JPS60262472A - Manufacture of transistor - Google Patents

Manufacture of transistor

Info

Publication number
JPS60262472A
JPS60262472A JP59118164A JP11816484A JPS60262472A JP S60262472 A JPS60262472 A JP S60262472A JP 59118164 A JP59118164 A JP 59118164A JP 11816484 A JP11816484 A JP 11816484A JP S60262472 A JPS60262472 A JP S60262472A
Authority
JP
Japan
Prior art keywords
cdte
layer
transistor
concentration
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59118164A
Other languages
Japanese (ja)
Inventor
Nobuo Nakayama
中山 信男
Masaaki Ueda
昌明 上田
Hideo Koseki
小関 秀夫
Nobuhiro Dobashi
土橋 伸弘
Yuuko Toyonaga
豊永 由布子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59118164A priority Critical patent/JPS60262472A/en
Publication of JPS60262472A publication Critical patent/JPS60262472A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a phototransistor having high sensitivity and operating at high speed by bringing an impurity to gradient type concentration distribution. CONSTITUTION:A transparent electrode 2 is formed onto a glass substrate 1, layers 3-5 containing CdTe are shaped onto the electrode 2, and an Al electrode 6 is formed onto the layer 5. Accordingly, Sb concentration in the layer 4 distributes in high concentration on the emitter side and in low concentration on the collector side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ヘテロ接合l〜ランジスタに関するも1− のであり、特に高性能で安価な薄膜型ホ1−トランジス
タの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heterojunction transistor, and particularly to a method for manufacturing a high-performance and inexpensive thin film transistor.

(従来例の構成とその問題点) 従来、トランジスタはGeまたはSj単結晶基板内にエ
ミッタ領域、ベース領域およびコレクタ領域を形成した
のち、各々の領域に電極を設け、それにリード線を接続
して、所定の目的に対して使用されている。使用目的に
応じて、n−p−n型やp−n−p型のトランジスタが
作られるが、そのいずれもが原理的にはエミッタ領域か
らベース領域への少数キャリアの注入現象を利用するも
のであって、その少数キャリアが伝導度を変調する主役
をなしている。これらには実用という点から、電力利得
が大きいこと、高周波特性が良いこと、安定で信頼度が
高いこと、雑音や歪が少ないことが要求される。ところ
で、フォトトランジスタは、このような通常のトランジ
スタにおいて、ベース電極を設けていない構造である。
(Conventional structure and its problems) Conventionally, a transistor is constructed by forming an emitter region, a base region, and a collector region in a Ge or Sj single crystal substrate, and then providing electrodes in each region and connecting lead wires to them. , used for a given purpose. Depending on the purpose of use, n-p-n type or p-n-p type transistors are made, but both of them, in principle, utilize the phenomenon of minority carrier injection from the emitter region to the base region. The minority carriers play a major role in modulating conductivity. From a practical standpoint, these devices are required to have large power gain, good high frequency characteristics, stability and reliability, and low noise and distortion. Incidentally, a phototransistor has a structure in which a base electrode is not provided in such a normal transistor.

これは、エミッタ電極とコレクタ電極間に電圧を加えて
おき、ベース部に光を照射して使用する。ベースに照射
さ2− れる光はベースの電位を変えるのに役立つのであって光
によって発生したキャリアそのものが光電流になるので
はない。光はこの電流を制御する作用を有するから、光
リレーに使途があり感度は非常に良い。現在ではSi単
結晶を使用したものが主流をなしているが、単結晶であ
るため高価であり、且つ形状や大きさに制約があるとい
う欠点があった。
This is used by applying a voltage between the emitter electrode and the collector electrode and irradiating the base with light. The light irradiated onto the base serves to change the potential of the base, and the carriers generated by the light do not themselves become photocurrent. Since light has the effect of controlling this current, optical relays have many uses and are extremely sensitive. Currently, Si single crystals are the mainstream, but because they are single crystals, they are expensive and have limitations in shape and size.

(発明の目的) 本発明は上記の欠点を除去し、高感度で応答速度の速い
ホトトランジスタの製造方法を提供しようとするもので
ある。
(Object of the Invention) The present invention aims to eliminate the above-mentioned drawbacks and provide a method for manufacturing a phototransistor with high sensitivity and fast response speed.

(発明の構成) 本発明の第1の特徴はCd T eまたはこれを含む半
導体をベースとしたトランジスタにおいて、ベース内不
純物を傾斜型濃度分布とした高速応答トランジスタの製
造方法であり、第2の特徴としてII−Vl族化合物半
導体の多結晶膜をトランジスタの基体とした製造方法に
関するものである。
(Structure of the Invention) The first feature of the present invention is a method for manufacturing a high-speed response transistor in which impurities in the base have a graded concentration distribution in a transistor based on CdTe or a semiconductor containing CdTe. The present invention is characterized in that it relates to a manufacturing method using a polycrystalline film of a II-Vl group compound semiconductor as a substrate of a transistor.

本発明によれば、トランジスタ各層の形成法として、蒸
着法、気相成長法などが採用できるので任意の形状、面
積のものを容易にしかも安価に製造することが出来る。
According to the present invention, as the method for forming each transistor layer, a vapor deposition method, a vapor phase growth method, or the like can be adopted, so that a transistor of any shape and area can be manufactured easily and at low cost.

(実施例の説明) 以下本発明の一実施例について、図面を参照しなから説
明する。
(Description of Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

〔実施例1〕 第1図は本発明によるホトトランジスタの製造方法を説
明するための一実施例の模式断面図を示すもので、ガラ
ス基板1上に、スパッタ法で、厚さ約500人のIn2
O3膜からなる透明電極2を形成させたのち、この上に
順次、蒸着法でn−CdTe層3.p−cdTe層4.
n−cdTe層5を形成させ、さらにこの上にAl電極
を蒸着法で形成させる。上記、Cd T e層3の形成
時の真空度は10−’Torr、基板温度350℃で、
n−CdTe層3゜p−6610層4.n−cdTe層
5の各層の不純物および濃度は各々、In2Te311
Ilo1%、 Sb2Te3]0−2層mo1%、 I
 n2Te310−3mo1%であり、同じく各層の厚
さはそれぞれ0.2μm、 0.6μm、0.6μmで
あった。
[Example 1] Fig. 1 shows a schematic cross-sectional view of an example for explaining the method of manufacturing a phototransistor according to the present invention. In2
After forming a transparent electrode 2 made of an O3 film, an n-CdTe layer 3. is sequentially deposited thereon by vapor deposition. p-cdTe layer 4.
An n-cdTe layer 5 is formed, and an Al electrode is further formed thereon by vapor deposition. The degree of vacuum during the formation of the Cd Te layer 3 above was 10-'Torr, the substrate temperature was 350°C,
n-CdTe layer 3° p-6610 layer 4. The impurities and concentrations of each layer of the n-cdTe layer 5 are In2Te311
Ilo1%, Sb2Te3]0-2 layer mo1%, I
n2Te310-3mol%, and the thickness of each layer was 0.2 μm, 0.6 μm, and 0.6 μm, respectively.

−3= こののち、In2O3膜2からなる透明電極上とA1電
極6上にそれぞれ、リード線7をつける。
-3= After this, lead wires 7 are attached on the transparent electrode made of the In2O3 film 2 and on the A1 electrode 6, respectively.

第2図は第1図に示した構造のトランジスタの構成元素
と不純物元素の分布状態を二次イオン質量分析計(SI
MS)で解析した結果を示す濃度分布図である。
Figure 2 shows the distribution of the constituent elements and impurity elements of the transistor with the structure shown in Figure 1 using a secondary ion mass spectrometer (SI).
FIG. 3 is a concentration distribution diagram showing the results of analysis using MS).

図中に示されるように、Cd T eは明確に3層に分
離しており、特にp−cdTe層内のsb濃度分布はエ
ミッタ側が高濃度に、コレクタ側が低濃度に分布してい
る。CdTe成膜はCdTe蒸着源、■n2Te3蒸着
源、Sb2Te3蒸着源からなる3個の独立した蒸着源
を使用し、n−CdTe成膜はCd T a蒸着源と■
n2Te3蒸着源を同時に使用し、p−CdTe成膜は
CdTe蒸着源とSb2Te3蒸着源を同時に加熱して
行う。各々の蒸着速度は第2図に示す各CdTe層の不
純物分布状態になるように制御しである。
As shown in the figure, CdTe is clearly separated into three layers, and in particular, the sb concentration distribution in the p-cdTe layer has a high concentration on the emitter side and a low concentration on the collector side. CdTe film formation uses three independent evaporation sources consisting of a CdTe evaporation source, ■n2Te3 evaporation source, and Sb2Te3 evaporation source, and n-CdTe film formation uses a CdTa evaporation source and
The n2Te3 vapor deposition source is used at the same time, and the p-CdTe film is formed by heating the CdTe vapor deposition source and the Sb2Te3 vapor deposition source simultaneously. The deposition rate of each layer was controlled so that the impurity distribution state of each CdTe layer was as shown in FIG.

このようにして得られたホトトランジスタは増幅率60
0倍、応答速度10−’seeと高性能であった。
The phototransistor thus obtained has an amplification factor of 60
It had high performance, with a response speed of 10-'see.

(発明の効果) 5− 4− 以上説明したように、本発明によれば、高速応答性を有
し、且つ高感度の薄膜型ホトトランジスタが得られ、そ
の応用例として、各種高速度読取用光センサとして広い
適用範囲を有するものである。
(Effects of the Invention) 5-4- As explained above, according to the present invention, a thin film phototransistor having high-speed response and high sensitivity can be obtained, and as an example of its application, it can be used for various high-speed reading applications. It has a wide range of applications as an optical sensor.

【図面の簡単な説明】 第1図は本発明によるホトトランジスタの製造方法を説
明するための一実施例の模式断面図、第2図はSIMS
で解析したトランジスタ構成元素と不純物元素の濃度分
布図である。 1 ・・・ガラス基板、 2・・・ In2oa膜、3
 − n−cdTe層、 4 − p−cdTe層、5
 − n−cdTe層、 6−Al電極、 7・・・ 
リード線、 8 ・・・入射光。 特許出願人 松下電器産業株式会社 6− 第1図 第2図 与 水 難
[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view of an embodiment for explaining the method of manufacturing a phototransistor according to the present invention, and Fig. 2 is a schematic cross-sectional view of an example of a method for manufacturing a phototransistor according to the present invention.
FIG. 2 is a concentration distribution diagram of transistor constituent elements and impurity elements analyzed in FIG. 1... Glass substrate, 2... In2oa film, 3
- n-cdTe layer, 4 - p-cdTe layer, 5
- n-cdTe layer, 6-Al electrode, 7...
Lead wire, 8...Incoming light. Patent applicant Matsushita Electric Industrial Co., Ltd. 6- Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1) CdTeまたはこれを含む半導体をベースとし
たトランジスタにおいて、不純物を傾斜型濃度分布にし
たことを特徴とするトランジスタの製造方法。
(1) A method for manufacturing a transistor based on CdTe or a semiconductor containing CdTe, characterized in that impurities have a gradient concentration distribution.
(2) ベース層内不純物をエミッタ側を高濃度に、コ
レクタ側を低濃度と傾斜型濃度分布にしたことを特徴と
する特許請求の範囲第(1)項記載のトランジスタの製
造方法。
(2) The method for manufacturing a transistor according to claim (1), wherein the impurity in the base layer has a gradient concentration distribution with a high concentration on the emitter side and a low concentration on the collector side.
(3) Cd T e蒸発源からの蒸着速度と不純物蒸
着源からの蒸着速度の比率を変化させることによりCd
Te層内不純物濃度分布を制御することを特徴とする特
許請求の範囲第(1)項記載のトランジスタの製造方法
(3) By changing the ratio of the evaporation rate from the CdTe evaporation source to the evaporation rate from the impurity evaporation source, Cd
The method for manufacturing a transistor according to claim 1, wherein the impurity concentration distribution in the Te layer is controlled.
JP59118164A 1984-06-11 1984-06-11 Manufacture of transistor Pending JPS60262472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118164A JPS60262472A (en) 1984-06-11 1984-06-11 Manufacture of transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118164A JPS60262472A (en) 1984-06-11 1984-06-11 Manufacture of transistor

Publications (1)

Publication Number Publication Date
JPS60262472A true JPS60262472A (en) 1985-12-25

Family

ID=14729689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118164A Pending JPS60262472A (en) 1984-06-11 1984-06-11 Manufacture of transistor

Country Status (1)

Country Link
JP (1) JPS60262472A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752183A (en) * 1980-09-16 1982-03-27 Ricoh Co Ltd Manufacture of thin film transistor
JPS5766622A (en) * 1980-10-13 1982-04-22 Ricoh Co Ltd Formation of cdte film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752183A (en) * 1980-09-16 1982-03-27 Ricoh Co Ltd Manufacture of thin film transistor
JPS5766622A (en) * 1980-10-13 1982-04-22 Ricoh Co Ltd Formation of cdte film

Similar Documents

Publication Publication Date Title
US4113531A (en) Process for fabricating polycrystalline inp-cds solar cells
US3028655A (en) Semiconductive device
JPS6173345A (en) Semiconductor device
JPS60262472A (en) Manufacture of transistor
JPS60258978A (en) Transistor
JP3181074B2 (en) Method for producing Cu-based chalcopyrite film
JPH0442835B2 (en)
JPH0345331B2 (en)
JPS60258977A (en) Photo transistor
JPS5752183A (en) Manufacture of thin film transistor
JP2645663B2 (en) Thin film semiconductor device and method of manufacturing the same
USH894H (en) IR detector structure and method of making
JPH01308086A (en) Solid-state electronic device
US5053845A (en) Thin-film device
KR880001346B1 (en) Polycrystal film sotar cell production process
JPS55165688A (en) Preparation of light emission semiconductor device
JP2671554B2 (en) Manufacturing method of infrared detector
JPS635914B2 (en)
JPS61232675A (en) Polycrystalline thin film transistor and manufacture thereof
JPS5994460A (en) Manufacture of thin film transistor
JPS60195967A (en) Manufacture of semiconductor device
JPS60262460A (en) Array device for phototransistor
JPS6161552B2 (en)
JPH01273362A (en) Solar cell for controlling mis element
JPS616878A (en) Thin-film transistor and manufacture thereof