は、砥石車Tを支持する工具支持部材として機能する。つまり、研削盤本体2は、工作物支持部材に支持された工作物Wを、工具支持部材に支持された砥石車Tにより研削加工する。なお、研削盤本体2は、さらに、図示しない定寸装置を備えることもできる。研削盤本体2は、レスト装置60を備えない構成とすることもできる。以下に、研削盤本体2の構成要素について詳細に説明する。 The grinder body 2 includes a bed 10, a table 20, a spindle device 30, a tailstock device 40, a grindstone base 50, and a rest device 60. The table 20, the spindle device 30, the tailstock device 40, and the rest device 60 function as workpiece support members that support the workpiece W. As shown in FIG. The grinding wheel head 50 functions as a tool support member that supports the grinding wheel T. As shown in FIG. That is, the grinder main body 2 grinds the workpiece W supported by the workpiece support member with the grinding wheel T supported by the tool support member. The grinder main body 2 may further include a sizing device (not shown). The grinder main body 2 can also be configured without the rest device 60 . The constituent elements of the grinder body 2 will be described in detail below.
 ベッド10は、設置面上に設置されている。ベッド10は、X軸方向の正面側(図1の下側)の幅(Z軸方向長さ)が長く形成されており、X軸方向の背面側(図1の上側)の幅が短く形成されている。 The bed 10 is installed on the installation surface. The bed 10 has a long width (length in the Z-axis direction) on the front side in the X-axis direction (lower side in FIG. 1) and a short width on the rear side in the X-axis direction (upper side in FIG. 1). It is
 ベッド10は、X軸方向の正面側の上面に、Z軸方向に延在するZ軸案内面11を備える。さらに、ベッド10には、Z軸案内面11に沿って駆動するZ軸駆動機構12を備える。本実施形態では、Z軸駆動機構12は、ボールねじ機構12aとZ軸用モータ12bとを備える場合を例にあげる。ボールねじ機構12aが、Z軸案内面11に平行に延在し、Z軸用モータ12bが、ボールねじ機構12aを駆動する。 The bed 10 has a Z-axis guide surface 11 extending in the Z-axis direction on the upper surface on the front side in the X-axis direction. Further, the bed 10 has a Z-axis drive mechanism 12 that drives along a Z-axis guide surface 11 . In this embodiment, the Z-axis driving mechanism 12 includes a ball screw mechanism 12a and a Z-axis motor 12b. A ball screw mechanism 12a extends parallel to the Z-axis guide surface 11, and a Z-axis motor 12b drives the ball screw mechanism 12a.
 Z軸駆動機構12を駆動するために、図示しないZ軸用駆動回路およびZ軸用検出器12cが設けられる。Z軸用駆動回路は、アンプ回路を含み、Z軸用モータ12bを駆動する。Z軸用検出器12cは、本実施形態においては、例えば、エンコーダなどの角度検出器であって、Z軸用モータ12bの回転軸の角度を検出する。なお、Z軸駆動機構12は、上記のボールねじ機構12aを備える構成に代えて、リニアモータなどを適用することもできる。 In order to drive the Z-axis drive mechanism 12, a Z-axis drive circuit and a Z-axis detector 12c (not shown) are provided. The Z-axis drive circuit includes an amplifier circuit and drives the Z-axis motor 12b. The Z-axis detector 12c is, for example, an angle detector such as an encoder in this embodiment, and detects the angle of the rotating shaft of the Z-axis motor 12b. It should be noted that the Z-axis drive mechanism 12 may employ a linear motor or the like instead of the configuration including the ball screw mechanism 12a.
 また、ベッド10は、X軸方向の背面側の上面に、Z軸方向に交差する方向に延在する案内面13を備える。本実施形態においては、案内面13は、Z軸に直交するX軸方向に延在するX軸案内面である。さらに、ベッド10には、X軸案内面13に沿って駆動するX軸駆動機構14を備える。本実施形態では、X軸駆動機構14は、ボールねじ機構14aとX軸用モータ14bとを備える場合を例にあげる。ボールねじ機構14aが、X軸案内面13に平行に延在し、X軸用モータ14bが、ボールねじ機構14aを駆動する。 The bed 10 also includes a guide surface 13 extending in a direction crossing the Z-axis direction on the upper surface on the back side in the X-axis direction. In this embodiment, the guide surface 13 is an X-axis guide surface extending in the X-axis direction orthogonal to the Z-axis. Further, the bed 10 is provided with an X-axis drive mechanism 14 that drives along the X-axis guide surface 13 . In the present embodiment, the X-axis driving mechanism 14 is provided with a ball screw mechanism 14a and an X-axis motor 14b. A ball screw mechanism 14a extends parallel to the X-axis guide surface 13, and an X-axis motor 14b drives the ball screw mechanism 14a.
 X軸駆動機構14を駆動するために、図示しないX軸用駆動回路およびX軸用検出器14cが設けられる。X軸用駆動回路は、アンプ回路を含み、X軸用モータ14bを駆動する。X軸用検出器14cは、本実施形態においては、例えば、エンコーダなどの角度検出器であって、X軸用モータ14bの回転軸の角度を検出する。なお、X軸駆動機構14は、上記のボールねじ機構14aを備える構成に代えて、リニアモータなどを適用することもできる。 In order to drive the X-axis drive mechanism 14, an X-axis drive circuit (not shown) and an X-axis detector 14c are provided. The X-axis drive circuit includes an amplifier circuit and drives the X-axis motor 14b. The X-axis detector 14c is, for example, an angle detector such as an encoder in this embodiment, and detects the angle of the rotating shaft of the X-axis motor 14b. The X-axis drive mechanism 14 can also employ a linear motor or the like instead of the configuration including the ball screw mechanism 14a.
 テーブル20は、長尺状に形成されており、ベッド10のZ軸案内面11にZ軸方向(水平左右方向)に移動可能に支持されている。また、テーブル20は、Z軸ボールねじ機構12aのボールねじナットに固定されており、Z軸用モータ12bの回転駆動によってZ軸方向に移動する。 The table 20 is formed in an elongated shape, and is supported by the Z-axis guide surface 11 of the bed 10 so as to be movable in the Z-axis direction (horizontal left-right direction). Also, the table 20 is fixed to the ball screw nut of the Z-axis ball screw mechanism 12a, and is moved in the Z-axis direction by rotational driving of the Z-axis motor 12b.
 主軸装置30は、工作物支持部材を構成する。主軸装置30は、工作物Wを支持し、工作物Wを回転駆動する。主軸装置30は、テーブル20上のZ軸方向の一端側に配置されている。主軸装置30は、主軸ハウジング31と、主軸32、主軸用モータ33と、主軸センタ34と、主軸用検出器35と、図示しない主軸用駆動回路とを備える。 The spindle device 30 constitutes a workpiece support member. The spindle device 30 supports the workpiece W and drives the workpiece W to rotate. The spindle device 30 is arranged on one end side of the table 20 in the Z-axis direction. The spindle device 30 includes a spindle housing 31, a spindle 32, a spindle motor 33, a spindle center 34, a spindle detector 35, and a spindle drive circuit (not shown).
 主軸ハウジング31は、テーブル20上に固定されている。主軸32は、主軸ハウジング31に軸受を介して回転可能に支持される。主軸用モータ33は、主軸32を回転駆動する。 The spindle housing 31 is fixed on the table 20. The main shaft 32 is rotatably supported by the main shaft housing 31 via bearings. The spindle motor 33 drives the spindle 32 to rotate.
 主軸センタ34(支持センタに相当する)は、工作物Wの軸方向一端(図1の左端)の端面を支持する。詳細には、主軸センタ34は、工作物Wの軸方向一端の端面に形成された主軸側センタ穴Wcに対して、工作物Wの軸方向に押圧した状態で支持する。この場合、主軸センタ34は、工作物Wにおける被支持部位の要素の1つとしての主軸側センタ穴Wcを支持する。 The spindle center 34 (corresponding to the support center) supports the end surface of the workpiece W at one end in the axial direction (the left end in FIG. 1). Specifically, the spindle center 34 supports the workpiece W in a state of being pressed in the axial direction against a spindle-side center hole Wc formed in the end surface of the workpiece W at one end in the axial direction. In this case, the spindle center 34 supports the spindle-side center hole Wc as one of the elements of the supported portion of the workpiece W. As shown in FIG.
 主軸センタ34は、主軸32に固定されて、主軸ハウジング31に対して回転可能に設けられる。ただし、主軸装置30が、図示しないケレなどの回し部材を備える場合には、主軸センタ34は、主軸ハウジング31に固定されて、主軸ハウジング31に対して回転不能となるように設けられるようにしても良い。また、主軸装置30は、主軸センタ34に代えて、工作物Wを把持するチャックを備えるようにしても良い。なお、チャックは、主軸32に連結されることで回転駆動される。 The spindle center 34 is fixed to the spindle 32 and provided rotatably with respect to the spindle housing 31 . However, if the spindle device 30 is provided with a rotating member such as an unillustrated blade, the spindle center 34 is fixed to the spindle housing 31 so as to be non-rotatable with respect to the spindle housing 31 . Also good. Further, the spindle device 30 may be provided with a chuck for gripping the workpiece W instead of the spindle center 34 . The chuck is rotationally driven by being connected to the main shaft 32 .
 主軸用検出器35および主軸用駆動回路は、主軸用モータ33を駆動するために設けられている。主軸用検出器35は、本実施形態においては、例えば、エンコーダなどの角度検出器であって、主軸用モータ33の回転軸の角度を検出する。主軸用駆動回路は、アンプ回路を含み、主軸用モータ33を駆動する。 The spindle detector 35 and the spindle drive circuit are provided to drive the spindle motor 33 . The spindle detector 35 is, for example, an angle detector such as an encoder in this embodiment, and detects the angle of the rotating shaft of the spindle motor 33 . The spindle drive circuit includes an amplifier circuit and drives the spindle motor 33 .
 心押装置40は、主軸装置30と共に、工作物支持部材を構成する。心押装置40は、テーブル20上のZ軸方向の他端側に配置されている。心押装置40は、テーブル20上をZ軸方向に移動可能に設けられている。心押装置40は、心押センタ41および調整機構42を備える。なお、研削盤本体2が、工作物Wの内周面を研削加工する場合には、心押装置40は不要である。 The tailstock device 40 constitutes a workpiece support member together with the spindle device 30 . The tailstock device 40 is arranged on the other end side of the table 20 in the Z-axis direction. The tailstock device 40 is provided movably on the table 20 in the Z-axis direction. The tailstock device 40 includes a tailstock center 41 and an adjustment mechanism 42 . When the grinder main body 2 grinds the inner peripheral surface of the workpiece W, the tailstock device 40 is unnecessary.
 心押センタ41(支持センタに相当する)は、工作物Wの軸方向他端(図1の右端)の端面を支持する。詳細には、心押センタ41は、工作物Wの軸方向他端の端面に形成された心押側センタ穴Wdに対して、工作物Wの軸方向に押圧した状態で支持する。この場合、心押センタ41は、工作物Wにおける被支持部位の要素の1つとしての心押側センタ穴Wdを支持する。心押センタ41は、回転不能に設けられるようにしても良いし、回転可能に設けられるようにしても良い。 The tailstock center 41 (corresponding to the support center) supports the end surface of the other end in the axial direction of the workpiece W (the right end in FIG. 1). Specifically, the tailstock center 41 supports the workpiece W while being pressed in the axial direction against a tailstock-side center hole Wd formed in the end face of the other axial end of the workpiece W. As shown in FIG. In this case, the tailstock center 41 supports the tailstock-side center hole Wd as one of the elements of the supported portion of the workpiece W. As shown in FIG. The tailstock center 41 may be provided so as not to rotate, or may be provided so as to be rotatable.
 また、心押センタ41は、工作物Wに対して固定された位置に位置決めされるようにしても良いし、工作物Wに対して工作物Wの軸方向に動作可能に設けられるようにしても良い。後者において、心押センタ41は、工作物Wに対して工作物Wの軸方向への押圧力を調整可能に構成されるようにしても良い。押圧力は、スプリング力を調整する手段、流体圧を調整する手段などにより制御可能とすることができる。 Further, the tailstock center 41 may be positioned at a fixed position with respect to the workpiece W, or may be provided movably with respect to the workpiece W in the axial direction of the workpiece W. Also good. In the latter case, the tailstock center 41 may be configured so that the pressing force of the workpiece W in the axial direction can be adjusted. The pressing force may be controllable by means of adjusting spring force, means of adjusting fluid pressure, or the like.
 本実施形態においては、心押装置40は、調整機構42を備えており、調整機構42は、例えばスプリングにより構成され、心押センタ41が押圧力を発揮するように構成されている。ここで、心押センタ41が工作物Wに対して押圧力を生じる状態において、反作用として、主軸センタ34も工作物Wに対して押圧力を発揮する。詳細には、調整機構42によって、心押センタ41および主軸センタ34は、工作物Wに対して工作物Wの軸方向への押圧力を調整可能に構成されている。つまり、調整機構42によって、心押センタ41および主軸センタ34は、工作物Wの支持力を調整可能に構成されている。ここで、心押センタ41および主軸センタ34による工作物Wに対する押圧力は、アクチュエータにより調整可能とすることもできるし、作業者により調整可能とすることもできる。 In this embodiment, the tailstock device 40 is provided with an adjustment mechanism 42. The adjustment mechanism 42 is composed of, for example, a spring, and the tailstock center 41 is configured to exert a pressing force. Here, when the tailstock center 41 exerts a pressing force on the workpiece W, the spindle center 34 also exerts a pressing force on the workpiece W as a reaction. Specifically, the tailstock center 41 and the spindle center 34 are configured to be able to adjust the axial pressing force of the workpiece W against the workpiece W by the adjustment mechanism 42 . That is, the tailstock center 41 and the spindle center 34 are configured to be able to adjust the supporting force of the workpiece W by the adjustment mechanism 42 . Here, the pressing force against the workpiece W by the tailstock center 41 and the spindle center 34 can be adjusted by an actuator, or can be adjusted by the operator.
 砥石台50は、砥石車Tを備え、砥石車Tを回転駆動する。砥石台50は、砥石車Tの他に、砥石台本体51、砥石軸52、砥石車用モータ53、図示しない砥石車用駆動回路を備える。 The grinding wheel head 50 includes a grinding wheel T, and drives the grinding wheel T to rotate. In addition to the grinding wheel T, the grinding wheel head 50 includes a grinding wheel body 51, a grinding wheel shaft 52, a grinding wheel motor 53, and a grinding wheel driving circuit (not shown).
 砥石車Tは、円盤状に形成されている。砥石車Tは、工作物Wの外周面または内周面を研削するために用いられる。砥石車Tは、複数の砥粒を結合剤により固定されて構成されている。砥粒には、アルミナや炭化ケイ素などのセラミックス質の材料などにより形成される一般砥粒、ダイヤモンドやCBNなどの超砥粒などが適用される。 The grinding wheel T is shaped like a disc. The grinding wheel T is used to grind the outer peripheral surface or the inner peripheral surface of the workpiece W. The grinding wheel T is configured by fixing a plurality of abrasive grains with a binder. As the abrasive grains, general abrasive grains made of ceramic materials such as alumina and silicon carbide, and superabrasive grains such as diamond and CBN are applied.
 結合剤には、ビトリファイド(V)、レジノイド(B)、ラバー(R)、シリケート(S)、シェラック(E)、メタル(M)、電着(P)、マグネシアセメント(Mg)などが存在する。さらに、砥石車Tは、気孔を有する構成と、気孔を有しない構成とがある。砥石車Tは、結合剤の種類や気孔の有無によって、弾性変形可能な構成である場合と、ほぼ弾性変形しない構成である場合とが存在する。弾性変形可能な砥石車Tにおいて、結合剤の種類、気孔の有無、気孔率などによって、弾性率が異なる。 Binders include vitrified (V), resinoid (B), rubber (R), silicate (S), shellac (E), metal (M), electrodeposition (P), magnesia cement (Mg), and the like. . Further, the grinding wheel T has a structure having pores and a structure having no pores. Depending on the type of binder and the presence or absence of pores, the grinding wheel T may be elastically deformable or substantially non-elastically deformable. The elastic modulus of the elastically deformable grinding wheel T varies depending on the type of binder, the presence or absence of pores, the porosity, and the like.
 砥石台本体51は、例えば平面視にて矩形状に形成されており、ベッド10のX軸案内面13にX軸方向(水平前後方向)に移動可能に支持されている。また、砥石台本体51は、X軸ボールねじ機構14aのボールねじナットに固定されており、X軸用モータ14bの回転駆動によってX軸方向に移動する。砥石台本体51は、砥石車Tを支持する工具支持部材を構成する。 The wheelhead main body 51 is formed, for example, in a rectangular shape in plan view, and is supported by the X-axis guide surface 13 of the bed 10 so as to be movable in the X-axis direction (horizontal front-back direction). The wheelhead main body 51 is fixed to the ball screw nut of the X-axis ball screw mechanism 14a, and is moved in the X-axis direction by the rotational drive of the X-axis motor 14b. The grinding wheel head main body 51 constitutes a tool support member that supports the grinding wheel T. As shown in FIG.
 砥石軸52は、砥石台本体51に軸受を介して回転可能に支持される。砥石軸52の先端に砥石車Tが固定されており、砥石軸52の回転によって砥石車Tが回転する。砥石車用モータ53は、砥石軸52を回転駆動する。軸受には、静圧軸受や転がり軸受などが用いられる。 The grindstone shaft 52 is rotatably supported by the grindstone head main body 51 via bearings. A grinding wheel T is fixed to the tip of the grinding wheel shaft 52 , and the grinding wheel T rotates as the grinding wheel shaft 52 rotates. The grinding wheel motor 53 rotates the grinding wheel shaft 52 . A hydrostatic bearing, a rolling bearing, or the like is used as the bearing.
 砥石車用モータ53は、例えば、ベルトを介して砥石軸52に回転駆動力を伝達する。ただし、砥石車用モータ53は、砥石軸52と同軸に配置しても良い。一般に、砥石車用モータ53の駆動による砥石車Tの回転速度は、主軸用モータ33の駆動による工作物Wの回転速度に比べて高速である。砥石車用駆動回路は、砥石車用モータ53を駆動するために設けられている。砥石車用駆動回路は、アンプ回路を含み、砥石車用モータ53を駆動する。 The grinding wheel motor 53 transmits rotational driving force to the grinding wheel shaft 52 via, for example, a belt. However, the grinding wheel motor 53 may be arranged coaxially with the grinding wheel shaft 52 . In general, the rotation speed of the grinding wheel T driven by the grinding wheel motor 53 is higher than the rotation speed of the workpiece W driven by the spindle motor 33 . The grinding wheel drive circuit is provided to drive the grinding wheel motor 53 . The grinding wheel drive circuit includes an amplifier circuit and drives the grinding wheel motor 53 .
 レスト装置60は、ベッド10の上面に設けられ、工作物Wにおける被支持部位の要素の1つとしての工作物Wの外周面を支持する工作物支持部材を構成する。レスト装置60は、例えば、スプリングなどを備えることにより、工作物Wの外周面に対する押圧力を調整可能に構成される。つまり、レスト装置60は、工作物Wの剛性値を調整可能に構成されている。ここで、レスト装置60による工作物Wの外周面に対する押圧力は、アクチュエータにより調整可能とすることもできるし、作業者により調整可能とすることもできる。 The rest device 60 is provided on the upper surface of the bed 10 and constitutes a workpiece support member that supports the outer peripheral surface of the workpiece W as one of the elements of the supported portion of the workpiece W. The rest device 60 is configured to be able to adjust the pressing force against the outer peripheral surface of the workpiece W by, for example, including a spring or the like. That is, the rest device 60 is configured so that the rigidity value of the workpiece W can be adjusted. Here, the pressing force applied to the outer peripheral surface of the workpiece W by the rest device 60 can be adjusted by an actuator, or can be adjusted by the operator.
 制御装置3aは、加工制御を実行するCNC(Computer Numerical Control)装置およびPLC(Programmable Logic Controller)装置である。つまり、制御装置3aは、研削加工プログラムに基づいて、移動装置としてのZ軸駆動機構12およびX軸駆動機構14を駆動して、テーブル20および砥石台50の位置制御を行う。つまり、制御装置3aは、テーブル20および砥石台50などの位置制御を行うことで、工作物Wと砥石車Tとを相対的に接近および離間させる。さらに、制御装置3aは、主軸装置30および砥石台50の制御を行う。つまり、制御装置3aは、主軸32の回転制御および砥石車Tの回転制御を行う。 The control device 3a is a CNC (Computer Numerical Control) device and a PLC (Programmable Logic Controller) device that execute machining control. That is, the control device 3a controls the positions of the table 20 and the wheelhead 50 by driving the Z-axis driving mechanism 12 and the X-axis driving mechanism 14 as moving devices based on the grinding program. In other words, the control device 3a moves the workpiece W and the grinding wheel T relatively closer to each other and away from each other by controlling the positions of the table 20, the grinding wheel head 50, and the like. Further, the control device 3 a controls the spindle device 30 and the wheelhead 50 . That is, the control device 3a controls the rotation of the spindle 32 and the rotation of the grinding wheel T. As shown in FIG.
 また、心押センタ41および主軸センタ34による工作物Wに対する軸方向の押圧力がアクチュエータにより調整可能である場合には、制御装置3aは、当該アクチュエータを制御することにより、当該軸方向の押圧力を調整することができる。また、レスト装置60による工作物Wの外周面に対する径方向の押圧力がアクチュエータにより調整可能である場合には、制御装置3aは、当該アクチュエータを制御することにより、当該径方向の押圧力を調整することができる。 Further, when the axial pressing force on the workpiece W by the tailstock center 41 and the spindle center 34 can be adjusted by an actuator, the control device 3a controls the actuator to adjust the axial pressing force. can be adjusted. Further, when the radial pressing force exerted by the rest device 60 on the outer peripheral surface of the workpiece W can be adjusted by an actuator, the control device 3a adjusts the radial pressing force by controlling the actuator. can do.
3.加工推定装置3bの構成
 加工推定装置3bの構成について図2を参照して説明する。加工推定装置3bは、指令値取得部101、推定部102、工作物側動剛性テーブル記憶部103、砥石車側動剛性テーブル記憶部104、動剛性決定条件取得部105、動剛性決定部106、補正量算出部107、出力部108を備える。
3. Configuration of Manipulation Estimating Device 3b The configuration of the manipulating estimating device 3b will be described with reference to FIG. The machining estimation device 3b includes a command value acquisition unit 101, an estimation unit 102, a workpiece-side dynamic stiffness table storage unit 103, a grinding wheel-side dynamic stiffness table storage unit 104, a dynamic stiffness determination condition acquisition unit 105, a dynamic stiffness determination unit 106, A correction amount calculation unit 107 and an output unit 108 are provided.
 指令値取得部101は、研削加工において研削盤本体2を制御するための指令値を取得する。加工推定装置3bが、研削盤本体2および制御装置3aとは独立したシミュレーション装置である場合には、指令値取得部101は、研削加工プログラムおよび研削盤本体2の構成情報を入力することにより、研削盤本体2の各部を制御するための指令値を演算により生成する。また、加工推定装置3bが、研削盤本体2および制御装置3aによる研削加工と連動して動作するシミュレーション装置として機能する場合には、指令値取得部101は、制御装置3aから直接指令値を取得することができる。 The command value acquisition unit 101 acquires a command value for controlling the grinder body 2 in grinding. When the machining estimating device 3b is a simulation device independent of the grinding machine main body 2 and the control device 3a, the command value acquiring unit 101 inputs the grinding processing program and the configuration information of the grinding machine main body 2, A command value for controlling each part of the grinder main body 2 is generated by calculation. Further, when the machining estimating device 3b functions as a simulation device that operates in conjunction with grinding by the grinder main body 2 and the control device 3a, the command value acquisition unit 101 acquires the command value directly from the control device 3a. can do.
 推定部102は、指令値取得部101が取得した指令値を用いて、研削加工シミュレーションを実行することにより、研削加工時における工作物Wまたは砥石車Tの状態、工作物Wの形状、砥石車Tの形状、および、研削盤本体2の機械状態の少なくとも1つを推定する。 The estimating unit 102 performs a grinding simulation using the command value acquired by the command value acquiring unit 101 to obtain the state of the workpiece W or the grinding wheel T, the shape of the workpiece W, the grinding wheel At least one of the shape of T and the mechanical state of the grinder body 2 is estimated.
 工作物Wの状態は、例えば、工作物Wの振動状態や温度状態などを含む。砥石車Tの状態は、例えば、砥石車Tの振動状態や温度状態、砥石車Tの外周面の部位毎に生じた研削抵抗、砥石車Tの切れ味、砥石車Tを構成する砥粒の状態などを含む。砥粒の状態は、例えば、砥粒の平均突き出し量や砥粒分布などを含む。工作物Wの形状は、研削加工の途中段階の形状、研削加工の終了段階の形状を含む。砥石車Tの形状は、研削加工の途中段階の形状、研削加工の終了段階の形状を含む。研削盤本体2の機械状態は、研削盤本体2を構成する部位の振動状態や温度状態などを含む。 The state of the workpiece W includes, for example, the vibration state and temperature state of the workpiece W. The state of the grinding wheel T includes, for example, the vibration state and temperature state of the grinding wheel T, the grinding resistance generated in each part of the outer peripheral surface of the grinding wheel T, the sharpness of the grinding wheel T, and the state of the abrasive grains constituting the grinding wheel T. and so on. The state of abrasive grains includes, for example, the average protrusion amount of abrasive grains, the distribution of abrasive grains, and the like. The shape of the workpiece W includes a shape at an intermediate stage of grinding and a shape at the end of grinding. The shape of the grinding wheel T includes a shape at an intermediate stage of grinding and a shape at the end of grinding. The mechanical state of the grinder body 2 includes the vibration state, temperature state, and the like of the parts constituting the grinder body 2 .
 本実施形態においては、推定部102は、研削加工シミュレーションにより、工作物Wの形状が逐次変化する処理を行うことで、工作物Wの形状、工作物Wの状態、研削盤本体2の機械状態を推定対象とする場合を例にあげる。本実施形態においては、砥石車Tは変形しないものとして、研削加工シミュレーションを行う。なお、推定部102は、上記推定対象に加えて、砥石車Tの外周面の部位毎に生じた研削抵抗を推定することもできる。 In this embodiment, the estimating unit 102 sequentially changes the shape of the workpiece W through a grinding simulation, thereby obtaining the shape of the workpiece W, the state of the workpiece W, and the mechanical state of the grinder main body 2. As an example, consider a case where is an estimation target. In this embodiment, the grinding simulation is performed assuming that the grinding wheel T does not deform. The estimating section 102 can also estimate the grinding resistance generated for each portion of the outer peripheral surface of the grinding wheel T, in addition to the estimation target.
 推定部102は、干渉量算出部111、研削能率算出部112、研削特性決定部113、研削抵抗算出部114を備える。 The estimation unit 102 includes an interference amount calculation unit 111 , a grinding efficiency calculation unit 112 , a grinding characteristic determination unit 113 and a grinding resistance calculation unit 114 .
 干渉量算出部111は、指令値取得部101が取得した指令値を用いて得られた工作物Wと砥石車Tとの相対位置、工作物Wの外周面形状、および、砥石車Tの外周面形状に基づいて、工作物Wと砥石車Tとの干渉量を算出する。干渉量は、工作物Wの周方向の各部位における工作物Wの径方向の研削量に相当する。換言すると、干渉量は、砥石車Tにより研削される工作物Wの除去量、詳細には、工作物Wの周方向の各部位における工作物Wの径方向の除去量である。干渉量は、図3に示すように、工作物Wと砥石車Tとが干渉する部分(図3の斜線部分:干渉領域)の体積である。 The interference amount calculator 111 calculates the relative position between the workpiece W and the grinding wheel T, the shape of the outer peripheral surface of the workpiece W, and the outer periphery of the grinding wheel T obtained by using the command value acquired by the command value acquiring unit 101. The amount of interference between the workpiece W and the grinding wheel T is calculated based on the surface shape. The amount of interference corresponds to the amount of grinding in the radial direction of the workpiece W at each portion of the workpiece W in the circumferential direction. In other words, the amount of interference is the amount of removal of the workpiece W ground by the grinding wheel T, more specifically, the amount of removal in the radial direction of the workpiece W at each portion of the workpiece W in the circumferential direction. The amount of interference, as shown in FIG. 3, is the volume of the portion where the workpiece W and the grinding wheel T interfere (hatched area in FIG. 3: interference region).
 干渉量算出部111は、当該干渉量を演算処理によって幾何学的に算出する。ここで、干渉量算出部111は、工作物Wの外周面形状、および、砥石車Tの外周面形状を記憶している。図4の右側部分に示すように、工作物Wの外周面形状は、工作物Wの回転中心Owを原点とした極座標上において、複数の径方向の線分群で表現されている。つまり、干渉量算出部111は、工作物Wを等角(α)に分割した外周面上の分割点(図4の白色点)と工作物Wの回転中心Ow(原点)とを結ぶ複数の線分群を、工作物Wの外周面形状として記憶している。図4における白色点にて示す分割点が、砥石車Tによる除去される前の工作物Wの外周面形状として記憶される。 The interference amount calculation unit 111 geometrically calculates the interference amount through arithmetic processing. Here, the interference amount calculator 111 stores the shape of the outer peripheral surface of the workpiece W and the shape of the outer peripheral surface of the grinding wheel T. FIG. As shown in the right part of FIG. 4, the outer peripheral surface shape of the workpiece W is represented by a plurality of radial line segment groups on the polar coordinates with the rotation center Ow of the workpiece W as the origin. That is, the interference amount calculation unit 111 calculates a plurality of points connecting the division points (white points in FIG. 4) on the outer peripheral surface obtained by dividing the workpiece W into equal angles (α) and the rotation center Ow (origin) of the workpiece W. A group of line segments is stored as the shape of the outer peripheral surface of the workpiece W. Division points indicated by white dots in FIG.
 干渉量算出部111は、工作物Wと砥石車Tとの相対位置(軸間距離)および砥石車Tの外周面形状から、工作物Wの各線分と砥石車Tの外周面形状を表す線との交点(図4の黒色点)を決定する。干渉量算出部111は、決定された交点(図4の黒色点)を、砥石車Tにより工作物Wの除去された後の工作物Wの外周面形状として記憶する。つまり、干渉量算出部111は、記憶している工作物Wの外周面形状を変更する。 The interference amount calculator 111 calculates each line segment of the workpiece W and the line representing the shape of the outer peripheral surface of the grinding wheel T from the relative position (the distance between the axes) of the workpiece W and the grinding wheel T and the shape of the outer peripheral surface of the grinding wheel T. (black dots in FIG. 4). The interference amount calculator 111 stores the determined intersection point (black point in FIG. 4) as the shape of the outer peripheral surface of the workpiece W after the workpiece W has been removed by the grinding wheel T. FIG. In other words, the interference amount calculator 111 changes the shape of the outer peripheral surface of the workpiece W that is stored.
 そして、干渉量算出部111は、除去前の工作物Wの外周面形状を定義する点のうち隣り合う点a1、a2と原点Owとからなる三角形△Ow-a1-a2の面積から、除去後の点b1,b2(砥石車Tとの交点)と原点Owとからなる三角形△Ow-b1-b2の面積を減算する。減算後の面積を、工作物Wの外周面形状を定義する全ての隣り合う点について算出する。 Then, the interference amount calculation unit 111 calculates the area of a triangle ΔOw-a1-a2 formed by adjacent points a1 and a2 among the points defining the outer peripheral surface shape of the workpiece W before removal and the origin Ow. The area of a triangle ΔOw-b1-b2 consisting of the points b1 and b2 (the intersection with the grinding wheel T) and the origin Ow is subtracted. The area after subtraction is calculated for all adjacent points that define the outer peripheral surface shape of the workpiece W.
 そして、干渉量算出部111は、各減算後の面積を積算し、積算した総和面積に工作物Wの厚みを掛けて干渉量(除去量)を算出する。なお、上記においては、2種類の三角形の面積を算出して、その面積の差分を算出することにより、除去される部分の面積を算出した。この他に、四角形a1-a2-b1-b2を直接算出することにより、除去される部分の面積を算出してもよい。 Then, the interference amount calculation unit 111 integrates the areas after each subtraction, and multiplies the integrated total area by the thickness of the workpiece W to calculate the interference amount (removal amount). In the above description, the area of the portion to be removed is calculated by calculating the areas of the two types of triangles and calculating the difference between the areas. Alternatively, the area of the removed portion may be calculated by directly calculating the rectangle a1-a2-b1-b2.
 図2に示すように、研削能率算出部112は、干渉量算出部111により算出された干渉量に基づいて、研削能率Z’を算出する。研削能率Z’は、単位時間当たりの干渉量、すなわち、単位時間において砥石車Tにより研削される工作物Wの体積を算出する。 As shown in FIG. 2 , the grinding efficiency calculator 112 calculates the grinding efficiency Z′ based on the interference amount calculated by the interference amount calculator 111 . The grinding efficiency Z' is calculated by calculating the amount of interference per unit time, that is, the volume of the workpiece W ground by the grinding wheel T in the unit time.
 研削特性決定部113は、工作物Wの材質、砥石車Tの砥粒や結合剤の種類、および、砥石車Tの外周面の状態などに基づいて、研削特性kcを決定する。砥石車Tの外周面の状態は、例えば、砥石車Tの砥粒の摩耗状態や切れ味を表す指標を用いて表現される。ここで、研削特性決定部113は、予め実験や解析などにより各状態における研削特性を記憶しておく。 The grinding characteristic determination unit 113 determines the grinding characteristic kc based on the material of the workpiece W, the types of abrasive grains and binder of the grinding wheel T, the state of the outer peripheral surface of the grinding wheel T, and the like. The state of the outer peripheral surface of the grinding wheel T is expressed using an index representing, for example, the wear state and sharpness of the abrasive grains of the grinding wheel T. FIG. Here, the grinding characteristic determination unit 113 stores grinding characteristics in each state in advance through experiments, analyses, or the like.
 研削抵抗算出部114は、研削能率Z’および研削特性kcに基づいて、工作物Wの外周面の法線方向(X軸方向)における研削抵抗Fnを算出する。研削抵抗Fnは、研削能率Z’に研削特性kcを乗算することにより得られる(Fn=kc×Z’)。 The grinding resistance calculator 114 calculates the grinding resistance Fn in the normal direction (X-axis direction) of the outer peripheral surface of the workpiece W based on the grinding efficiency Z' and the grinding characteristics kc. The grinding resistance Fn is obtained by multiplying the grinding efficiency Z' by the grinding characteristic kc (Fn=kc*Z').
 なお、研削特性kcは、研削能率Z’が大きくなるほど法線方向(X軸線方向)の研削抵抗Fnが大きくなるようなほぼ線形の関係を有する。そして、研削特性kcは、例えば、砥石車Tが摩耗した場合には、当該関係が変化する。例えば、砥石車Tが摩耗した場合には、研削能率Z’に対して、法線方向の研削抵抗Fnが大きくなるように変化する。 The grinding characteristic kc has a substantially linear relationship such that the grinding resistance Fn in the normal direction (X-axis direction) increases as the grinding efficiency Z' increases. The relationship of the grinding characteristic kc changes when, for example, the grinding wheel T wears. For example, when the grinding wheel T wears, the grinding resistance Fn in the normal direction increases with respect to the grinding efficiency Z'.
 工作物側動剛性テーブル記憶部103は、加工部位を境界として工作物W側と砥石車T側とで分けた場合に、工作物W側に関する動剛性データCw,Kwを記憶する。工作物側動剛性テーブル記憶部103は、工作物Wに関する動剛性テーブル記憶部103a、工作物支持部材(20,30,40,60)に関する動剛性テーブル記憶部103b、接触動剛性テーブル記憶部103cを含む。 The workpiece-side dynamic rigidity table storage unit 103 stores dynamic rigidity data Cw and Kw regarding the workpiece W side when the workpiece W side and the grinding wheel T side are divided by using the machining part as a boundary. The workpiece-side dynamic rigidity table storage unit 103 includes a dynamic rigidity table storage unit 103a related to the workpiece W, a dynamic rigidity table storage unit 103b related to the workpiece support members (20, 30, 40, 60), and a contact dynamic rigidity table storage unit 103c. including.
 工作物Wに関する動剛性テーブル記憶部103aは、工作物Wの動剛性データCwa,Kwa(以下、工作物動剛性データと称する)を記憶する。工作物動剛性データCwa,Kwaは、例えば、工作物Wに対する公知のハンマリングやFEM解析などにより取得することができる。研削対象の工作物Wが複数種類存在する場合には、当該動剛性テーブル記憶部103aは、複数種類の工作物Wのそれぞれについての工作物動剛性データCwa,Kwaを記憶する。 The dynamic stiffness table storage unit 103a relating to the workpiece W stores dynamic stiffness data Cwa, Kwa of the workpiece W (hereinafter referred to as workpiece dynamic stiffness data). The workpiece dynamic stiffness data Cwa, Kwa can be acquired by, for example, known hammering of the workpiece W, FEM analysis, and the like. When there are multiple types of workpieces W to be ground, the dynamic stiffness table storage unit 103a stores workpiece dynamic stiffness data Cwa and Kwa for each of the multiple types of workpieces W. FIG.
 工作物支持部材(20,30,40,60)に関する動剛性テーブル記憶部103bは、工作物支持部材(20,30,40,60)の動剛性データCwb,Kwb(以下、支持部材動剛性データと称する)を記憶する。支持部材動剛性データCwb,Kwbは、工作物支持部材を構成する主軸装置30、心押装置40、および、レスト装置60のそれぞれに対するハンマリングやFEM解析などにより取得することができる。 The dynamic stiffness table storage unit 103b for the workpiece support members (20, 30, 40, 60) stores the dynamic stiffness data Cwb, Kwb (hereinafter referred to as support member dynamic stiffness data) of the workpiece support members (20, 30, 40, 60). ) is stored. The support member dynamic stiffness data Cwb and Kwb can be acquired by hammering, FEM analysis, etc., on each of the spindle device 30, the tailstock device 40, and the rest device 60, which constitute the workpiece support member.
 研削盤本体2が、複数種類の工作物支持部材(20,30,40,60)を段取り替え可能な場合には、当該動剛性テーブル記憶部103bは、複数種類の工作物支持部材(20,30,40,60)のそれぞれについての支持部材動剛性データCwb,Kwbを記憶する。また、支持部材動剛性データCwb,Kwbが加工条件などに応じて変化する場合には、当該動剛性テーブル記憶部103bは、加工条件などと支持部材動剛性データCwb,Kwbとの対応関係を記憶する。 When the grinder main body 2 is capable of setting up a plurality of types of work support members (20, 30, 40, 60), the dynamic rigidity table storage unit 103b stores a plurality of types of work support members (20, 60). 30, 40, 60) are stored. When the support member dynamic stiffness data Cwb and Kwb change according to the processing conditions and the like, the dynamic stiffness table storage unit 103b stores the correspondence relationship between the processing conditions and the support member dynamic stiffness data Cwb and Kwb. do.
 接触動剛性テーブル記憶部103cは、工作物Wと工作物支持部材(20,30,40,60)との間の接触動剛性データCwc,Kwcを記憶する。接触動剛性データCwc,Kwcは、加工条件などに応じて変化するため、接触動剛性テーブル記憶部103cは、加工条件などと接触動剛性データCwc,Kwcとの対応関係を記憶する。 The contact dynamic stiffness table storage unit 103c stores contact dynamic stiffness data Cwc, Kwc between the workpiece W and the workpiece support members (20, 30, 40, 60). Since the contact dynamic stiffness data Cwc and Kwc change according to the processing conditions and the like, the contact dynamic stiffness table storage unit 103c stores the correspondence relationship between the processing conditions and the contact dynamic stiffness data Cwc and Kwc.
 接触動剛性データCwc,Kwcは、センタ穴Wc,Wdと支持センタ34,41との間の接触動剛性データを含む。仮に、研削盤本体2が工作物Wを把持するチャックを備える場合には、接触動剛性データCwc,Kwcは、工作物Wとチャックとの間の接触動剛性データを含むことになる。また、接触動剛性データCwc,Kwcは、工作物Wの外周面とレスト装置60との間の接触動剛性データを含む。研削盤本体2がレスト装置60を備えない場合には、接触動剛性データCwc、Kwcは、工作物Wの外周面とレスト装置60との間の接触動剛性データを含まない。 The contact dynamic stiffness data Cwc, Kwc include contact dynamic stiffness data between the center holes Wc, Wd and the support centers 34, 41. If the grinder main body 2 has a chuck for gripping the workpiece W, the contact dynamic stiffness data Cwc, Kwc will include the contact dynamic stiffness data between the workpiece W and the chuck. Further, the contact dynamic stiffness data Cwc, Kwc include contact dynamic stiffness data between the outer peripheral surface of the workpiece W and the rest device 60 . If the grinder main body 2 does not have the rest device 60 , the contact dynamic stiffness data Cwc, Kwc do not include the contact dynamic stiffness data between the outer peripheral surface of the workpiece W and the rest device 60 .
 砥石車側動剛性テーブル記憶部104は、加工部位を境界として工作物W側と砥石車T側とで分けた場合に、砥石車T側に関する動剛性データCt,Kt(工具側動剛性データ)を記憶する。つまり、砥石車側動剛性テーブル記憶部104は、砥石車Tを含む砥石台50における動剛性データCt,Ktを記憶する。砥石車側動剛性テーブル記憶部104は、例えば、砥石車Tの種類毎に、砥石車側動剛性データCt,Ktを記憶する。 The grinding wheel side dynamic stiffness table storage unit 104 stores dynamic stiffness data Ct and Kt (tool side dynamic stiffness data) on the grinding wheel T side when the work piece W side and the grinding wheel T side are divided by using the machining part as a boundary. memorize That is, the grinding wheel side dynamic stiffness table storage unit 104 stores the dynamic stiffness data Ct and Kt of the grinding wheel head 50 including the grinding wheel T. FIG. The grinding wheel dynamic stiffness table storage unit 104 stores grinding wheel dynamic stiffness data Ct and Kt for each type of grinding wheel T, for example.
 また、砥石車Tが静圧軸受により支持される構成であって、静圧軸受の圧力を制御可能な場合においては、砥石車側動剛性データCt,Ktは、静圧軸受の圧力に応じて変化するデータとなる場合がある。そこで、砥石車側動剛性テーブル記憶部104は、加工条件として静圧軸受の圧力に応じて、減衰係数Ct、ばね定数Ktを記憶するようにしても良い。動剛性データCt,Ktが加工条件などに応じて変化する場合には、砥石車側動剛性テーブル記憶部104は、加工条件などと砥石車側動剛性データCt,Ktとの対応関係を記憶する。 In addition, when the grinding wheel T is supported by a hydrostatic bearing and the pressure of the hydrostatic bearing can be controlled, the grinding wheel side dynamic stiffness data Ct and Kt are calculated according to the pressure of the hydrostatic bearing. Data may change. Therefore, the grinding wheel side dynamic stiffness table storage unit 104 may store the damping coefficient Ct and the spring constant Kt according to the pressure of the hydrostatic bearing as the processing condition. When the dynamic stiffness data Ct and Kt change according to the machining conditions and the like, the grinding wheel dynamic stiffness table storage unit 104 stores the correspondence relationship between the machining conditions and the grinding wheel dynamic stiffness data Ct and Kt. .
 工作物側動剛性(Cw,Kw)および砥石車側動剛性(Ct,Kt)について、図5を参照して説明する。工作物側動剛性(Cw,Kw)は、工作物Wを含み、テーブル20、主軸装置30、心押装置40およびレスト装置60に関する工作物W側の動剛性である。 The workpiece side dynamic stiffness (Cw, Kw) and the grinding wheel side dynamic stiffness (Ct, Kt) will be described with reference to FIG. The workpiece side dynamic stiffness (Cw, Kw) includes the workpiece W and is the workpiece W side dynamic stiffness regarding the table 20 , the spindle device 30 , the tailstock device 40 and the rest device 60 .
 工作物側動剛性(Cw,Kw)は、研削盤本体2を構成する工作物支持部材としての主軸装置30、心押装置40およびレスト装置60により工作物Wを支持した状態において発揮する動剛性である。工作物側動剛性(Cw,Kw)は、減衰係数Cwおよびばね定数Kwにより定義される。減衰係数Cwは、研削盤本体2の基準位置に対する工作物Wの相対速度と、工作物Wが受ける外力との関係を表す値である。ばね定数Kwは、研削盤本体2の基準位置に対する工作物Wの相対位置と、工作物Wが受ける外力との関係を表す値である。 The workpiece-side dynamic rigidity (Cw, Kw) is the dynamic rigidity exerted when the workpiece W is supported by the spindle device 30, the tailstock device 40, and the rest device 60 as workpiece support members constituting the grinder body 2. is. Workpiece side dynamic stiffness (Cw, Kw) is defined by damping coefficient Cw and spring constant Kw. The damping coefficient Cw is a value that represents the relationship between the relative speed of the workpiece W with respect to the reference position of the grinder body 2 and the external force that the workpiece W receives. The spring constant Kw is a value that represents the relationship between the relative position of the workpiece W with respect to the reference position of the grinder body 2 and the external force that the workpiece W receives.
 図5に示すように、工作物側動剛性(Cw,Kw)は、工作物動剛性(Cwa,Kwa)と、支持部材動剛性(Cwb,Kwb)と、工作物Wと工作物支持部材(20,30,40,60)との間の接触動剛性(Cwc,Kwc)とに分解することができる。 As shown in FIG. 5, the workpiece side dynamic stiffness (Cw, Kw) consists of workpiece dynamic stiffness (Cwa, Kwa), support member dynamic stiffness (Cwb, Kwb), workpiece W and workpiece support member ( 20, 30, 40, 60) and contact dynamic stiffness (Cwc, Kwc).
 接触動剛性(Cwc,Kwc)は、工作物Wと工作物支持部材(20,30,40,60)との間の動剛性であって、工作物Wと工作物支持部材(20,30,40,60)との接触により発揮する動剛性である。接触動剛性(Cwc,Kwc)は、減衰係数Cwcおよびばね定数Kwcにより定義される。減衰係数Cwcは、工作物Wと工作物支持部材(20,30,40,60)との相対速度と、工作物Wが受ける外力との関係を表す値である。ばね定数Kwcは、工作物Wと工作物支持部材(20,30,40,60)との相対位置と、工作物Wが受ける外力との関係を表す値である。 The contact dynamic stiffness (Cwc, Kwc) is the dynamic stiffness between the workpiece W and the workpiece support members (20, 30, 40, 60), which is the workpiece W and the workpiece support members (20, 30, 60). 40, 60). Contact dynamic stiffness (Cwc, Kwc) is defined by damping coefficient Cwc and spring constant Kwc. The damping coefficient Cwc is a value that represents the relationship between the relative speed between the workpiece W and the workpiece support members (20, 30, 40, 60) and the external force that the workpiece W receives. The spring constant Kwc is a value that represents the relationship between the relative position between the workpiece W and the workpiece support members (20, 30, 40, 60) and the external force that the workpiece W receives.
 ここで、接触動剛性(Cwc,Kwc)は、工作物支持部材(20,30,40,60)による支持力に関する調整要素、および、工作物Wにおける被支持部位の要素によって異なる。接触動剛性(Cwc,Kwc)と、支持力の調整要素および工作物Wにおける被支持部位の要素との関係について、図6を参照して説明する。 Here, the contact dynamic stiffness (Cwc, Kwc) differs depending on the adjustment factor relating to the support force of the workpiece support members (20, 30, 40, 60) and the factors of the workpiece W to be supported. The relationship between the contact dynamic stiffness (Cwc, Kwc), the supporting force adjusting element, and the supported portion of the workpiece W will be described with reference to FIG.
 図6(a)は、工作物Wが小径軸状であって、工作物Wの両端面に形成されている主軸側センタ穴Wcおよび心押側センタ穴Wdの大きさ(開口径)が小さい場合を示す。図6(b)は、工作物Wが大径軸状であって、工作物Wの両端面に形成されている主軸側センタ穴Wcおよび心押側センタ穴Wdの大きさ(開口径)が大きい場合を示す。センタ穴Wc,Wdの大きさは、センタ穴Wc,Wdの開口径を指標に用いる。 FIG. 6(a) shows a case where the workpiece W is a small-diameter shaft, and the sizes (opening diameters) of the spindle-side center hole Wc and the tailstock-side center hole Wd formed in both end surfaces of the workpiece W are small. indicates In FIG. 6(b), the workpiece W is a large-diameter shaft, and the sizes (opening diameters) of the spindle-side center hole Wc and the tailstock-side center hole Wd formed in both end surfaces of the workpiece W are large. indicate the case. The sizes of the center holes Wc and Wd use the opening diameters of the center holes Wc and Wd as indices.
 図6(a)において、主軸センタ34および心押センタ41による工作物Wに対する軸方向の押圧力は、F1である。また、図6(a)において、レスト装置60による工作物Wの外周面に対する径方向の押圧力は、F2である。図6(b)において、主軸センタ34および心押センタ41による工作物Wに対する軸方向の押圧力は、F11である。また、図6(b)において、レスト装置60による工作物Wの外周面に対する径方向の押圧力は、F12である。 In FIG. 6(a), the axial pressing force against the workpiece W by the spindle center 34 and the tailstock center 41 is F1. In FIG. 6(a), the radial pressing force of the rest device 60 against the outer peripheral surface of the workpiece W is F2. In FIG. 6(b), the axial pressing force on the workpiece W by the spindle center 34 and the tailstock center 41 is F11. In FIG. 6(b), the radial pressing force of the rest device 60 against the outer peripheral surface of the workpiece W is F12.
 図6(a)(b)において、各押圧力の関係は、F1<F11、F2<F12である。さらに、センタ穴Wc,Wdと支持センタ34,41との接触面積は、図6(a)よりも図6(b)の方が大きい。また、工作物Wの外周面とレスト装置60との接触面積は、図6(a)よりも図6(b)の方が大きい。 In FIGS. 6(a) and 6(b), the relationship between the pressing forces is F1<F11 and F2<F12. Further, the contact areas between the center holes Wc, Wd and the support centers 34, 41 are larger in FIG. 6(b) than in FIG. 6(a). Further, the contact area between the outer peripheral surface of the workpiece W and the rest device 60 is larger in FIG. 6(b) than in FIG. 6(a).
 ここで、接触動剛性(Cwc,Kwc)は、接触する部材により相互に押し付けあう力によって変化する。主軸センタ34および心押センタ41による工作物Wに対する軸方向の押圧力の変化により、工作物Wの各センタ穴Wc,Wdと各支持センタ34、41との接触状態が変化し、当該接触状態が変化することに伴って接触動剛性(Cwc,Kwc)が変化する。また、レスト装置60による工作物Wに対する径方向の押圧力の変化により、工作物Wの外周面とレスト装置60との接触状態が変化し、当該接触状態が変化することに伴って接触動剛性(Cwc,Kwc)が変化する。 Here, the contact dynamic stiffness (Cwc, Kwc) changes depending on the forces that the contacting members press against each other. The contact state between the center holes Wc and Wd of the work piece W and the support centers 34 and 41 changes due to changes in the axial pressing force exerted on the work piece W by the spindle center 34 and the tailstock center 41. changes, the dynamic contact stiffness (Cwc, Kwc) changes. In addition, the contact state between the outer peripheral surface of the workpiece W and the rest device 60 changes due to the change in the radial pressing force applied to the workpiece W by the rest device 60, and the contact dynamic stiffness (Cwc, Kwc) changes.
 工作物Wがチャックに把持される構成においては、チャックによる工作物Wに対する把持力の変化により、工作物Wとチャックとの接触状態が変化し、当該接触状態が変化することに伴って接触動剛性(Cwc,Kwc)が変化する。 In a configuration in which the workpiece W is gripped by the chuck, the contact state between the workpiece W and the chuck changes due to changes in the gripping force of the chuck with respect to the workpiece W, and contact movement occurs as the contact state changes. The stiffness (Cwc, Kwc) changes.
 さらに、接触動剛性(Cwc、Kwc)は、接触面積によっても変化する。被支持部位の要素としての主軸側センタ穴Wcの大きさ、および、心押側センタ穴Wdの大きさが異なることにより、接触面積が変化し、当該接触面積が変化することに伴って接触動剛性(Cwc,Kwc)が変化する。また、レスト装置60の支持面の大きさおよび工作物Wの外径が異なることにより、接触面積が変化し、当該接触面積が変化することに伴って接触動剛性(Cwc、Kwc)が変化する。 Furthermore, the contact dynamic stiffness (Cwc, Kwc) also changes depending on the contact area. The difference in the size of the spindle-side center hole Wc and the size of the tailstock-side center hole Wd, which are elements of the supported portion, changes the contact area, and the contact dynamic stiffness is caused by the change in the contact area. (Cwc, Kwc) changes. In addition, the contact area changes due to the difference in the size of the support surface of the rest device 60 and the outer diameter of the workpiece W, and the contact dynamic stiffness (Cwc, Kwc) changes as the contact area changes. .
 また、工作物Wがチャックに把持される構成においては、チャックの把持面の大きさおよび工作物Wの把持径が異なることにより、工作物Wとチャックとの接触面積が変化し、当該接触面積が変化することに伴って接触動剛性(Cwc,Kwc)が変化する。 In addition, in a configuration in which the workpiece W is gripped by the chuck, the contact area between the workpiece W and the chuck changes due to the difference in the size of the gripping surface of the chuck and the gripping diameter of the workpiece W. changes, the dynamic contact stiffness (Cwc, Kwc) changes.
 図5に示すように、砥石車側動剛性は、砥石車Tを含み、砥石台50に関する動剛性である。砥石車側動剛性は、減衰係数Ctおよびばね定数Ktにより定義される。減衰係数Ctは、砥石台50における基準位置に対する砥石車Tの相対速度と、砥石車Tが受ける外力との関係を表す値である。ばね定数Ktは、砥石台50における基準位置に対する砥石車Tの相対位置と、砥石車Tが受ける外力との関係を表す値である。そして、砥石車側動剛性(Ct,Kt)は、砥石車Tの動剛性(Cta,Kta)と、砥石台本体51により砥石車Tを支持する際に発揮する動剛性(Ctb,Ktb)とを含む。 As shown in FIG. 5, the grinding wheel side dynamic stiffness is the dynamic stiffness related to the grinding wheel T and the grinding wheel head 50 . Grinding wheel side dynamic stiffness is defined by damping coefficient Ct and spring constant Kt. The damping coefficient Ct is a value that represents the relationship between the relative speed of the grinding wheel T with respect to the reference position on the grinding wheel head 50 and the external force that the grinding wheel T receives. The spring constant Kt is a value that represents the relationship between the relative position of the grinding wheel T with respect to the reference position on the grinding wheel head 50 and the external force that the grinding wheel T receives. The grinding wheel side dynamic stiffness (Ct, Kt) is the dynamic stiffness (Cta, Kta) of the grinding wheel T and the dynamic stiffness (Ctb, Ktb) exerted when the grinding wheel T is supported by the grinding wheel head main body 51. including.
 接触動剛性テーブル記憶部103cについて、図7および図8を参照して詳細に説明する。接触動剛性テーブル記憶部103cは、接触動剛性データCwc,Kwcを含む接触動剛性テーブルを記憶する。具体的には、図7に示すように、接触動剛性テーブルは、工作物Wの支持力に関する調整要素についての条件A1,A2,A3、および、工作物Wにおける被支持部位の要素についての条件B1,B2,B3に対応する接触動剛性データCwc,Kwcを含むテーブルである。なお、接触動剛性テーブルは、減衰係数Cwcおよびばね定数Kwに加えて、質量Mを含むテーブルとしても良い。 The contact dynamic stiffness table storage unit 103c will be described in detail with reference to FIGS. 7 and 8. FIG. The contact dynamic stiffness table storage unit 103c stores a contact dynamic stiffness table including contact dynamic stiffness data Cwc, Kwc. Specifically, as shown in FIG. 7, the dynamic contact stiffness table includes conditions A1, A2, and A3 for adjustment elements relating to the supporting force of the workpiece W, and conditions for elements of the supported portion of the workpiece W. It is a table containing contact dynamic stiffness data Cwc and Kwc corresponding to B1, B2 and B3. The contact dynamic stiffness table may be a table including mass M in addition to damping coefficient Cwc and spring constant Kw.
 図7において、工作物Wの支持力に関する調整要素は、工作物支持部材(20,30,40,60)による工作物Wの支持力に関する調整要素である。例えば、支持力の調整要素は、主軸センタ34および心押センタ41によるセンタ押圧力を含む。また、支持力の調整要素は、レスト装置60による押圧力を含む。そこで、支持力の調整要素についての条件A1,A2,A3は、センタ押圧力およびレスト押圧力をそれぞれ変化させた条件とする。  In FIG. 7, the adjustment elements related to the support force of the workpiece W are the adjustment elements related to the support force of the workpiece W by the workpiece support members (20, 30, 40, 60). For example, the supporting force adjustment element includes the center pressing force by the spindle center 34 and the tailstock center 41 . Further, the supporting force adjustment element includes the pressing force by the rest device 60 . Therefore, the conditions A1, A2, and A3 for the adjustment elements of the supporting force are conditions in which the center pressing force and the rest pressing force are changed.
 なお、レスト装置60を備えない場合には、レスト押圧力を考慮しない。また、工作物支持部材が、工作物Wを把持するチャックであって、把持力を調整可能に構成されたチャックである場合には、工作物Wの支持力に関する調整要素は、チャックによる把持力となる。 Note that if the rest device 60 is not provided, the rest pressing force is not considered. Further, when the workpiece support member is a chuck that grips the workpiece W and is configured to be able to adjust the gripping force, the adjusting element related to the supporting force of the workpiece W is the gripping force of the chuck. becomes.
 また、図7において、工作物Wにおける被支持部位の要素は、工作物Wにおいて、主軸センタ34、心押センタ41およびレスト装置60に接触する部位の要素である。例えば、工作物Wの被支持部位の要素は、センタ穴Wc,Wdの大きさ(開口径)を含む。また、工作物Wの被支持部位の要素は、工作物Wの外周面のうちレスト装置60に接触する部位の面積(レスト接触面積)を含む。レスト接触面積は、レスト装置60の構成および工作物Wの外径などにより異なる値となる。そこで、工作物Wの被支持部位の要素についての条件B1,B2,B3は、センタ穴Wc,Wdの大きさ、および、レスト接触面積をそれぞれ変化させた条件とする。 In addition, in FIG. 7, the elements of the supported portion of the workpiece W are the elements of the portion of the workpiece W that come into contact with the spindle center 34, the tailstock center 41, and the rest device 60. For example, the elements of the supported portion of the workpiece W include the sizes (opening diameters) of the center holes Wc and Wd. The element of the supported portion of the workpiece W includes the area of the portion of the outer peripheral surface of the workpiece W that contacts the rest device 60 (rest contact area). The rest contact area varies depending on the configuration of the rest device 60, the outer diameter of the workpiece W, and the like. Therefore, the conditions B1, B2, B3 for the elements of the supported portion of the workpiece W are conditions in which the size of the center holes Wc, Wd and the rest contact area are changed.
 なお、レスト装置60を備えない場合には、レスト接触面積を考慮しない。また、工作物支持部材が、工作物Wを把持するチャックである場合には、工作物Wの被支持部位の要素は、チャックによる把持面積となる。 Note that if the rest device 60 is not provided, the rest contact area is not considered. Further, when the workpiece supporting member is a chuck that grips the workpiece W, the element of the supported portion of the workpiece W is the gripping area of the chuck.
 図7に示す接触動剛性テーブルは、第一条件(条件A1,A2,A3、および、条件B1,B2,B3)について実測を行うことにより得られたデータテーブルであるため、実測を行った第一条件に限定されたテーブルとなる。 The contact dynamic stiffness table shown in FIG. 7 is a data table obtained by actually measuring the first conditions (conditions A1, A2, A3 and conditions B1, B2, B3). It becomes a table limited to one condition.
 しかし、実際に使用する条件は、多種多様であるため、図7に示す接触動剛性テーブルでは十分ではない可能性がある。そこで、図8のハッチングに示す部分を、実測による接触動剛性テーブルを用いて、補間処理を行うことにより補充する。 However, since there are a wide variety of conditions that are actually used, the dynamic contact stiffness table shown in FIG. 7 may not be sufficient. Therefore, the hatched portion in FIG. 8 is supplemented by performing interpolation processing using the contact dynamic stiffness table obtained by actual measurement.
 つまり、前提として、図7に示すように、接触動剛性テーブル記憶部103cは、第一条件(条件A1,A2,A3、および、条件B1,B2,B3)と実測された接触動剛性データCwc,Kwcとの対応関係を予め記憶しておく。そして、第一条件(条件A1,A2,A3、および、条件B1,B2,B3)についての接触動剛性データCwc,Kwcを用いて補間処理を行うことにより、第一条件とは異なる第二条件(条件A1h,A2h、および、条件B1h,B2h)についての接触動剛性データCwc,Kwcを生成する。そして、接触動剛性テーブル記憶部103cは、生成された接触動剛性データCwc,Kwcを追加記憶する。 That is, as a premise, as shown in FIG. 7, the contact dynamic stiffness table storage unit 103c stores the first conditions (conditions A1, A2, A3 and conditions B1, B2, B3) and the actually measured contact dynamic stiffness data Cwc , Kwc is stored in advance. Then, by performing interpolation processing using the contact dynamic stiffness data Cwc, Kwc for the first conditions (conditions A1, A2, A3, and conditions B1, B2, B3), a second condition different from the first condition Contact dynamic stiffness data Cwc, Kwc for (conditions A1h, A2h and conditions B1h, B2h) are generated. The contact dynamic stiffness table storage unit 103c additionally stores the generated contact dynamic stiffness data Cwc and Kwc.
 補間処理は、例えば、工作物Wの支持力の調整要素、工作物Wにおける被支持部位の要素、減衰係数Cwcおよびばね定数Kwcとの関係を定義した実験式を用いることができる。また、補間処理は、機械学習や理論計算などを用いるようにしても良い。 The interpolation process can use, for example, an empirical formula that defines the relationship between the supporting force adjustment element of the workpiece W, the element of the supported portion of the workpiece W, the damping coefficient Cwc, and the spring constant Kwc. Also, the interpolation processing may use machine learning, theoretical calculation, or the like.
 図2に示すように、動剛性決定条件取得部105は、研削盤本体2にて研削加工を行う際の動剛性決定条件を取得する。詳細には、動剛性決定条件取得部105は、推定部102による推定時(処理対象時)の動剛性決定条件を取得する。動剛性決定条件取得部105が取得する動剛性決定条件は、動剛性決定部106が各動剛性を算出するために用いる情報である。取得する動剛性決定条件は、例えば、工作物Wの種類、工作物支持部材の種類、砥石車Tの種類、支持センタ34,41による押圧力、レスト装置60による押圧力などである。 As shown in FIG. 2, the dynamic stiffness determining condition acquisition unit 105 acquires the dynamic stiffness determining condition when performing the grinding process with the grinder body 2 . Specifically, the dynamic stiffness determination condition acquisition unit 105 acquires the dynamic stiffness determination condition at the time of estimation by the estimation unit 102 (at the time of processing). The dynamic stiffness determination condition acquired by the dynamic stiffness determination condition acquisition unit 105 is information used by the dynamic stiffness determination unit 106 to calculate each dynamic stiffness. The dynamic stiffness determination conditions to be acquired include, for example, the type of workpiece W, the type of workpiece support member, the type of grinding wheel T, the pressing force by the support centers 34 and 41, the pressing force by the rest device 60, and the like.
 加工推定装置3bが、研削盤本体2とは独立したシミュレーション装置である場合には、動剛性決定条件取得部105は、研削盤本体2の機械構成および研削加工プログラムを入力することにより、動剛性を決定するための条件を取得する。また、加工推定装置3bが、研削盤本体2による研削加工と連動して動作するシミュレーション装置として機能する場合には、動剛性決定条件取得部105は、制御装置3aから研削盤本体2の機械構成および研削加工プログラムを入力することにより動剛性を決定するための条件を取得しても良いし、研削盤本体2の制御装置3aから直接条件に関する情報を取得しても良い。 When the machining estimating device 3b is a simulation device independent of the grinder main body 2, the dynamic stiffness determination condition acquisition unit 105 inputs the mechanical configuration of the grinder main body 2 and the grinding program to obtain the dynamic stiffness Get the conditions for determining Further, when the machining estimating device 3b functions as a simulation device that operates in conjunction with grinding by the grinder body 2, the dynamic stiffness determination condition acquisition unit 105 obtains the mechanical configuration of the grinder body 2 from the control device 3a. and the conditions for determining the dynamic stiffness may be obtained by inputting a grinding program, or information on the conditions may be obtained directly from the control device 3a of the grinder main body 2. FIG.
 動剛性決定部106は、研削加工に影響を及ぼす動剛性データを決定する。動剛性決定部106は、工作物側動剛性データCw,Kwおよび砥石車側動剛性データCt,Ktを、それぞれ別々に決定する。つまり、動剛性決定部106は、工作物側動剛性決定部121、および、砥石車側動剛性決定部122を備える。 The dynamic stiffness determination unit 106 determines dynamic stiffness data that affects the grinding process. The dynamic stiffness determining unit 106 separately determines the workpiece side dynamic stiffness data Cw, Kw and the grinding wheel side dynamic stiffness data Ct, Kt. That is, the dynamic stiffness determining section 106 includes a workpiece side dynamic stiffness determining section 121 and a grinding wheel side dynamic stiffness determining section 122 .
 工作物側動剛性決定部121は、工作物Wに関する動剛性テーブル記憶部103aに記憶された動剛性テーブルの中から、動剛性決定条件取得部105にて取得した工作物Wの種類に対応する工作物動剛性データCwa,Kwaを決定する。さらに、工作物側動剛性決定部121は、工作物支持部材(20,30,40,60)に関する動剛性テーブル記憶部103bに記憶された動剛性テーブルの中から、動剛性決定条件取得部105にて取得した工作物支持部材の種類に対応する支持部材動剛性データCwb,Kwbを決定する。 The workpiece side dynamic stiffness determination unit 121 corresponds to the type of workpiece W acquired by the dynamic stiffness determination condition acquisition unit 105 from the dynamic stiffness table stored in the dynamic stiffness table storage unit 103a regarding the workpiece W. Workpiece dynamic rigidity data Cwa, Kwa are determined. Further, the workpiece-side dynamic stiffness determination unit 121 selects the dynamic stiffness determination condition acquisition unit 105 from the dynamic stiffness table stored in the dynamic stiffness table storage unit 103b regarding the workpiece support members (20, 30, 40, 60). Determine the support member dynamic stiffness data Cwb and Kwb corresponding to the type of workpiece support member acquired in .
 さらに、工作物側動剛性決定部121は、動剛性決定条件取得部105から接触動剛性データCwc,Kwcを決定するための条件を取得する。そして、工作物側動剛性決定部121は、図7および図8に示したように、支持力の調整要素、および、工作物Wにおける被支持部位の要素を取得する。工作物側動剛性決定部121は、接触動剛性テーブル記憶部103cに記憶された接触動剛性テーブルの中から、支持力の調整要素、および、工作物Wにおける被支持部位の要素に対応する接触動剛性Cwc,Kwcを決定する。 Furthermore, the workpiece-side dynamic stiffness determination unit 121 acquires conditions for determining the contact dynamic stiffness data Cwc, Kwc from the dynamic stiffness determination condition acquisition unit 105 . Then, the workpiece-side dynamic stiffness determining unit 121 acquires the supporting force adjustment elements and the elements of the supported portion of the workpiece W, as shown in FIGS. 7 and 8 . The workpiece-side dynamic stiffness determination unit 121 selects the contact dynamic stiffness table stored in the contact dynamic stiffness table storage unit 103c, the supporting force adjustment element, and the contact stiffness corresponding to the element of the supported portion of the workpiece W. Determine the dynamic stiffnesses Cwc and Kwc.
 砥石車側動剛性決定部122は、砥石車側動剛性テーブル記憶部104に記憶された砥石車側動剛性テーブルの中から、動剛性決定条件取得部105にて取得した砥石車Tの種類に対応する動剛性データCt,Ktを決定する。 The grinding wheel dynamic stiffness determination unit 122 selects the type of grinding wheel T acquired by the dynamic stiffness determination condition acquisition unit 105 from the grinding wheel dynamic stiffness table stored in the grinding wheel dynamic stiffness table storage unit 104. Determine the corresponding dynamic stiffness data Ct, Kt.
 補正量算出部107は、研削抵抗Fnに起因して砥石車Tおよび工作物WがX軸線方向に相対変位する補正量を、動剛性決定部106にて決定された各動剛性データに基づいて算出する。変位に関する補正量は、各動剛性データと研削抵抗Fnから求めることができる。つまり、変位に関する補正量は、研削抵抗Fn、工作物側動剛性データCw,Kw、砥石車側動剛性データCt,Ktから算出することができる。 A correction amount calculation unit 107 calculates a correction amount for relative displacement of the grinding wheel T and the workpiece W in the X-axis direction due to the grinding force Fn based on each dynamic rigidity data determined by the dynamic rigidity determination unit 106. calculate. A correction amount for displacement can be obtained from each dynamic rigidity data and the grinding force Fn. That is, the correction amount for the displacement can be calculated from the grinding force Fn, the workpiece side dynamic stiffness data Cw, Kw, and the grinding wheel side dynamic stiffness data Ct, Kt.
 ただし、本実施形態においては、工作物側動剛性データCw,Kwは、工作物動剛性データCwa,Kwa、支持部材動剛性データCwb,Kwb、接触動剛性データCwc,Kwcのそれぞれを含む。つまり、変位に関する補正量は、研削抵抗Fn、工作物側動剛性データCwa,Kwa,Cwb,Kwb,Cwc,Kwc、砥石車側動剛性データCt,Ktから算出する。 However, in the present embodiment, the workpiece side dynamic stiffness data Cw, Kw include workpiece dynamic stiffness data Cwa, Kwa, support member dynamic stiffness data Cwb, Kwb, and contact dynamic stiffness data Cwc, Kwc. That is, the correction amount for the displacement is calculated from the grinding resistance Fn, the workpiece side dynamic stiffness data Cwa, Kwa, Cwb, Kwb, Cwc, Kwc, and the grinding wheel side dynamic stiffness data Ct, Kt.
 補正量算出部107は、算出した補正量を、推定部102へ出力する。推定部102は、上述したように、指令値取得部101が取得した工作物Wと砥石車Tとの相対位置、工作物Wの外周面形状、および、砥石車Tの外周面形状に基づいて、推定対象を推定する。ただし、研削抵抗Fnにより、工作物Wと砥石車Tとの相対位置は、指令値による相対位置とは異なる位置となる。 The correction amount calculation unit 107 outputs the calculated correction amount to the estimation unit 102 . Based on the relative position between the workpiece W and the grinding wheel T, the shape of the outer peripheral surface of the workpiece W, and the shape of the outer peripheral surface of the grinding wheel T, which are acquired by the command value acquiring unit 101, as described above, the estimation unit 102 , to estimate the estimation target. However, due to the grinding force Fn, the relative position between the workpiece W and the grinding wheel T is different from the relative position determined by the command value.
 そこで、推定部102、推定対象の推定の際に、工作物Wと砥石車Tとの相対位置として、指令値取得部101が取得した相対位置に加えて、補正量算出部107により算出された補正量を加えた相対位置を用いる。つまり、推定部102は、指令値による相対位置と、各動剛性データを用いて算出された補正量とに基づいて、推定対象を推定する。 Therefore, when estimating the estimation target, the estimation unit 102 uses the relative position calculated by the correction amount calculation unit 107 as the relative position between the workpiece W and the grinding wheel T in addition to the relative position acquired by the command value acquisition unit 101. A relative position to which a correction amount is added is used. That is, the estimation unit 102 estimates the estimation target based on the relative position based on the command value and the correction amount calculated using each dynamic stiffness data.
 特に、本実施形態においては、補正量算出部107は、算出した補正量を、推定部102の干渉量算出部111へ出力する。干渉量算出部111は、上述したように、指令値取得部101が取得した工作物Wと砥石車Tとの相対位置、工作物Wの外周面形状、および、砥石車Tの外周面形状に基づいて、工作物Wと砥石車Tとの干渉量を算出する。ただし、研削抵抗Fnにより、工作物Wと砥石車Tとの相対位置は、指令値による相対位置とは異なる位置となる。 In particular, in the present embodiment, the correction amount calculator 107 outputs the calculated correction amount to the interference amount calculator 111 of the estimation unit 102 . As described above, the interference amount calculation unit 111 calculates the relative position between the workpiece W and the grinding wheel T acquired by the command value acquisition unit 101, the shape of the outer peripheral surface of the workpiece W, and the shape of the outer peripheral surface of the grinding wheel T. Based on this, the amount of interference between the workpiece W and the grinding wheel T is calculated. However, due to the grinding force Fn, the relative position between the workpiece W and the grinding wheel T is different from the relative position determined by the command value.
 そこで、干渉量算出部111は、干渉量の算出に用いる工作物Wと砥石車Tとの相対位置として、指令値取得部101が取得した相対位置に加えて、補正量算出部107により算出された補正量を加えた相対位置を用いる。つまり、干渉量算出部111は、指令値による相対位置と、各動剛性データを用いて算出された補正量とに基づいて、干渉量を算出する。 Therefore, the interference amount calculation unit 111 uses the relative position calculated by the correction amount calculation unit 107 in addition to the relative position acquired by the command value acquisition unit 101 as the relative position between the workpiece W and the grinding wheel T used to calculate the interference amount. The relative position to which the correction amount is added is used. That is, the interference amount calculator 111 calculates the interference amount based on the relative position based on the command value and the correction amount calculated using each dynamic stiffness data.
 干渉量算出部111が、補正量を考慮した干渉量を算出するため、研削能率算出部112、研削特性決定部113、研削抵抗算出部114は、補正量を考慮した干渉量に基づき得られた研削能率Z’、研削特性kc、研削抵抗Fnを得る。 Since the interference amount calculation unit 111 calculates the interference amount considering the correction amount, the grinding efficiency calculation unit 112, the grinding characteristic determination unit 113, and the grinding resistance calculation unit 114 are calculated based on the interference amount considering the correction amount. Grinding efficiency Z', grinding characteristic kc, and grinding force Fn are obtained.
 出力部108は、推定部102により推定された推定対象を出力する。つまり、出力部108は、研削加工時における工作物Wまたは砥石車Tの状態、工作物Wの形状、砥石車Tの形状、および、加工装置1の機械状態(研削盤本体2の機械状態に相当)の少なくとも1つを推定する。出力部108は、例えば、図示しない教示装置に推定結果を教示するようにしても良い。また、出力部108は、推定結果を研削盤本体2の制御装置3aに出力することもできる。この場合、制御装置3aが、推定結果を用いて、例えば、研削加工条件を補正することができる。つまり、制御装置3aは、推定結果を用いて研削加工を制御することができる。 The output unit 108 outputs the estimation target estimated by the estimation unit 102 . That is, the output unit 108 outputs the state of the workpiece W or the grinding wheel T, the shape of the workpiece W, the shape of the grinding wheel T, and the mechanical state of the processing device 1 (the mechanical state of the grinder main body 2) during the grinding process. equivalent). The output unit 108 may, for example, teach the estimation result to a teaching device (not shown). The output unit 108 can also output the estimation result to the control device 3 a of the grinder body 2 . In this case, the control device 3a can correct the grinding conditions, for example, using the estimation result. That is, the control device 3a can control the grinding process using the estimation result.
 また、制御装置3aは、推定結果を用いて、心押装置40の調整機構42を制御して、主軸センタ34および心押センタ41による押圧力の調整を行うこともできる。また、研削盤本体2がチャックを備える場合には、制御装置3aは、推定結果を用いて、チャックの把持力の調整を行うこともできる。また、制御装置3aは、推定結果を用いて、レスト装置60による押圧力の調整を行うこともできる。なお、制御装置3aは、推定結果を用いた制御対象を適宜選択することができる。 The control device 3a can also use the estimation result to control the adjusting mechanism 42 of the tailstock device 40 to adjust the pressing force by the spindle center 34 and the tailstock center 41. Further, when the grinder main body 2 is equipped with a chuck, the control device 3a can also adjust the gripping force of the chuck using the estimation result. The control device 3a can also adjust the pressing force of the rest device 60 using the estimation result. Note that the control device 3a can appropriately select a controlled object using the estimation result.
 また、制御装置3aは、推定結果を用いて、上記の種々の処理を行うこととした。この他に、制御装置3aは、推定結果によらず、動剛性決定部106により決定された各種の動剛性を用いて、加工の制御を行うこともできる。例えば、制御装置3aは、推定結果によらず、動剛性決定部106により決定された各種の動剛性を用いて、主軸センタ34および心押センタ41による押圧力の調整、チャックの把持力の調整、レスト装置60の押圧力の調整などを行うこともできる。 In addition, the control device 3a uses the estimation results to perform the various processes described above. In addition, the control device 3a can also control processing using various dynamic stiffnesses determined by the dynamic stiffness determination unit 106 regardless of the estimation result. For example, the control device 3a adjusts the pressing force by the spindle center 34 and the tailstock center 41 and the gripping force of the chuck using various dynamic stiffnesses determined by the dynamic stiffness determination unit 106, regardless of the estimation results. , the pressing force of the rest device 60 can also be adjusted.
4.効果
 本実施形態によれば、処理部3の制御装置3aが、工作物Wと工作物支持部材(20,30,40,60)との間の接触動剛性データCwc,Kwcを用いて、所望の目的の処理を行う。所望の目的の処理は、加工の制御を行う処理、もしくは、加工時における工作物Wまたは砥石車Tの状態、工作物Wの形状、砥石車Tの形状、および、加工装置1の機械状態の少なくとも1つを推定する処理である。
4. Effect According to the present embodiment, the control device 3a of the processing unit 3 uses the contact dynamic stiffness data Cwc, Kwc between the workpiece W and the workpiece support members (20, 30, 40, 60) to determine the desired perform the processing for the purpose of The desired target process is the process of controlling the machining, or the state of the workpiece W or the grinding wheel T during machining, the shape of the workpiece W, the shape of the grinding wheel T, and the mechanical status of the processing apparatus 1. This is a process of estimating at least one.
 接触動剛性データCwc、Kwcとは、工作物Wと工作物支持部材(20,30,40,60)との接触により発揮する工作物Wと工作物支持部材(20,30,40,60)との間のばね定数Kwcおよび減衰係数Cwcにより表される。このように、ばね定数Kwcおよび減衰係数Cwcを含む接触動剛性データCwc,Kwcを用いることにより、所望の目的の処理を高精度に行うことができる。 The contact dynamic stiffness data Cwc and Kwc are the values of the workpiece W and the workpiece support members (20, 30, 40, 60) exerted by the contact between the workpiece W and the workpiece support members (20, 30, 40, 60). is represented by a spring constant Kwc and a damping coefficient Cwc between By using the contact dynamic stiffness data Cwc, Kwc including the spring constant Kwc and the damping coefficient Cwc in this way, desired processing can be performed with high accuracy.
 また、図7および図8に示すように、接触動剛性テーブルは、工作物支持部材(20,30,40,60)による支持力に関する調整要素、および、工作物Wにおける被支持部位の要素と、接触動剛性データCwc,Kwcと、の対応関係を予め記憶する。従って、工作物側動剛性決定部121は、処理対象時における調整要素および被支持部位の要素、ならびに、接触動剛性テーブルに記憶された対応関係を用いて、接触動剛性データCwc,Kwcを容易に決定することができる。 Further, as shown in FIGS. 7 and 8, the dynamic contact stiffness table includes adjustment elements relating to the support force of the workpiece support members (20, 30, 40, 60) and elements of the supported portion of the workpiece W. , and contact dynamic stiffness data Cwc, Kwc are stored in advance. Therefore, the workpiece-side dynamic stiffness determining unit 121 easily determines the contact dynamic stiffness data Cwc, Kwc using the adjustment elements and the elements of the supported portion at the time of processing and the correspondence stored in the contact dynamic stiffness table. can be determined to
 また、図8に示すように、接触動剛性テーブル記憶部103cは、補間処理を行うことにより取得された接触動剛性データを追加記憶する。このように、実測していない条件についての接触動剛性データCwc,Kwcを生成することにより、高精度に推定対象を推定したり、制御対象を制御したりできるようになる。 In addition, as shown in FIG. 8, the contact dynamic stiffness table storage unit 103c additionally stores contact dynamic stiffness data obtained by performing interpolation processing. By generating the contact dynamic stiffness data Cwc, Kwc for conditions that have not been actually measured in this way, it becomes possible to estimate the estimation target with high accuracy and to control the control target.
 また、工作物側動剛性データを、工作物動剛性データCwa,Kwa、支持部材動剛性データCwb,Kwb、および、接触動剛性データCwc,Kwcに分離した。このように、それぞれの動剛性データを分離することにより、それぞれの動剛性データの決定が容易になる。例えば、工作物Wおよび工作物支持部材(20,30,40,60)が同一であっても、支持センタ34,41による押圧力のみを調整した場合に、接触動剛性データCwc,Kwcのみが変更される。従って、演算処理が容易となる。例えば、加工推定装置3bによる推定処理と、制御装置3aによる研削加工の制御とを同時に行うような場合には、演算処理を高速に行うことにより、高精度な研削加工を実現できる。 In addition, the workpiece side dynamic stiffness data is separated into workpiece dynamic stiffness data Cwa, Kwa, support member dynamic stiffness data Cwb, Kwb, and contact dynamic stiffness data Cwc, Kwc. Separating each dynamic stiffness data in this way facilitates determination of each dynamic stiffness data. For example, even if the workpiece W and the workpiece support members (20, 30, 40, 60) are the same, only the contact dynamic stiffness data Cwc, Kwc will be Be changed. Therefore, arithmetic processing becomes easy. For example, when the estimation processing by the machining estimation device 3b and the control of the grinding processing by the control device 3a are performed at the same time, high-precision grinding processing can be realized by performing the arithmetic processing at high speed.
(実施形態2)
 本実施形態の加工装置201について図9を参照して説明する。加工装置201は、切削加工を行う加工装置を対象とする。加工装置201は、加工装置本体としての旋盤本体202と、処理部203とを備える。
(Embodiment 2)
A processing apparatus 201 of this embodiment will be described with reference to FIG. The processing device 201 is intended for a processing device that performs cutting. The processing device 201 includes a lathe body 202 as a processing device body and a processing unit 203 .
 旋盤本体202は、工作物Wを回転させ、切削工具T2を工作物Wに対して相対移動させることにより、工作物Wを旋削する。処理部203は、旋盤本体202を制御する制御装置203a、および、加工に関する推定対象を推定する加工推定装置203bを備える。制御装置203aは、旋盤本体202を制御することにより、切削加工を制御することができる。加工推定装置203bは、旋盤本体202での切削加工時における工作物Wまたは切削工具T2の状態、工作物Wの形状、切削工具T2の形状、および、加工装置201の機械状態(旋盤本体202の機械状態に相当する)の少なくとも1つを推定する。加工推定装置203bは、切削加工に用いる情報を入力してシミュレーションを行うことにより、上記の推定対象の推定処理を行う。 The lathe body 202 turns the workpiece W by rotating the workpiece W and moving the cutting tool T2 relative to the workpiece W. The processing unit 203 includes a control device 203a that controls the lathe body 202, and a machining estimation device 203b that estimates an estimation target related to machining. The control device 203 a can control cutting by controlling the lathe body 202 . The machining estimating device 203b determines the state of the workpiece W or the cutting tool T2, the shape of the workpiece W, the shape of the cutting tool T2, and the mechanical state of the processing device 201 (the lathe body 202) during cutting by the lathe body 202. corresponding to the machine state). The machining estimating device 203b performs the estimation processing of the estimation target by inputting information used for cutting and performing a simulation.
 旋盤本体202は、例えば、ベッド210、主軸装置220、心押装置230、レスト装置240と、工具台250を備える。主軸装置220、心押装置230、レスト装置240は、工作物支持部材として機能する。主軸装置220は、ベッド210の上面に固定されており、工作物Wの一端を支持し、工作物Wを回転駆動する。主軸装置220は、主軸ハウジング221と、主軸222と、主軸用モータ223と、チャック224と、主軸用検出器225と、図示しない主軸用駆動回路とを備える。 The lathe body 202 includes, for example, a bed 210, a spindle device 220, a tailstock device 230, a rest device 240, and a tool table 250. The spindle device 220, the tailstock device 230, and the rest device 240 function as workpiece support members. The spindle device 220 is fixed to the upper surface of the bed 210, supports one end of the workpiece W, and drives the workpiece W to rotate. The spindle device 220 includes a spindle housing 221, a spindle 222, a spindle motor 223, a chuck 224, a spindle detector 225, and a spindle drive circuit (not shown).
 主軸ハウジング221は、ベッド210上に固定されている。主軸222は、主軸ハウジング221に軸受を介して回転可能に支持される。主軸用モータ223は、主軸222を回転駆動する。チャック224は、主軸222に固定され、工作物Wの一端を把持する。主軸用検出器225および主軸用駆動回路は、主軸用モータ223を駆動するために設けられている。 The spindle housing 221 is fixed on the bed 210. The main shaft 222 is rotatably supported by the main shaft housing 221 via bearings. The spindle motor 223 drives the spindle 222 to rotate. A chuck 224 is fixed to the spindle 222 and grips one end of the workpiece W. As shown in FIG. The spindle detector 225 and the spindle drive circuit are provided to drive the spindle motor 223 .
 心押装置230は、ベッド210上であって、主軸装置220に対してZ軸方向に対向するように配置されている。心押装置230は、ベッド210上において、Z軸方向に移動可能に設けられている。心押装置230は、工作物Wの他端を支持する心押センタ231を備える。 The tailstock device 230 is arranged on the bed 210 so as to face the spindle device 220 in the Z-axis direction. The tailstock device 230 is provided on the bed 210 so as to be movable in the Z-axis direction. The tailstock device 230 includes a tailstock center 231 that supports the other end of the workpiece W. As shown in FIG.
 レスト装置240は、ベッド210上に固定されており、工作物Wの軸方向中間部分における外周面を支持する。特に、レスト装置320は、工作物Wが切削工具T2から受ける切削負荷に抗する位置に配置されている。 The rest device 240 is fixed on the bed 210 and supports the outer peripheral surface of the workpiece W at the intermediate portion in the axial direction. In particular, the rest device 320 is arranged at a position that resists the cutting load that the workpiece W receives from the cutting tool T2.
 工具台250は、Z軸スライド台251と、X軸スライド台252と、タレット(旋回式の刃物台)253と、複数の切削工具T2とを備える。Z軸スライド台251は、ベッド210のZ軸案内面211にZ軸方向に移動可能に支持されており、ベッド210に設けられたZ軸駆動機構212によりZ軸方向に移動する。 The tool rest 250 includes a Z-axis slide table 251, an X-axis slide table 252, a turret (rotary tool rest) 253, and a plurality of cutting tools T2. The Z-axis slide table 251 is supported on the Z-axis guide surface 211 of the bed 210 so as to be movable in the Z-axis direction, and is moved in the Z-axis direction by the Z-axis drive mechanism 212 provided on the bed 210 .
 X軸スライド台252は、Z軸スライド台251上のX軸案内面251aにX軸方向に移動可能に支持されており、Z軸スライド台251に設けられたX軸駆動機構251bによりX軸方向に移動する。タレット253は、X軸スライド台252にZ軸方向に平行な軸回りに回転可能に設けられている。複数の切削工具T2は、タレット253の外周面に固定されている。複数の切削工具T2は、異なる種類の工具とすることができる。 The X-axis slide table 252 is supported by an X-axis guide surface 251a on a Z-axis slide table 251 so as to be movable in the X-axis direction. move to The turret 253 is rotatably provided on the X-axis slide table 252 about an axis parallel to the Z-axis direction. A plurality of cutting tools T2 are fixed to the outer peripheral surface of the turret 253 . The multiple cutting tools T2 can be different types of tools.
 制御装置203aは、加工制御を実行するCNC(Computer Numerical
Control)装置およびPLC(Programmable Logic Controller)装置である。つまり、制御装置203aは、切削加工プログラムに基づいて、移動装置としてのZ軸駆動機構212およびX軸駆動機構251bを駆動して、切削工具T2の位置制御を行う。つまり、制御装置203aは、切削工具T2などの位置制御を行うことで、工作物Wと切削工具T2とを相対的に移動させる。さらに、制御装置203aは、主軸222の回転制御およびタレット253の回転制御を行う。
The control device 203a is a CNC (Computer Numerical Control) that executes machining control.
Control) device and PLC (Programmable Logic Controller) device. That is, the control device 203a controls the position of the cutting tool T2 by driving the Z-axis drive mechanism 212 and the X-axis drive mechanism 251b as moving devices based on the cutting program. That is, the control device 203a relatively moves the workpiece W and the cutting tool T2 by controlling the position of the cutting tool T2. Further, the control device 203a performs rotation control of the main shaft 222 and rotation control of the turret 253. FIG.
 本実施形態の加工推定装置203bは、図2に示す実施形態1の加工推定装置3bの構成と同様である。ただし、実施形態1における研削を切削に変更し、砥石車Tを切削工具T2に変更する。 A modification estimation device 203b of this embodiment has the same configuration as the modification estimation device 3b of Embodiment 1 shown in FIG. However, the grinding in Embodiment 1 is changed to cutting, and the grinding wheel T is changed to a cutting tool T2.
 次に、本実施形態において、工作物側動剛性(Cw,Kw)および工具側動剛性(Ct,Kt)について、図10を参照して説明する。工作物側動剛性(Cw,Kw)は、旋盤本体202を構成する工作物支持部材としての主軸装置220、心押装置230およびレスト装置240により工作物Wを支持した状態において発揮する動剛性である。工作物側動剛性(Cw,Kw)は、減衰係数Cwおよびばね定数Kwにより定義される。減衰係数Cwは、主軸装置220、心押装置230およびレスト装置240の基準位置に対する工作物Wの相対速度と、工作物Wが受ける外力との関係を表す値である。ばね定数Kwは、主軸装置220、心押装置230およびレスト装置240の基準位置に対する工作物Wの相対位置と、工作物Wが受ける外力との関係を表す値である。 Next, the workpiece-side dynamic stiffness (Cw, Kw) and the tool-side dynamic stiffness (Ct, Kt) in this embodiment will be described with reference to FIG. The workpiece-side dynamic rigidity (Cw, Kw) is the dynamic rigidity exerted when the workpiece W is supported by the spindle device 220, the tailstock device 230, and the rest device 240 as workpiece support members that constitute the lathe body 202. be. Workpiece side dynamic stiffness (Cw, Kw) is defined by damping coefficient Cw and spring constant Kw. The damping coefficient Cw is a value that represents the relationship between the relative speed of the workpiece W with respect to the reference positions of the spindle device 220, the tailstock device 230 and the rest device 240 and the external force that the workpiece W receives. The spring constant Kw is a value that represents the relationship between the relative position of the workpiece W with respect to the reference positions of the spindle device 220, the tailstock device 230 and the rest device 240 and the external force that the workpiece W receives.
 そして、実施形態1と同様に、工作物側動剛性(Cw,Kw)は、工作物動剛性(Cwa,Kwa)と、支持部材動剛性(Cwb,Kwb)と、工作物Wと工作物支持部材(20,30,40,60)との間の接触動剛性(Cwc,Kwc)とに分解することができる。 As in the first embodiment, the workpiece side dynamic stiffness (Cw, Kw) is composed of workpiece dynamic stiffness (Cwa, Kwa), support member dynamic stiffness (Cwb, Kwb), workpiece W and workpiece support. contact dynamic stiffness (Cwc, Kwc) between members (20, 30, 40, 60).
 工具側動剛性(Ct,Kt)は、切削工具T2を含み、工具台250に関する動剛性である。工具側動剛性(Ct,Kt)は、減衰係数Ctおよびばね定数Ktにより定義される。減衰係数Ctは、工具台250における基準位置に対する切削工具T2の相対速度と、切削工具T2が受ける外力との関係を表す値である。ばね定数Ktは、工具台250における基準位置に対する切削工具T2の相対位置と、切削工具T2が受ける外力との関係を表す値である。 The tool-side dynamic stiffness (Ct, Kt) is the dynamic stiffness related to the tool table 250 including the cutting tool T2. Tool-side dynamic stiffness (Ct, Kt) is defined by damping coefficient Ct and spring constant Kt. The damping coefficient Ct is a value that represents the relationship between the relative speed of the cutting tool T2 with respect to the reference position on the tool rest 250 and the external force that the cutting tool T2 receives. The spring constant Kt is a value that represents the relationship between the relative position of the cutting tool T2 with respect to the reference position on the tool rest 250 and the external force that the cutting tool T2 receives.
 本実施形態における加工装置201は、実施形態1における加工装置1と同様の効果を奏する。 The processing device 201 in this embodiment has the same effects as the processing device 1 in the first embodiment.
(その他)
 上記実施形態においては、研削盤本体2を用いた研削加工と、旋盤本体202を用いた切削加工とについて例をあげて説明した。これらの他に、マシニングセンタを用いた切削加工についても同様に適用可能である。
(others)
In the above embodiment, the grinding process using the grinder main body 2 and the cutting process using the lathe main body 202 have been described as examples. In addition to these, cutting using a machining center is similarly applicable.

Claims (10)

  1.  工作物支持部材(20,30,40,60,220,230,240)により支持された工作物(W)を工具(T,T2)により加工する加工装置(1,201)において、
     前記工作物と前記工作物支持部材との接触により発揮する前記工作物と前記工作物支持部材との間の接触動剛性データ(Cwc,Kwc)を用いて、加工の制御を行う、もしくは、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定する処理部(3,203)を備える、加工装置(1,201)。
    In a processing device (1, 201) for processing a workpiece (W) supported by workpiece support members (20, 30, 40, 60, 220, 230, 240) with tools (T, T2),
    using contact dynamic stiffness data (Cwc, Kwc) between the workpiece and the workpiece support member exerted by the contact between the workpiece and the workpiece support member, or A processing device ( 1,201).
  2.  さらに、
     前記工作物支持部材による支持力に関する調整要素(34,41,60,224,231,240)、および、前記工作物における被支持部位の要素(W,Wc,Wd)と、前記接触動剛性データ(Cwc,Kwc)と、の対応関係を予め記憶する接触動剛性テーブル記憶部(103c)と、
     処理対象時における前記調整要素および前記被支持部位の要素、ならびに、前記接触動剛性テーブル記憶部に記憶された前記対応関係を用いて、前記接触動剛性データを決定する動剛性決定部(106)と、
     を備え、
     前記処理部は、前記動剛性決定部により決定された前記接触動剛性データを用いて、加工の制御を行う、もしくは、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定する、請求項1に記載の加工装置。
    moreover,
    Adjustment elements (34, 41, 60, 224, 231, 240) relating to the support force of the workpiece support member, elements (W, Wc, Wd) of the supported portion of the workpiece, and the contact dynamic stiffness data (Cwc, Kwc) and a contact dynamic stiffness table storage unit (103c) for pre-storing the corresponding relationship;
    a dynamic stiffness determination unit (106) for determining the contact dynamic stiffness data using the adjustment elements and the supported part elements at the time of processing and the correspondence stored in the contact dynamic stiffness table storage unit; and,
    with
    The processing unit controls machining using the contact dynamic stiffness data determined by the dynamic stiffness determination unit, or controls the state of the workpiece or the tool during machining, the shape of the workpiece, the 2. The processing device according to claim 1, wherein at least one of a tool shape and a machine state of said processing device is estimated.
  3.  前記接触動剛性テーブル記憶部は、
     前記調整要素および前記被支持部位の要素に関する第一条件(A1,A2,A3,B1,B2,B3)と、前記第一条件において実測された前記接触動剛性データとの対応関係を予め記憶しており、
     さらに、前記第一条件についての前記接触動剛性データを用いて補間処理を行うことにより、前記第一条件とは異なる第二条件(A1h,A2h,B1h,B2h)について取得された前記接触動剛性データを追加記憶する、請求項2に記載の加工装置。
    The contact dynamic stiffness table storage unit
    A correspondence relationship between first conditions (A1, A2, A3, B1, B2, B3) regarding the adjustment elements and the elements of the supported portion and the contact dynamic stiffness data actually measured under the first conditions is stored in advance. and
    Furthermore, by performing interpolation processing using the contact dynamic stiffness data for the first condition, the contact dynamic stiffness acquired for the second conditions (A1h, A2h, B1h, B2h) different from the first condition 3. The processing device according to claim 2, further storing data.
  4.  前記被支持部位の要素は、前記工作物の軸方向端面に形成されたセンタ穴(Wc,Wd)であり、
     前記工作物支持部材は、前記センタ穴に対して前記工作物を軸方向に押圧する支持センタ(34,41,231)を備え、
     前記接触動剛性データは、前記センタ穴と前記支持センタとの間の接触動剛性データである、請求項2または3に記載の加工装置。
    the element of the supported portion is a center hole (Wc, Wd) formed in the axial end face of the workpiece;
    said workpiece support member comprises a support center (34, 41, 231) for axially pressing said workpiece against said center hole;
    4. The processing apparatus according to claim 2, wherein said contact dynamic stiffness data is contact dynamic stiffness data between said center hole and said support center.
  5.  前記支持センタは、前記工作物に対して前記工作物の軸方向への押圧力を調整可能に構成され、
     前記接触動剛性データは、前記支持センタによる前記押圧力の変化により前記工作物の前記センタ穴と前記支持センタとの接触状態が変化することに伴って変化するデータであり、
     前記処理部は、前記接触動剛性データを用いて、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定し、かつ、推定結果に基づいて前記支持センタによる押圧力の調整を行う、請求項4に記載の加工装置。
    The support center is configured to be able to adjust the pressing force in the axial direction of the workpiece with respect to the workpiece,
    The contact dynamic stiffness data is data that changes as the contact state between the center hole of the workpiece and the support center changes due to changes in the pressing force of the support center,
    The processing unit uses the contact dynamic stiffness data to determine at least one of a state of the workpiece or the tool during machining, a shape of the workpiece, a shape of the tool, and a mechanical state of the processing device. 5. The processing apparatus according to claim 4, which estimates and adjusts the pressing force by said support center based on the estimation result.
  6.  前記工作物支持部材は、前記工作物を把持するチャック(224)であり、
     前記接触動剛性データは、前記工作物と前記チャックとの間の接触動剛性データである、請求項1~3のいずれか1項に記載の加工装置。
    the workpiece support member is a chuck (224) that grips the workpiece;
    4. The processing apparatus according to any one of claims 1 to 3, wherein said contact dynamic stiffness data is contact dynamic stiffness data between said workpiece and said chuck.
  7.  前記チャックは、前記工作物に対する把持力を調整可能に構成され、
     前記接触動剛性データは、前記チャックによる前記把持力の変化により前記工作物と前記チャックとの接触状態が変化することに伴って変化するデータであり、
     前記処理部は、前記接触動剛性データを用いて、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定し、かつ、推定結果に基づいて前記チャックによる前記把持力の調整を行う、請求項6に記載の加工装置。
    The chuck is configured to be able to adjust a gripping force on the workpiece,
    The contact dynamic stiffness data is data that changes as the contact state between the workpiece and the chuck changes due to changes in the gripping force of the chuck,
    The processing unit uses the contact dynamic stiffness data to determine at least one of a state of the workpiece or the tool during machining, a shape of the workpiece, a shape of the tool, and a mechanical state of the processing device. 7. The processing apparatus according to claim 6, which estimates and adjusts said gripping force by said chuck based on the estimation result.
  8.  前記工作物支持部材は、軸状に形成された前記工作物の外周面を支持するレスト装置(60,240)であり、
     前記接触動剛性データは、前記工作物の外周面と前記レスト装置との間の接触動剛性データである、請求項1~3のいずれか1項に記載の加工装置。
    The workpiece support member is a rest device (60, 240) that supports the outer peripheral surface of the workpiece formed in a shaft shape,
    The processing apparatus according to any one of claims 1 to 3, wherein said contact dynamic stiffness data is contact dynamic stiffness data between the outer peripheral surface of said workpiece and said rest device.
  9.  前記レスト装置は、前記工作物の外周面に対する押圧力を調整可能に構成され、
     前記接触動剛性データは、前記レスト装置による前記押圧力の変化により前記工作物の外周面と前記レスト装置との接触状態が変化することに伴って変化するデータであり、
     前記処理部は、前記接触動剛性データを用いて、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定し、かつ、推定結果に基づいて前記レスト装置による前記押圧力の調整を行う、請求項8に記載の加工装置。
    The rest device is configured to be able to adjust the pressing force against the outer peripheral surface of the workpiece,
    The contact dynamic stiffness data is data that changes as the contact state between the outer peripheral surface of the workpiece and the rest device changes due to a change in the pressing force applied by the rest device,
    The processing unit uses the contact dynamic stiffness data to determine at least one of a state of the workpiece or the tool during machining, a shape of the workpiece, a shape of the tool, and a mechanical state of the processing device. 9. The processing apparatus according to claim 8, which estimates and adjusts said pressing force by said rest device based on the estimation result.
  10.  前記処理部は、
      前記接触動剛性データ(Cwc,Kwc)、
      前記工作物支持部材の動剛性である支持部材動剛性データ(Cwb,Kwb)、および、
      前記工作物の動剛性である工作物動剛性データ(Cwa,Kwa)を用いて、
      加工の制御を行う、もしくは、加工時における前記工作物または前記工具の状態、前記工作物の形状、前記工具の形状、および、前記加工装置の機械状態の少なくとも1つを推定する、請求項1~9のいずれか1項に記載の加工装置。
    The processing unit is
    the contact dynamic stiffness data (Cwc, Kwc);
    support member dynamic stiffness data (Cwb, Kwb), which is the dynamic stiffness of the workpiece support member; and
    Using the workpiece dynamic stiffness data (Cwa, Kwa), which is the dynamic stiffness of the workpiece,
    2. Controlling machining or estimating at least one of the state of the workpiece or the tool, the shape of the workpiece, the shape of the tool, and the mechanical state of the processing device during machining. 10. The processing apparatus according to any one of items 1 to 9.
PCT/JP2021/036792 2021-10-05 2021-10-05 Machining device WO2023058107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102381.2A CN117940250A (en) 2021-10-05 2021-10-05 Processing device
PCT/JP2021/036792 WO2023058107A1 (en) 2021-10-05 2021-10-05 Machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036792 WO2023058107A1 (en) 2021-10-05 2021-10-05 Machining device

Publications (1)

Publication Number Publication Date
WO2023058107A1 true WO2023058107A1 (en) 2023-04-13

Family

ID=85804013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036792 WO2023058107A1 (en) 2021-10-05 2021-10-05 Machining device

Country Status (2)

Country Link
CN (1) CN117940250A (en)
WO (1) WO2023058107A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234135A (en) * 1987-10-14 1989-09-19 Sandvik Coromant Ab Method of controlling machine tool
JP2009064426A (en) * 2007-08-10 2009-03-26 Jtekt Corp Chatter simulation device and chatter simulation method
JP2015208812A (en) * 2014-04-25 2015-11-24 学校法人日本大学 Grinding processing device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234135A (en) * 1987-10-14 1989-09-19 Sandvik Coromant Ab Method of controlling machine tool
JP2009064426A (en) * 2007-08-10 2009-03-26 Jtekt Corp Chatter simulation device and chatter simulation method
JP2015208812A (en) * 2014-04-25 2015-11-24 学校法人日本大学 Grinding processing device and method

Also Published As

Publication number Publication date
CN117940250A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7305945B2 (en) Machine Tools
JPH07100761A (en) Grinding device
JP2008509012A (en) Raster cutting technology for ophthalmic lenses
JPH06500270A (en) Method and device for finishing universal finishing rollers and cup-shaped grindstones
CN111823139A (en) Method for dressing grinding wheel and grinding wheel dressing device
JP2007083351A (en) Grinder
WO2023058107A1 (en) Machining device
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP7326843B2 (en) Grinding method and grinder
JP2005254333A (en) Cylindrical grinding machine and grinding method
WO2023047437A1 (en) Processing estimation device
JP2020069599A (en) Support device of machine tool and machine tool system
JP2023138881A (en) Contact dynamic stiffness calculation system and processing system
JP5162966B2 (en) Grinder
JP2019155557A (en) Method for estimation of drive shaft deviation in machine tool and machine tool with use thereof
JP4125894B2 (en) Polishing apparatus and method
WO2024075284A1 (en) Contact dynamic stiffness calculation system, machining estimation device, and proccessing system
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
US20210268649A1 (en) Controlling Contact Force in a Machine Tool
WO2024075303A1 (en) Workpiece mass determination device, machining estimation device, and machining system
JP2021074841A (en) Processing quality prediction system
JP2021074842A (en) Processing quality prediction system
JP2005059141A (en) Grinding method and controller of grinder
JP6561596B2 (en) Cutting apparatus and cutting method
JP4313090B2 (en) CVT sheave surface grinding method and grinding jig

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959662

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552431

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180102381.2

Country of ref document: CN