JPS60262108A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS60262108A
JPS60262108A JP59119399A JP11939984A JPS60262108A JP S60262108 A JPS60262108 A JP S60262108A JP 59119399 A JP59119399 A JP 59119399A JP 11939984 A JP11939984 A JP 11939984A JP S60262108 A JPS60262108 A JP S60262108A
Authority
JP
Japan
Prior art keywords
glass substrate
metal film
glass
film
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59119399A
Other languages
Japanese (ja)
Inventor
Kazuaki Yoshida
和昭 吉田
Toshiaki Kuroba
黒羽 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59119399A priority Critical patent/JPS60262108A/en
Publication of JPS60262108A publication Critical patent/JPS60262108A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve quality, ease of production, mass productivity, etc. by sticking a metallic film in which the refractive index in the oxide state is higher than the refractive index of a glass substrate onto the glass substrate and diffusing and oxidizing the metallic film to the glass substrate thereby producing an optical waveguide. CONSTITUTION:The metallic film 12 is stuck onto the glass layer 11 of the glass substrate 10 and a resist film 13 is formed on the film 12. The films are then subjected to pattern printing, resist development, etching and resist removal so that the metallic film 12 having the prescribed shape to allow the formation of the optical waveguide remains on the glass layer 11. The stage for diffusing the film 12 to the glass substrate 10 and the stage for oxidizing the film 12 are executed in optional sequence. The glass layer 11 in the porous or opague state is vitrified to transparent glass and the optical waveguide part 14 is formed on the substrate 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス基板上にこれよりも屈折率の高い導波部
をもつ光導波路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an optical waveguide having a waveguide portion on a glass substrate with a higher refractive index than the glass substrate.

(従来の技術) 光通信の発展にともない、光ファイバのコア直径と同程
度の膜厚を有する石英系光導波路の需要が高まっている
(Prior Art) With the development of optical communications, there is an increasing demand for silica-based optical waveguides having a film thickness comparable to the core diameter of an optical fiber.

通常、石英系光導波路は第2図のごとく石英系のガラス
基板1と、その上に形成されたコア膜2および保護用の
ガラス膜3とからなり、場合によリガラス膜3が省略さ
れたりしているが、上記コア膜2はガラス基板1、ガラ
ス膜3よりも屈折率が高く、その膜厚およびhb屈折率
差はこれの適用に応じ、適宜決定されている。
Usually, a quartz-based optical waveguide consists of a quartz-based glass substrate 1, a core film 2 formed thereon, and a protective glass film 3, as shown in Fig. 2. In some cases, the glass film 3 may be omitted. However, the core film 2 has a higher refractive index than the glass substrate 1 and the glass film 3, and its film thickness and hb refractive index difference are appropriately determined depending on the application.

従来、特開昭49−10054号の発明では、上記光導
波路の製造方法としてガラス基板上にS r Cl a
、(ieclaなどの気相原料を、酸水素炎トーチのご
ときガラス微粒子合成トーチへ供給し、該トーチを介し
て生成したガラス微粒子を所定形状に堆積させた後、こ
れを透明ガラス化している。
Conventionally, in the invention of JP-A No. 49-10054, as a method for manufacturing the optical waveguide, S r Cla is deposited on a glass substrate.
A gas phase raw material such as .

この方法の場合、光導波部の屈折率値や膜厚につき一様
な再現性に欠けるという問題がすでに指摘されており、
これに対処すべき種々の改善が試みられている。
It has already been pointed out that this method lacks uniform reproducibility in the refractive index value and film thickness of the optical waveguide.
Various improvements have been attempted to address this problem.

例えば特開昭58−8570号の発明では、半導体膜形
成の分野で知られているCVD反応管と類似の反応管中
でガラス基板上にガラス微粒子を堆積させるようにして
いる。
For example, in the invention disclosed in JP-A-58-8570, glass particles are deposited on a glass substrate in a reaction tube similar to a CVD reaction tube known in the field of semiconductor film formation.

[「°”−1,=oM’#=−r:b、 meh*″’
57.H(D“”損失が大きいという点で改善の余地が
残されている。
["°"-1,=oM'#=-r:b, meh*"'
57. There is still room for improvement in that the loss is large.

他に「昭和57年度電子通信学会 光・電波部門全国大
会93−2jで発表されたようにガラス基板をターンテ
ーブルにより回転させて均一にガラス膜を形成する工夫
があり、一方、感光性樹脂を多孔質ガラス層に含浸させ
、これを露光によりパターンニングした後、ドーパント
溶液を含浸させる液相ドープ法も知られているが、前者
の場合は大型の装置が必要であるとともに量産性に乏し
い難点があり、後者の場合は高品質化に問題がある。
In addition, there is a method to form a uniform glass film by rotating the glass substrate with a turntable, as announced at the 1983 National Conference of the Optical and Radio Division of the Institute of Electronics and Communication Engineers (IEICE), 1983. A liquid phase doping method is also known in which a porous glass layer is impregnated, patterned by exposure, and then impregnated with a dopant solution, but the former requires large equipment and is difficult to mass-produce. In the latter case, there is a problem in achieving high quality.

さらに最近ではC02レーザ加工を利用した光導波路の
製造方法が「昭和58年度応物学会jにより発表された
が、この方法も加工速度が遅く、実用性に欠ける。
More recently, a method for manufacturing optical waveguides using C02 laser processing was announced by the Society of Applied Physics Society in 1988, but this method also has a slow processing speed and lacks practicality.

(発明が解決しようとする問題点) 本発明は上記の諸問題点を解消すべく品質、製造易度、
量産性等に優れる実用性の高い光導波路の製造方法を提
供しようとするものである。
(Problems to be solved by the invention) The present invention aims to solve the above-mentioned problems by improving quality, ease of manufacture,
The present invention aims to provide a method for manufacturing an optical waveguide that is highly practical and has excellent mass productivity.

(問題を解決するための手段) 本発明に係る光導波路の製造方法はガラス基板上に、酸
化物状態における屈折率がそのガラス基板よりも高くな
る金属膜を付着させ、該工程後、上記金属膜をガラス基
板に拡散させる工程と、その金属膜を酸化させる工程と
を任意の順序で実施することを特徴としている。
(Means for Solving the Problem) A method for manufacturing an optical waveguide according to the present invention involves depositing a metal film having a refractive index in an oxide state higher than that of the glass substrate on a glass substrate, and after this step, depositing a metal film on a glass substrate. The method is characterized in that the step of diffusing the film onto the glass substrate and the step of oxidizing the metal film are carried out in any order.

(作用) 本発明方法の場合、未酸化の金属膜をガラス基板上に付
着させるので、該金属膜付着工程が容易となり、その後
の拡散工程、酸化工程により金属膜をカラス基板へ拡散
させ、酸化させて光導波部を形成するとき、当該金属の
拡散状態を制御することにより光導波部の寸法(拡散の
深さと巾)が精度よく仕上がり、さらに各工程に難度が
ないこと、工程数も比較的少ないことにより、量産性を
も有するほか、上記制御性により特性、品質の優れたも
のが再現性よく得られるようになる。
(Function) In the case of the method of the present invention, since an unoxidized metal film is deposited on the glass substrate, the metal film adhesion process is facilitated, and the metal film is diffused onto the glass substrate through the subsequent diffusion process and oxidation process, and the metal film is oxidized. When forming an optical waveguide by controlling the diffusion state of the metal, the dimensions of the optical waveguide (diffusion depth and width) can be achieved with high precision.Furthermore, each process is not difficult, and the number of processes is also compared. Not only is mass production possible due to the small number of targets, but also products with excellent characteristics and quality can be obtained with good reproducibility due to the above-mentioned controllability.

(実 施 例) つぎに本発明方法の実施例につき、図面を参照して説明
する。
(Example) Next, an example of the method of the present invention will be described with reference to the drawings.

第1図は本発明方法の1実施例をその工程順に示したも
のである。
FIG. 1 shows one embodiment of the method of the present invention in the order of its steps.

同図において、10は石英系のガラス基板、11は該ガ
ラス基板10の金属付着面側に形成された多孔質状態ま
たは不透明状態(不透明焼結ガラス)の石英系ガラス層
、12はそのガラス層ll上に付着された金属膜である
In the figure, 10 is a quartz-based glass substrate, 11 is a porous or opaque (opaque sintered glass) silica-based glass layer formed on the metal-attached side of the glass substrate 10, and 12 is the glass layer. A metal film deposited on the ll.

ガラス基板lOはS r 02ガラス、バイコールガラ
ス等からなり、そのガラス基板10の上記ガラス層11
は、これを多孔質状態とするとき、S + Cl 4の
ごときガラス原料を酸化または火炎加水分解し、その反
応生成物たるスート状のガラス微粒子をガラス基板10
上へ堆積させることにより形成できる。
The glass substrate 10 is made of S r 02 glass, Vycor glass, etc., and the glass layer 11 of the glass substrate 10
To make this into a porous state, a glass raw material such as S + Cl 4 is oxidized or flame-hydrolyzed, and the reaction product, soot-like glass fine particles, is transferred to the glass substrate 10.
It can be formed by depositing on top.

多孔質状態のガラス層11を形成する他の手段として、
溶媒に溶かされた有機シリコン化合物、例えばSi(O
CH3)4、Si(OC2H5)4などをゲル化するい
わゆるゾル−ゲル法も採用できる。
As another means for forming the glass layer 11 in a porous state,
An organosilicon compound dissolved in a solvent, e.g. Si(O
A so-called sol-gel method for gelling CH3)4, Si(OC2H5)4, etc. can also be employed.

ガラス基板10はその全体が多孔質状態または不透明状
態であってもよい。
The entire glass substrate 10 may be porous or opaque.

金属膜12としてはガラス中へ拡散しやすく、酸化処理
によりガラスと反応してガラス基板1oよりも高屈折率
の石英系ガラスを形成し得るものが用いられ、その具体
的な金属としてGe、 Pb、 Zn、Zr、 AI、
La、 Nd、などが用いられる。
The metal film 12 used is a material that easily diffuses into the glass and can react with the glass through oxidation treatment to form quartz glass having a higher refractive index than the glass substrate 1o. Specific examples of the metal include Ge, Pb, etc. , Zn, Zr, AI,
La, Nd, etc. are used.

第1図(イ)に示すガラス基板lOのガラス層11上に
は、はじめ同図(ロ)のごとく適宜の手段を介して金属
膜12が付着される。
On the glass layer 11 of the glass substrate 10 shown in FIG. 1(A), a metal film 12 is first attached by appropriate means as shown in FIG. 1(B).

具体的な金属膜付着手段としては、気体の原料を用いる
金属蒸着手段、融液の塗布手段、化合物膜の形成とその
後の還元による手段などが採用される。
Specific examples of metal film deposition means include metal vapor deposition using gaseous raw materials, melt application, and formation of a compound film followed by reduction.

つぎに第1図(ハ)のごとく、金属膜12上には既知の
レジスト塗布手段によりレジスト膜13が形成される。
Next, as shown in FIG. 1(c), a resist film 13 is formed on the metal film 12 by a known resist coating means.

なお、三次元導波路を作製するとき、金属膜12の状態
でレジスト膜13を利用したパターン形成を行なうと金
属エツチングがきわめて容易となる。
Note that when producing a three-dimensional waveguide, metal etching becomes extremely easy if pattern formation is performed using the resist film 13 in the state of the metal film 12.

以下は第1図(ニ)(ホ)(へ)(ト)に示すパター1 .1. ン焼付、レジスト現像、エツチング、レジスト
除去の各工程が実施される。
The following is the putter 1 shown in Figure 1 (D), (E), (F), and (G). 1. Each step of printing, resist development, etching, and resist removal is performed.

第1図(ト)の工程までを終えたとき、ガラス基板10
のガラス層11上には、その後の酸化処理により光導波
部を形成し得る所定形状の金属膜12のみが残置される
When the process up to FIG. 1 (g) is completed, the glass substrate 10
Only a metal film 12 having a predetermined shape that can form an optical waveguide section by subsequent oxidation treatment is left on the glass layer 11 .

第1図(ト)の工程を終えたガラス基板10とその付着
物は、同図(チ)のごとき各種の処理を受け、この際の
処理により金属膜12が拡散ならびに酸化されるととも
に多孔質状態または不透明状態のガラス層11が透明ガ
ラス化されるのであり、かくてガラス基板10上にコア
たる光導波部14が形成される。
The glass substrate 10 and its deposits that have undergone the process shown in FIG. 1 (G) are subjected to various treatments as shown in FIG. The glass layer 11 in a transparent or opaque state is made into transparent glass, and thus an optical waveguide section 14 serving as a core is formed on the glass substrate 10.

上記における金属膜12の酸化、拡散、透明ガラス化、
蒸発などは、例えば酸化性雰囲気中において10℃/s
inの昇温速度にて1500℃程度まで加熱することに
より実施できる。
Oxidation, diffusion, and transparent vitrification of the metal film 12 in the above,
For example, evaporation is performed at 10°C/s in an oxidizing atmosphere.
This can be carried out by heating up to about 1500° C. at a temperature increase rate of in.

この際、酸化よりも先行して金属の拡散を実施してもよ
く、逆に金属の酸化後、これを拡散させてもよく、さら
に金属の酸化と拡散とを同時に行なってもよい。
At this time, the metal may be diffused prior to oxidation, or conversely, the metal may be diffused after oxidation, or the metal oxidation and diffusion may be performed simultaneously.

ここで重要なことは金属の酸化温度がこれの蒸発温度よ
りも低いことであり、したがって金属の酸化温度、拡散
温度等はかかる事項を満足させるべく設定する。
What is important here is that the oxidation temperature of the metal is lower than its evaporation temperature, and therefore the oxidation temperature, diffusion temperature, etc. of the metal are set to satisfy this requirement.

1例としてGe、 Pbに関する上記温度の実験結果を
示すと、Geの場合、酸化開始温度=850〜850℃
、蒸発温度; 1200℃であり、pbの場合、酸化開
始温度:400℃、蒸発温度:1000〜1100℃で
ある。
As an example, the experimental results of the above temperature regarding Ge and Pb are shown: In the case of Ge, the oxidation start temperature = 850 to 850 °
, evaporation temperature: 1200°C, and in the case of pb, oxidation start temperature: 400°C, evaporation temperature: 1000 to 1100°C.

第1図(チ)の工程を終えた後、光導波部14を覆うベ
〈ガラス基板10上に純石英製のガラス層を形成しても
よい。
After completing the process shown in FIG. 1(H), a pure quartz glass layer may be formed on the glass substrate 10 that covers the optical waveguide section 14.

つぎに本発明方法の具体例について説明する。Next, specific examples of the method of the present invention will be explained.

市販の不透明石英ガラスをガラス基板10とし、具体例
1ではそのガラス基板10の上にGe金属微粒子による
金属膜12を付着形成し、具体例2ではそのガラス基板
10の上にpb金属微粒子による金属膜12を付着形成
し、これら各側のものを空気中において10℃/ll1
inの昇温速度で加熱した。
A commercially available opaque quartz glass is used as the glass substrate 10. In specific example 1, a metal film 12 made of Ge metal particles is adhered and formed on the glass substrate 10, and in specific example 2, a metal film 12 made of PB metal particles is deposited on the glass substrate 10. The film 12 is deposited and each side is heated at 10°C/ll1 in air.
Heating was performed at a temperature increase rate of in.

具体例1、zとも前述した実験結果の温度範囲において
金属膜12の酸化と拡散とが観察された。
In both specific examples 1 and z, oxidation and diffusion of the metal film 12 were observed within the temperature range of the experimental results described above.

上記各側とも約1500℃まで昇温加熱して室温域にと
り出し、これらの金属酸化物拡散情況を調べたところ、
つぎのような結果が得られた。
Each side was heated to about 1500°C and brought to room temperature, and the metal oxide diffusion situation was investigated.
The following results were obtained.

具体例1の場合、拡散物であるG e O2の含有量が
約2重量2、その拡散膜厚が201Lmであり、具体例
2の場合、拡散物であるPbOの含有量が約60重量2
、その拡散膜厚が110007i以上であった。
In the case of specific example 1, the content of G e O2, which is a diffused substance, is about 2 weight 2 and the diffusion film thickness is 201 Lm, and in the case of specific example 2, the content of PbO, which is a diffused substance, is about 60 weight 2.
, the diffusion film thickness was 110007i or more.

なお、前述したようにガラス基板10の金属付着面側に
多孔質のガラス層11を形成して上記と同様の具体例を
実施したとき、その多孔質ガラス層11の各種気孔率に
より金属拡散が調整できるようになった。
In addition, as mentioned above, when the porous glass layer 11 is formed on the metal adhesion side of the glass substrate 10 and a specific example similar to the above is implemented, metal diffusion is affected by various porosity of the porous glass layer 11. Now you can adjust it.

S + Cl 4の火炎加水分解反応により生成された
多孔質ガラス層11につき、その気孔率、層厚を例示す
ると、気孔率は65z1層厚は50gmである。
To illustrate the porosity and layer thickness of the porous glass layer 11 produced by the flame hydrolysis reaction of S + Cl 4 , the porosity is 65z and the thickness of one layer is 50 gm.

(発明の効果) 以上説明した通り、本発明方法はガラス基板上に、酸化
物状態における屈折率がそのガラス基板よりも高くなる
金属膜を付着させる工程、上記金属膜をガラス基板に拡
散させる工程、その金属膜を酸化させる工程等からなり
、これらの工程がいずれも実施しやすく、光導液部形成
時の制御性もあり、したがって均一な品質、特性のよい
光導波路が量産性をもって製造できるようになる。
(Effects of the Invention) As explained above, the method of the present invention includes a step of attaching a metal film whose refractive index in an oxide state is higher than that of the glass substrate on a glass substrate, and a step of diffusing the metal film into the glass substrate. , the process of oxidizing the metal film, etc. All of these processes are easy to implement and controllable when forming the optical liquid guide part, making it possible to mass-produce optical waveguides with uniform quality and good characteristics. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の1実施例をその工程順に示した説
明図、第2図は従来の光導波路を示した説明図である。 1011eやガラス基板 11・・・多孔質または不透明なガラス層12・拳参金
属膜 14・・・光導波部 代理人 弁理士 斎 藤 義 雄 ( 第1図 (イ)IIm〒に−IO第 2 図 (づr) mミコ二lニ 34−
FIG. 1 is an explanatory diagram showing an embodiment of the method of the present invention in the order of its steps, and FIG. 2 is an explanatory diagram showing a conventional optical waveguide. 1011e, glass substrate 11... porous or opaque glass layer 12, solid metal film 14... optical waveguide agent patent attorney Yoshio Saito (Figure 1 (a) IIm - IO No. 2 Diagram (zr) m miko 2 l ni 34-

Claims (5)

【特許請求の範囲】[Claims] (1)ガラス基板上に、酸化物状態における屈折率がそ
のガラス基板よりも高くなる金属膜を付着させ、該工程
後、上記金属膜をガラス基板に拡散させる工程と、その
金属膜を酸化させる工程とを任意の順序で実施すること
を特徴とする光導波路の製造方法。
(1) A metal film whose refractive index in an oxide state is higher than that of the glass substrate is deposited on a glass substrate, and after this step, the metal film is diffused into the glass substrate, and the metal film is oxidized. 1. A method for manufacturing an optical waveguide, characterized in that the steps are performed in any order.
(2)ガラス基板上に金属膜を付着させる工程を終えた
後、上記金属膜をガラス基板に拡散させる工程を先哲し
て実施し、その金属膜を酸化させる工程を後行して実施
する特許請求の範囲第1項記載の光導波路の製造方法。
(2) A patent for carrying out the process of diffusing the metal film onto the glass substrate in advance after completing the process of depositing the metal film on the glass substrate, and the process of oxidizing the metal film being carried out afterwards. A method for manufacturing an optical waveguide according to claim 1.
(3)ガラス基板上に金属膜を付着させる工程を終えた
後、上記金属膜を酸化させる工程を先行して実施し、そ
の金属膜をガラス基板に拡散させる工程を後行して実施
する特許請求の範囲第1項記載の光導波路の製造方法。
(3) A patent for carrying out a step of oxidizing the metal film after completing the step of attaching the metal film onto the glass substrate, followed by a step of diffusing the metal film onto the glass substrate. A method for manufacturing an optical waveguide according to claim 1.
(4)ガラス基板上に金属膜を付着させる工程を終えた
後、上記金属膜をガラス基板に拡散させる工程と、その
金属膜を酸化させる工程とを同時に実施する特許請求の
範囲第1項記載の光導波路の製造方法。
(4) After completing the step of attaching the metal film onto the glass substrate, the step of diffusing the metal film onto the glass substrate and the step of oxidizing the metal film are performed simultaneously. A method for manufacturing an optical waveguide.
(5)ガラス基板の少なくとも金属付着面側を多孔質状
態または不透明状態のガラス層としておき、そのガラス
層上に金属膜を付着させる特許請求の範囲第1項ないし
第4項いずれかに記載の光導波路の製造方法。
(5) A method according to any one of claims 1 to 4, in which at least the metal adhesion side of the glass substrate is made into a porous or opaque glass layer, and a metal film is adhered on the glass layer. A method for manufacturing an optical waveguide.
JP59119399A 1984-06-11 1984-06-11 Production of optical waveguide Pending JPS60262108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119399A JPS60262108A (en) 1984-06-11 1984-06-11 Production of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119399A JPS60262108A (en) 1984-06-11 1984-06-11 Production of optical waveguide

Publications (1)

Publication Number Publication Date
JPS60262108A true JPS60262108A (en) 1985-12-25

Family

ID=14760528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119399A Pending JPS60262108A (en) 1984-06-11 1984-06-11 Production of optical waveguide

Country Status (1)

Country Link
JP (1) JPS60262108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114848A (en) * 1997-06-19 1999-01-22 Kyocera Corp Manufacture of optical waveguide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56244U (en) * 1979-06-14 1981-01-06
JPS57211103A (en) * 1981-06-23 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Production for optical waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56244U (en) * 1979-06-14 1981-01-06
JPS57211103A (en) * 1981-06-23 1982-12-24 Nippon Telegr & Teleph Corp <Ntt> Production for optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114848A (en) * 1997-06-19 1999-01-22 Kyocera Corp Manufacture of optical waveguide

Similar Documents

Publication Publication Date Title
JPH07140336A (en) Optical waveguide
JPH0854528A (en) Production of optical waveguide
JPS60262108A (en) Production of optical waveguide
JPH05345619A (en) Production of quartz waveguide type optical part
JP3517848B2 (en) Manufacturing method of optical fiber preform
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JP3245347B2 (en) Manufacturing method of optical waveguide device
JPH02244104A (en) Glass optical wave guide
JPS59137346A (en) Manufacture of glass waveguide
KR100219715B1 (en) Rare earth ion doped optical waveguide manufacturing method
JPS61158303A (en) Formation of quartz optical waveguide
JPH0462644B2 (en)
JPS6039605A (en) Production of optical waveguiding film
JPS60232510A (en) Manufacture of optical waveguide
JPH02203305A (en) Production of nonlinear light guide
JPH06263452A (en) Production of optical waveguide
JPS61210304A (en) Production of optical plane waveguide
JPS62217206A (en) Production of optical waveguide
JPH05288944A (en) Optical waveguide and its production
KR100461874B1 (en) Fabrication of planar waveguide with photosensitivity during FHD process
JPH08136754A (en) Production of optical waveguide
JP3006301B2 (en) Manufacturing method of glass waveguide
JP2603652B2 (en) Optical waveguide manufacturing method
JPH0519128A (en) Production of optical waveguide
JPS62111207A (en) Production of optical waveguide layer