JP3006301B2 - Manufacturing method of glass waveguide - Google Patents

Manufacturing method of glass waveguide

Info

Publication number
JP3006301B2
JP3006301B2 JP22423492A JP22423492A JP3006301B2 JP 3006301 B2 JP3006301 B2 JP 3006301B2 JP 22423492 A JP22423492 A JP 22423492A JP 22423492 A JP22423492 A JP 22423492A JP 3006301 B2 JP3006301 B2 JP 3006301B2
Authority
JP
Japan
Prior art keywords
core
glass layer
glass
porous glass
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22423492A
Other languages
Japanese (ja)
Other versions
JPH0672729A (en
Inventor
利秀 徳永
広明 岡野
敏和 鴨志田
秀夫 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22423492A priority Critical patent/JP3006301B2/en
Publication of JPH0672729A publication Critical patent/JPH0672729A/en
Application granted granted Critical
Publication of JP3006301B2 publication Critical patent/JP3006301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガラス導波路の製造方法
に係り、特に、エッチング性と伝送損失特性を改善した
ものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass waveguide, and more particularly, to a method for improving a etching property and a transmission loss characteristic.

【0002】[0002]

【従来の技術】一般に、ガラス導波路の製造方法は、石
英ガラス基板上、またはシリコン表面に石英ガラスを形
成した基板上に、コアとなるコア用多孔質ガラス層を形
成し、これより反応性イオンエッチング(RIE)等で
コアを形成した後、クラッドとなるクラッド用多孔質ガ
ラス層を火災堆積法で形成して透明ガラス化することに
より行われる。
2. Description of the Related Art In general, a glass waveguide is manufactured by forming a core porous glass layer as a core on a quartz glass substrate or a substrate having quartz glass formed on a silicon surface, and thereby forming a reactive glass layer. After a core is formed by ion etching (RIE) or the like, a porous glass layer for a clad serving as a clad is formed by a fire deposition method and is formed into a transparent glass.

【0003】従来、導波路特性を高めるために、コアパ
ターンを形成する前に、コア用多孔質ガラス層を熱処理
してガラス層のかさ密度を1.9g/cm3 以上となる
ように焼結したり(特開昭61−198107号公
報)、あるいはコア用多孔質ガラス層を熱処理して透明
化して透明ガラス層としたりしていた(特開昭63−6
509号公報)。
Conventionally, in order to improve the waveguide characteristics, a porous glass layer for a core is heat-treated before forming a core pattern, and sintered so that the bulk density of the glass layer becomes 1.9 g / cm 3 or more. (Japanese Unexamined Patent Publication (Kokai) No. 61-198107), or a method in which a porous glass layer for a core is heat-treated to be transparent to form a transparent glass layer (Japanese Unexamined Patent Publication (Kokai) No. 63-6).
509).

【0004】通常、このようなガラス導波路にあって
は、コアは断面矩形状に形成するが、その寸法は、シン
グルモード用ガラス導波路では約8×8μmであり、マ
ルチモード用ガラス導波路では約50×50μmとな
る。このような寸法のコアパターンをエッチングするに
当って、コア用ガラス層がかさ密度1.9g/cm3
上であったり、透明ガラス化している場合には、RIE
等のエッチングに要する時間は、深さ8μmのときで約
1時間、深さ50μmのときで約7時間要していた。ま
た、このときのエッチング面は粗れており、そのためガ
ラス導波路の損失が比較的大きかった。
Normally, in such a glass waveguide, the core is formed in a rectangular shape in cross section, and its size is about 8 × 8 μm in a single mode glass waveguide, and the size is about 8 × 8 μm. Is about 50 × 50 μm. In etching a core pattern having such dimensions, if the core glass layer has a bulk density of 1.9 g / cm 3 or more or is made of transparent glass, RIE is performed.
The time required for such etching required about 1 hour at a depth of 8 μm and about 7 hours at a depth of 50 μm. Further, the etched surface at this time was rough, so that the loss of the glass waveguide was relatively large.

【0005】[0005]

【発明が解決しようとする課題】上述したように、エッ
チングするコア用ガラス層のかさ密度を1.9g/cm
3 以上としたり、コア用ガラス層を透明ガラス化したり
する従来のガラス導波路の製造方法では、コアパターン
形成のために要するエッチング時間が長く作業性が悪い
という欠点があった。また、エッチング面の状態が悪く
伝送損失も大きいという問題もあった。
As described above, the bulk density of the core glass layer to be etched is 1.9 g / cm.
The conventional method of manufacturing a glass waveguide in which the glass layer is made 3 or more or the core glass layer is made transparent is disadvantageous in that the etching time required for forming the core pattern is long and the workability is poor. There is also a problem that the state of the etched surface is poor and transmission loss is large.

【0006】本発明の目的は、前記した従来技術の欠点
を解消し、エッチング時間が短く量産性に優れ、かつエ
ッチング面の状態に依存しない低損失なガラス導波路の
製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art, and to provide a method of manufacturing a glass waveguide which has a short etching time, is excellent in mass productivity, and has a low loss independent of the state of an etched surface. is there.

【0007】[0007]

【課題を解決するための手段】本発明のガラス導波路の
製造方法は、石英ガラス基板上またはシリコン表面に石
英ガラスを形成した基板上に、石英系のコア用多孔質ガ
ラス層を形成し、熱処理により多孔質状態のままコア用
多孔質ガラス層のかさ密度を高めた後、このかさ密度を
高めたコア用多孔質ガラス層からコアパターンを形成
し、コアパターン形成後、これを覆うように石英系のク
ラッド用多孔質ガラス層を形成し、コアパターンを形成
するクラッド用多孔質ガラス層及びコア用多孔質ガラス
層を同時に透明ガラス化するようにしたものである。こ
の場合において、熱処理により高めたコア用多孔質ガラ
スのかさ密度が0.8〜1.5g/cm3 であることが
好ましい。
According to a method of manufacturing a glass waveguide of the present invention, a porous silica glass core layer is formed on a quartz glass substrate or a substrate having quartz glass formed on a silicon surface. After increasing the bulk density of the porous glass layer for the core in a porous state by heat treatment, a core pattern is formed from the porous glass layer for the core having the increased bulk density. A quartz-based porous glass layer for a clad is formed, and a porous glass layer for a clad and a porous glass layer for a core for forming a core pattern are simultaneously vitrified. In this case, it is preferable that the bulk density of the core porous glass increased by the heat treatment is 0.8 to 1.5 g / cm 3 .

【0008】[0008]

【作用】コアパターンの形成を透明ガラス状態もしくは
これに近い状態で行うと、導波路の損失は非常に高損失
となる。この原因として、透明ガラス状態もしくはこれ
に近い状態の場合は、走査型電子顕微鏡測定によりエッ
チング面が粗れていることが判定でき、この表面が次工
程のクラッドガラス形成後にも均一化されていないため
と考えられる。本発明でも当然エッチング面は粗れてい
る。しかし、かさ密度の違いはあるものの、多孔質ガラ
スからなるコアパターン上に、同じく多孔質ガラスから
なるクラッドを形成するので、コアのエッチング面の状
態が悪くても、透明ガラス時にお互いが融合して密着性
がよくなるため、散乱損失が低減される。また、コアパ
ターンの形成が、透明ガラス状態もしくはこれに近い状
態で行われるのではなく、多孔質ガラス状態で行われる
ため、エッチング時間が短くなる。
When the core pattern is formed in a transparent glass state or a state close thereto, the loss of the waveguide becomes very high. As a cause, in the case of a transparent glass state or a state close to this, it can be determined that the etched surface is rough by scanning electron microscope measurement, and this surface is not uniform even after the formation of the clad glass in the next step. It is thought to be. In the present invention, of course, the etched surface is rough. However, although there is a difference in bulk density, a clad made of porous glass is also formed on a core pattern made of porous glass, so even if the etched surface of the core is in a bad state, it fuses with each other during transparent glass. As a result, the scattering loss is reduced. Further, since the formation of the core pattern is not performed in a transparent glass state or a state close to the transparent glass state but in a porous glass state, the etching time is shortened.

【0009】図2に示すように、かさ密度が0.6〜
0.7g/cm3 ではエッチング時間は5分位と早い
が、エッチング面の粗れが大きく、透明ガラス化時に界
面に微小の気泡が発生し、損失が増加する。また1.7
g/cm3 ではエッチング時間が35分位かかり、大巾
な時間短縮にはならない。さらに2.0g/cm3 では
透明ガラスの場合とほぼ同等の損失0.09dB/cm
であった。以上のことから、製造後にコア界面に気泡が
なく、かつ従来よりも1/2以下の時間でエッチングで
きる条件を見出すと、コア用多孔質ガラス層のかさ密度
は0.8〜1.5g/cm3 の範囲が適正である。
As shown in FIG. 2, the bulk density is 0.6 to
At 0.7 g / cm 3 , the etching time is as fast as about 5 minutes, but the roughness of the etched surface is large, and fine bubbles are generated at the interface during the vitrification, resulting in an increase in loss. Also 1.7
At g / cm 3 , the etching time takes about 35 minutes, and the time is not significantly reduced. Further, at 2.0 g / cm 3 , the loss is 0.09 dB / cm, almost the same as that of the transparent glass.
Met. From the above, when it is found that there is no air bubble at the core interface after the production and that the etching can be performed in less than half of the conventional time, the bulk density of the core porous glass layer is 0.8 to 1.5 g / A range of cm 3 is appropriate.

【0010】[0010]

【実施例】【Example】

[実施例]図1に本発明の実施例によるガラス導波路の
製造工程を示す。厚さ1mm、外径3インチの石英ガラ
ス基板2上に火災堆積法でコアとなるコア用多孔質ガラ
ス層1を40μm形成した(A)。多孔質ガラス層1の
ガラス組成はTiO2 −P2 5 −SiO2 系ガラスで
ある。このときのかさ密度は0.45g/cm3 であっ
た。
FIG. 1 shows a manufacturing process of a glass waveguide according to an embodiment of the present invention. On a quartz glass substrate 2 having a thickness of 1 mm and an outer diameter of 3 inches, a core porous glass layer 1 serving as a core was formed to a thickness of 40 μm by a fire deposition method (A). Glass composition of the porous glass layer 1 is a TiO 2 -P 2 O 5 -SiO 2 based glass. The bulk density at this time was 0.45 g / cm 3 .

【0011】コア用多孔質ガラス層1の堆積した基板2
をHeガス中で1050℃で熱処理して、多孔質ガラス
層1を多孔質ガラス状態のまま、かさ密度を高くして高
かさ密度コア用多孔質ガラス層3に変えた(B)。熱処
理後のかさ密度は1、1g/cm3 であった。
Substrate 2 on which core porous glass layer 1 is deposited
Was heat-treated at 1050 ° C. in He gas to change the porous glass layer 1 to a porous glass layer 3 for a high bulk density core by increasing the bulk density while maintaining the porous glass state (B). The bulk density after the heat treatment was 1.1 g / cm 3 .

【0012】この高かさ密度用多孔質ガラス層3の表面
にスパッタ法でタングステンシリサイド膜(WSi膜)
を1μm形成し、しかる後、ホトレジストを塗布後マス
クアライナでコアパターンを転写したのち、RIEで先
ずWSi膜をエッチングし、それをマスクにして高かさ
密度コア用多孔質ガラス層3をエッチングして、コアパ
ターン4を形成した(C)。このときのコアパターンは
直線とし、その断面矩形状寸法は約8×8μmとしてシ
ングルモード用とした。
A tungsten silicide film (WSi film) is formed on the surface of the porous glass layer 3 for high bulk density by sputtering.
Then, after applying a photoresist and transferring the core pattern with a mask aligner, the WSi film is first etched by RIE, and the porous glass layer 3 for a high bulk density core is etched using the WSi film as a mask. Then, a core pattern 4 was formed (C). At this time, the core pattern was a straight line, and its cross-sectional rectangular shape was about 8 × 8 μm for single mode.

【0013】しかる後、火災堆積法でクラッドとなるク
ラッド用多孔質ガラス層5を50μm形成した(D)。
多孔質ガラス層5のガラス組成はP2 5 −B2 3
SiO2 系ガラスである。
After that, a porous glass layer 5 for cladding was formed to a thickness of 50 μm by a fire deposition method (D).
Glass composition of the porous glass layer 5 is P 2 O 5 -B 2 O 3 -
It is a SiO 2 glass.

【0014】最後に、1300℃のHeガス雰囲気中
で、多孔質ガラス層からなるコアパターン4及びクラッ
ド用多孔質ガラス層5を同時に透明ガラス化してコア
6、クラッド層7を形成してガラス導波路を製造した
(E)。
Finally, in a He gas atmosphere at 1300 ° C., the core pattern 4 made of a porous glass layer and the porous glass layer for cladding 5 are simultaneously vitrified to form a core 6 and a cladding layer 7 to form a glass conductor. Waveguides were produced (E).

【0015】このように製造したシングルモードの直線
導波路の伝送損失は0.02dB/cmと非常に低損失
であった。本実施例におけるエッチング時間は15分間
で、従来の1時間に比べ1/4に短縮できた。
The transmission loss of the single-mode linear waveguide manufactured as described above was as low as 0.02 dB / cm. The etching time in the present example was 15 minutes, which was reduced to 1/4 compared to the conventional one hour.

【0016】[比較例]比較のために、コア用多孔質ガ
ラス層を透明ガラス化してからエッチングした点を除
き、他は全て実施例と同様な工程でガラス導波路を製造
した。導波路の損失は0.1dB/cmと高損失であっ
た。
Comparative Example For comparison, a glass waveguide was manufactured in the same manner as in the example except that the porous glass layer for the core was transparently vitrified and then etched. The loss of the waveguide was as high as 0.1 dB / cm.

【0017】[0017]

【発明の効果】本発明によれば、エッチング時間の短縮
が図れることから量産性に向き、かつ透明ガラス時にコ
ア及びクラッドが互に融合して密着性がよくなるため低
損失なガラス導波路を製造することができる。また、エ
ッチング時間の短縮により、マルチモード用ガラス導波
路の製造にも適用できる。
According to the present invention, a low loss glass waveguide is produced because the core and the clad are fused together to improve the adhesiveness when the transparent glass is used, because the etching time can be shortened and the core and the clad are fused to each other when the transparent glass is used. can do. Further, by shortening the etching time, it can be applied to the production of a multi-mode glass waveguide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるガラス導波路の製造工程
図。
FIG. 1 is a manufacturing process diagram of a glass waveguide according to an embodiment of the present invention.

【図2】かさ密度とエッチング時間の関係を示す特性
図。
FIG. 2 is a characteristic diagram showing a relationship between a bulk density and an etching time.

【符号の説明】[Explanation of symbols]

1 コア用多孔質ガラス層 2 石英ガラス基板 3 高かさ密度コア用多孔質ガラス層 4 コアパターン(エッチング後のコア用多孔質ガラス
層) 5 クラッド用多孔質ガラス層 6 コア 7 クラッド層
Reference Signs List 1 porous glass layer for core 2 quartz glass substrate 3 porous glass layer for high bulk density core 4 core pattern (porous glass layer for core after etching) 5 porous glass layer for cladding 6 core 7 cladding layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鴨志田 敏和 茨城県日立市日高町5丁目1番1号 日 立電線株式会社オプトロシステム研究所 内 (72)発明者 大槻 秀夫 茨城県日立市日高町5丁目1番1号 日 立電線株式会社オプトロシステム研究所 内 (58)調査した分野(Int.Cl.7,DB名) C03B 19/14 C03B 20/00 C03B 37/00 - 37/16 G02B 6/12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshikazu Kamoshida 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Within the Opto-System Research Laboratories, Inc. (72) Inventor Hideo Otsuki Hitachi, Ibaraki Japan 5-1-1 Takamachi Inside Opto-System Laboratories, Hitachi, Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) C03B 19/14 C03B 20/00 C03B 37/00-37 / 16 G02B 6/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石英系の基板上に石英系のコア用多孔質ガ
ラス層を形成し、熱処理により多孔質状態のまま上記コ
ア用多孔質ガラス層のかさ密度を高めた後、コアパター
ンを形成し、コアパターン形成後、石英系のクラッド用
多孔質ガラス層を形成し、コア用多孔質ガラス層で形成
されたコアパターン及びクラッド用多孔質ガラス層を同
時に透明ガラス化することを特徴とするガラス導波路の
製造方法。
1. A quartz-based porous glass layer for a core is formed on a quartz-based substrate, and the bulk density of the porous glass layer for a core is increased by heat treatment in a porous state, and then a core pattern is formed. Then, after forming the core pattern, a quartz-based porous glass layer for cladding is formed, and the core pattern formed by the porous glass layer for core and the porous glass layer for cladding are simultaneously vitrified. A method for manufacturing a glass waveguide.
【請求項2】熱処理により高めたコア用多孔質ガラス層
のかさ密度が0.8〜1.5g/cm3 の範囲にあるこ
とを特徴とするガラス導波路の製造方法。
2. A method for producing a glass waveguide, wherein the bulk density of the core porous glass layer increased by heat treatment is in the range of 0.8 to 1.5 g / cm 3 .
JP22423492A 1992-08-24 1992-08-24 Manufacturing method of glass waveguide Expired - Fee Related JP3006301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22423492A JP3006301B2 (en) 1992-08-24 1992-08-24 Manufacturing method of glass waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22423492A JP3006301B2 (en) 1992-08-24 1992-08-24 Manufacturing method of glass waveguide

Publications (2)

Publication Number Publication Date
JPH0672729A JPH0672729A (en) 1994-03-15
JP3006301B2 true JP3006301B2 (en) 2000-02-07

Family

ID=16810604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22423492A Expired - Fee Related JP3006301B2 (en) 1992-08-24 1992-08-24 Manufacturing method of glass waveguide

Country Status (1)

Country Link
JP (1) JP3006301B2 (en)

Also Published As

Publication number Publication date
JPH0672729A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP3006301B2 (en) Manufacturing method of glass waveguide
JPH1039151A (en) Optical waveguide and its production
JPH05215929A (en) Manufacture of glass waveguide
JPH05188231A (en) Production of optical waveguide
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JPH09222525A (en) Production of optical waveguide
JPH05297236A (en) Manufacture of planar optical waveguide and resulted device
JPH0843654A (en) Silica glass waveguide and its production
JP2001215352A (en) Method for manufacturing quartz base glass waveguide having three-dimensional core waveguide
JP3208744B2 (en) Manufacturing method of optical waveguide
JP3031066B2 (en) Method for manufacturing oxide film and method for manufacturing optical waveguide
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JP2927597B2 (en) Manufacturing method of glass waveguide
JP2002162526A (en) Optical waveguide and method for producing the same
JP3809792B2 (en) Manufacturing method of optical waveguide
JPH05257021A (en) Production of optical waveguide
JP2570822B2 (en) Manufacturing method of optical waveguide
JPH0875940A (en) Production of optical waveguide
JPS6039605A (en) Production of optical waveguiding film
JPH05150129A (en) Production of glass waveguide
JPH06331844A (en) Quartz optical waveguide and its production
JPH08254625A (en) Production of thin film for optical waveguide
JP2002196165A (en) Glass waveguide and method for manufacturing the same
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
KR100277362B1 (en) Optical waveguide forming method having dummy layer and optical waveguide by the method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees