JPS60261596A - Biological sewage treating apparatus - Google Patents

Biological sewage treating apparatus

Info

Publication number
JPS60261596A
JPS60261596A JP11872384A JP11872384A JPS60261596A JP S60261596 A JPS60261596 A JP S60261596A JP 11872384 A JP11872384 A JP 11872384A JP 11872384 A JP11872384 A JP 11872384A JP S60261596 A JPS60261596 A JP S60261596A
Authority
JP
Japan
Prior art keywords
sludge
tank
denitrification
nitrification
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11872384A
Other languages
Japanese (ja)
Inventor
Koji Ishizaki
石崎 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11872384A priority Critical patent/JPS60261596A/en
Publication of JPS60261596A publication Critical patent/JPS60261596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To improve the efficiency of treatment and denitrification by providing an intermittent aeration vessel and a separation vessel in parallel, and connecting the top part of the aeration vessel with a sludge downpipe through an overflow pipe. CONSTITUTION:An intermittent aeration vessel 12 and a separation vessel 13 are provided in parallel, and an organic sludge introducing means 14 and an intermittent air introducing means 16 are furnished to the aeration vessel 12. The middle part of the separation vessel 13 is communicated with the lower part of the aeration vessel 12 by a sludge circulating line 15, and the top part of the aeration vessel 12 is connected to a sludge downpipe 22 by an overflow pipe 21 to send the sludge in the aeration vessel 12 into the sludge downpipe 22 of the separation vessel 13. Consequently, the equipment is made compact, and the efficiency of treatment and denitrification is improved.

Description

【発明の詳細な説明】 本発明はアンモニア性窒素を含む有機性汚水の処理装置
に関し、詳細には設備がコンパクトであるにもかかわら
ず窒素除去効率の高い生物学的汚水処理装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment device for organic sewage containing ammonia nitrogen, and more specifically to a biological sewage treatment device that has compact equipment but has high nitrogen removal efficiency. .

有機性汚水中に含まれるアンモニア性窒素を除去するに
当たっては生物学的脱窒法が広く利用されている。生物
学的脱窒法とは、アンモニア性窒素(NHa−N)を硝
化菌の働きによって好気性雰囲気中で硝酸性窒素(NO
X−N)へ酸化すると共に生成した上記硝酸性窒素を脱
窒菌の働きによって嫌気性雰囲気中でN2ガスに還元す
るものであり、前者は有機性汚水を曝気することにより
進行し、−劣後者の反応を進行させるに当たってはむし
ろ曝気条件を断ち逆に水素供ケ体(メタノール等)を加
えなければならないほどであるとされていた。そこでこ
の様な不経済性を解消し生物学的脱窒法を経済的に実施
するシステムとして有機性汚水(原水ということもある
)中のBOD成分を水素供与体として利用する方式が提
案Xれ実用化されている。第1図はこの様な汚水処理シ
ステムの一例を示すフロー説明図で、該システムは上流
側に脱窒槽l、下流側に硝化槽2を設け、両者を順流ラ
イン3及び返送ライン4によって接続することにより硝
化されたものをより完全に脱窒しようとしている。この
フローにおける物流を説明すると、脱窒槽1への有機性
汚水りの流入量をQとした場合、もっとも効果的な処理
効率(処理総量と浄化率のかね合い)をあげようとすれ
ば、その4倍量(4Q)程度の汚水が脱窒槽1から硝化
槽2へ順流ライン3を通して送られ、一方硝化槽2から
脱窒槽lへは3倍量(3Q)程度の汚水が返送ライン4
を通して戻されると共に流入量と略同等量(Q)の処理
水を硝化槽2から排出して沈降分離槽6に導入しここで
汚泥Mと上澄液Wに分離し前者の一部を脱窒槽へ返送し
残部を焼却等の処理に付すと共に後者を放流している。
Biological denitrification methods are widely used to remove ammonia nitrogen contained in organic wastewater. Biological denitrification method converts ammonia nitrogen (NHa-N) into nitrate nitrogen (NO) in an aerobic atmosphere by the action of nitrifying bacteria.
The nitrate nitrogen produced at the same time as being oxidized to In order to allow the reaction to proceed, it was considered that the aeration conditions had to be cut off and a hydrogen donor (such as methanol) had to be added instead. Therefore, as a system to solve this uneconomical problem and economically implement the biological denitrification method, a method using the BOD component in organic wastewater (sometimes called raw water) as a hydrogen donor has been proposed and put into practical use. has been made into FIG. 1 is a flow diagram showing an example of such a sewage treatment system, in which a denitrification tank 1 is provided on the upstream side and a nitrification tank 2 is provided on the downstream side, and the two are connected by a downflow line 3 and a return line 4. By doing so, we are trying to more completely denitrify the nitrified material. To explain the logistics in this flow, let Q be the amount of organic sewage flowing into denitrification tank 1, and if you want to increase the most effective treatment efficiency (balance between total treatment amount and purification rate), About 4 times the amount (4Q) of wastewater is sent from the denitrification tank 1 to the nitrification tank 2 through the downflow line 3, while about 3 times the amount (3Q) of wastewater is sent from the nitrification tank 2 to the denitrification tank 1 through the return line 4.
At the same time, treated water in an amount (Q) approximately equivalent to the inflow amount is discharged from the nitrification tank 2 and introduced into the sedimentation separation tank 6, where it is separated into sludge M and supernatant liquid W, and a part of the former is sent to the denitrification tank. The remaining portion is incinerated or otherwise disposed of, and the latter is discharged.

即ち有機性汚水りは硝化槽2と脱窒槽lの間を循環する
間に硝化槽2において硝化され、これが脱窒槽lに返送
されて有機性汚水り中のBOD成分を水素源とする脱窒
反応を受け、更に順流ライン3を経て硝化槽2に戻り処
理水として排出されるものである。
That is, organic sewage is nitrified in nitrification tank 2 while circulating between nitrification tank 2 and denitrification tank 1, and is returned to denitrification tank 1 where it is denitrified using the BOD component in the organic sewage as a hydrogen source. After undergoing the reaction, the water is further returned to the nitrification tank 2 via the downstream line 3 and discharged as treated water.

1 しかるに上記システムにおいては硝化槽における硝
化反応を進行させるために槽内の溶存酸素(D O)を
2rng/Jlj以上に維持する必要があり、硝化槽2
からの循環液中にはDOが必然的に存在することとなる
。従って循環比を多くして窒素除去率を高めようとすれ
ば脱窒槽l内に多量のDOが流入することになり、これ
が水素供与体として利用されるべき有機物の一部を消費
してしまうのでそれだけ脱窒槽における反応速度を低下
させ、更にはDoの存在が嫌気性の機能を損なうことに
なるので、循環比を増すことには制約がある。そして通
常の循環比は3程度であり、このような場合の窒素除去
率はせいぜい75〜80%止りであり、改善の余地が多
いものと言わざるを得なかった。
1 However, in the above system, it is necessary to maintain the dissolved oxygen (D O) in the nitrification tank at 2 rng/Jlj or more in order to advance the nitrification reaction in the nitrification tank.
DO will inevitably be present in the circulating fluid. Therefore, if you try to increase the nitrogen removal rate by increasing the circulation ratio, a large amount of DO will flow into the denitrification tank, and this will consume some of the organic matter that should be used as a hydrogen donor. Since the reaction rate in the denitrification tank is reduced accordingly, and the presence of Do impairs the anaerobic function, there are restrictions on increasing the circulation ratio. The normal circulation ratio is about 3, and the nitrogen removal rate in such cases is at most 75 to 80%, which leaves much room for improvement.

一方小規模な特定区域で発生した汚水は、わざわざ遠方
の大規模処理場へ送らずに近くの小規模処理場において
処理すればよいという考えがあり、この様な用途に適用
する汚水処理装置としては小型で維持管理の容易なもの
が要望Xれる。この様な観点から硝化・脱窒反応を単一
槽で行なうことのできる装置について研究が進められ、
実開昭58−171300号に示す様な連続流入回分式
の汚水処理装置が提案されている。即ち該装置は、反応
槽を有機性汚水導入部と反応部に仕切る(但し連通状態
は維持する)と共に、反応部には複数の散気管及び回動
式排水管を設け、散気管から空気を間欠的に吹込むこと
によって同一反応部内で硝化・脱窒を行なうものである
On the other hand, there is an idea that sewage generated in a small-scale specific area can be treated at a nearby small-scale treatment plant without having to send it to a large-scale treatment plant far away. There is a demand for something that is small and easy to maintain. From this point of view, research is progressing on devices that can perform nitrification and denitrification reactions in a single tank.
A continuous inflow batch type sewage treatment apparatus as shown in Utility Model Application No. 58-171300 has been proposed. In other words, this device divides the reaction tank into an organic sewage introduction part and a reaction part (however, the communication state is maintained), and the reaction part is equipped with a plurality of aeration pipes and rotating drainage pipes, and air is discharged from the aeration pipe. Nitrification and denitrification are carried out in the same reaction section by intermittent blowing.

この様な汚水処理装置を用いた場合は有機性汚水あるい
は汚泥を返送する必要がないのでその為のポンプ等が不
必要であり装置の維持管理が容易である。又曝気、脱窒
及び沈降分離を1つの槽で行なうので第1図例の従来装
置に比べて設備が一部コンパクトになるという長所を有
している。しかるに上記処理装置においては反応槽への
有機性汚水の導入を中断させることなく継続しつつ曝気
及び沈澱を行なうので沈澱が完了するまでに反応槽内の
液量が増加し続ける。一方反応槽内の有機性汚水を十分
に曝気してから汚泥分を沈降させようとすれば相当の時
間が必要となり、曝気、沈降及び上澄水の排出からなる
処理サイクルの所要時間は相当長くにも及ぶ。従って反
応槽は少なくとも3〜4時間分の有機性汚水導入量を受
容し得る容積とする必要がある。又沈澱工程中に行なわ
れる脱窒反応は、水素源である有機性汚水(BOD成分
)が槽の一方側からのみ流入すると共に槽内が静置状態
である為に硝化液とBOD#を分の接触が十分に行なわ
れない。
When such a sewage treatment device is used, there is no need to return organic sewage or sludge, so a pump or the like for this purpose is unnecessary, and the maintenance of the device is easy. Furthermore, since aeration, denitrification and sedimentation separation are carried out in one tank, it has the advantage that the equipment is partially more compact than the conventional apparatus shown in FIG. However, in the above-mentioned treatment apparatus, aeration and precipitation are performed while the introduction of organic wastewater into the reaction tank is continued without interruption, so the amount of liquid in the reaction tank continues to increase until the precipitation is completed. On the other hand, if you try to fully aerate the organic sewage in the reaction tank and then settle the sludge, it will take a considerable amount of time, and the time required for the treatment cycle consisting of aeration, sedimentation, and discharge of supernatant water will be considerably longer. It also extends. Therefore, the reaction tank must have a volume that can accommodate the amount of organic sewage introduced for at least 3 to 4 hours. In addition, the denitrification reaction that takes place during the precipitation process is difficult to separate into nitrified liquid and BOD# because organic wastewater (BOD component), which is the hydrogen source, flows only from one side of the tank and the tank is left standing. insufficient contact.

本発明はこうした事情に着目してなされたものであり、
設備をコンパクトにすると共に処理効率殊に脱窒率を向
−Lさせ得る様な生物学的汚水処理装置を提供しようと
するものである。
The present invention has been made focusing on these circumstances,
It is an object of the present invention to provide a biological sewage treatment device that can make the equipment compact and improve the treatment efficiency, particularly the denitrification rate.

しかして上記目的を達成した本発明の汚水処理装置は、
間欠的曝気槽と分離槽が併設され、前記間欠的曝気槽に
は有機性汚水導入手段及び間欠的に空気を導入する手段
を設け、他方分離槽には汚泥下降管を設けると共に頂部
には上澄液排出ライン、中間部からは汚泥流入部を介し
て汚泥循環ラインを引出し該汚泥循環ラインを前記間欠
的曝気槽の下部へ再導入する循環手段を設け、更に間欠
的曝気槽の頂部と前記汚泥下降管をオーバーフロー管で
連結し、間欠的曝気槽の汚泥を分離槽の汚泥下降管に流
入させる構造とした点に要旨を有するものである。
The sewage treatment equipment of the present invention, which has achieved the above object, has the following features:
An intermittent aeration tank and a separation tank are installed together, and the intermittent aeration tank is provided with means for introducing organic sewage and a means for intermittently introducing air, while the separation tank is provided with a sludge downpipe and an upper pipe at the top. A clear liquid discharge line, a circulation means for drawing out a sludge circulation line from the intermediate part via a sludge inlet and reintroducing the sludge circulation line to the lower part of the intermittent aeration tank, and furthermore, The gist is that the sludge descending pipes are connected by an overflow pipe, and the sludge from the intermittent aeration tank flows into the sludge descending pipe of the separation tank.

以下図面に沿って本発明の構成並びに作用効果を説明す
るが、図例の装置は本発明を限定するものではなく、前
・後記の趣旨に徴して適宜設計変更を加えること等は全
て本発明の技術的範囲に含まれる。
The configuration and effects of the present invention will be explained below with reference to the drawings, but the device shown in the drawings is not intended to limit the present invention, and any design changes that may be made as appropriate in keeping with the spirit of the preceding and following statements are within the scope of the present invention. included in the technical scope of

第2図は本発明に係る汚水処理装置を示す断面説明図で
、12は硝化−脱窒槽(間欠的曝気槽)、13は分離槽
、14は有機性汚水導入ライン、15は循環汚泥導入ラ
イン、16は空気導入ライン、17は第1汚泥下降管、
18は上澄液排出ライン、19は汚泥流入部、20は汚
泥抜出管、21はオーバーフロー管、22は第2汚泥下
降管を夫々示し、以下本構成について更に詳細に述べる
FIG. 2 is a cross-sectional explanatory diagram showing the sewage treatment equipment according to the present invention, in which 12 is a nitrification-denitrification tank (intermittent aeration tank), 13 is a separation tank, 14 is an organic sewage introduction line, and 15 is a circulating sludge introduction line. , 16 is an air introduction line, 17 is a first sludge descending pipe,
Reference numeral 18 indicates a supernatant liquid discharge line, 19 indicates a sludge inlet, 20 indicates a sludge discharge pipe, 21 indicates an overflow pipe, and 22 indicates a second sludge descending pipe, and the present structure will be described in more detail below.

汚水処理装置Sは硝化・脱窒槽12と分離槽13を併設
して構成され、硝化Φ脱窒槽12には下端部が拡径して
開口する第1汚泥下降管17の導入側端に循環汚泥導入
ライン15を臨接すると共に該循環汚泥導入ライン15
に有機性汚水導入ライン14を接続し、珪つ該導入ライ
ン15に介設されるエジェクタ23には空気導入ライン
16を接続している。尚汚水導入ライン14.循環汚泥
導入ライン15及び空気導入ライン16の一部若しくは
全部を槽底部に直接々続してもよい。又分離槽13の略
中央部には上部が開口し下端部が拡径して開口する第2
汚泥下降管22が配設されると共に分離槽13の高さ方
向中間部に第2汚泥下降管22を囲む様に樋状の汚泥流
入部19を設け、且つ該汚泥流入部19から引出された
汚泥循環ライン15aは循環ポンプP2を介して循環汚
泥導入ライン15に接続されている。そして分離槽13
の頂部には処理済みの上澄層が形成されるので、これを
溢流して排出していく為の溢流糟24を設けると共に、
硝化O脱窒槽12の頂部であって分離槽13の溢流水位
より高い部位と前記第2汚泥下降管22をオーバーフロ
ー管21で連結している。又分離槽13には汚泥流入部
19より低い位置に汚泥抜出管20を設けている。尚第
2汚泥下降管22を、上澄層を通り抜けて槽底部に到達
する様に設けているのは硝化・脱窒槽12からのオーバ
ーフロー汚泥によって上澄層を乱さない為であり、従っ
て第2汚泥下降管22は槽壁に沿って又は槽外を通って
槽底部に連通されるものであってもよい。
The sewage treatment equipment S is configured with a nitrification/denitrification tank 12 and a separation tank 13, and the nitrification/denitrification tank 12 has circulating sludge at the introduction side end of a first sludge downpipe 17 whose lower end is enlarged in diameter and opened. Adjacent to the introduction line 15, the circulating sludge introduction line 15
An organic sewage introduction line 14 is connected to the introduction line 15, and an air introduction line 16 is connected to the ejector 23 interposed in the introduction line 15. Furthermore, sewage introduction line 14. Part or all of the circulating sludge introduction line 15 and the air introduction line 16 may be directly connected to the bottom of the tank. Also, approximately in the center of the separation tank 13 is a second tank which is open at the top and expanded in diameter at the bottom.
A sludge descending pipe 22 is disposed, and a gutter-shaped sludge inlet 19 is provided in the middle part of the separation tank 13 in the height direction so as to surround the second sludge descending pipe 22. The sludge circulation line 15a is connected to the circulation sludge introduction line 15 via a circulation pump P2. And separation tank 13
Since a treated supernatant layer is formed at the top of the tank, an overflow tank 24 is provided to overflow and discharge the supernatant layer, and
An overflow pipe 21 connects the top of the nitrification O denitrification tank 12 and a portion higher than the overflow water level of the separation tank 13 to the second sludge descending pipe 22 . Further, the separation tank 13 is provided with a sludge extraction pipe 20 at a position lower than the sludge inflow section 19. The reason why the second sludge descending pipe 22 is provided to pass through the supernatant layer and reach the bottom of the tank is to prevent the supernatant layer from being disturbed by the overflow sludge from the nitrification/denitrification tank 12. The sludge downcomer pipe 22 may be communicated with the tank bottom along the tank wall or through the outside of the tank.

上記の様な汚水処理装置Sを用いて有機性汚水り中の窒
素を除去するに当たっては、まず循環ポンプP2を停止
させている状態でポンプP1を運転し、硝化・脱窒槽1
2に有機性汚水りを導入し、同種12をあふれた汚水り
はオーバーフロー管21を通して分離槽13に入る。次
いでポンプP1を停止し、更にタイマー10によって電
磁弁25を開放すると共に循環ポンプP2を始動させる
と、汚泥流入部19から抜出された汚泥(運転当初は未
処理状態の汚水)が循環ポンプP2を通ってエジェクタ
23に至り空気を巻き込みつつ導入ライン15及び第1
汚泥下降管17内を降下して硝化φ脱窒槽12内に導入
される。そして循環汚泥の導入によって硝化・脱窒槽1
2内の汚泥レベルが高まり、あふれた汚泥はオーバーフ
ロー管21を通して第2汚泥下降管22内に至りサイフ
オン作用によって第2汚泥下降管22内を降下し底部か
ら分離槽13内に導入され以下この様な循環を繰り返す
が、この間断しい汚水りの導入は行なわない。この様に
汚水処理装置S内の汚泥を循環させることによって硝化
Φ脱窒槽12内は曝気状態(好気性雰囲気)となり硝化
菌の働きによって硝化反応が進行する。又硝化・脱窒槽
12内の溶存酸素量が上昇するにつれて分離槽13内の
溶存酸素量も上昇するのでここでも若干の硝化反応が進
行する。尚硝化・脱窒槽を深い槽にしておけば曝気効果
が高まって硝化効率が向トする。
When removing nitrogen from organic sewage using the sewage treatment equipment S as described above, first operate the pump P1 while the circulation pump P2 is stopped, and then operate the nitrification/denitrification tank 1.
Organic sewage is introduced into 2, and the sewage overflowing the same type 12 enters a separation tank 13 through an overflow pipe 21. Next, when the pump P1 is stopped and the solenoid valve 25 is opened by the timer 10 and the circulation pump P2 is started, the sludge extracted from the sludge inlet 19 (untreated sewage at the beginning of operation) is transferred to the circulation pump P2. through the inlet line 15 and the first ejector 23 while drawing in air.
The sludge descends through the downcomer pipe 17 and is introduced into the nitrification φ denitrification tank 12 . Then, by introducing circulating sludge, nitrification/denitrification tank 1
As the sludge level in 2 increases, the overflowing sludge passes through the overflow pipe 21 and enters the second sludge downcomer pipe 22, descends inside the second sludge downcomer pipe 22 by the siphon action, and is introduced into the separation tank 13 from the bottom, and the following is how it is. This cycle will be repeated, but the continuous introduction of sewage will not be carried out. By circulating the sludge in the sewage treatment apparatus S in this manner, the inside of the nitrification Φ denitrification tank 12 is brought into an aerated state (aerobic atmosphere), and the nitrification reaction progresses due to the action of nitrifying bacteria. Furthermore, as the amount of dissolved oxygen in the nitrification/denitrification tank 12 increases, the amount of dissolved oxygen in the separation tank 13 also increases, so that a slight nitrification reaction proceeds here as well. If the nitrification/denitrification tank is deep, the aeration effect will be increased and the nitrification efficiency will be improved.

汚泥循環を繰り返して硝化反応がある程度進行すると、
タイマー10によって電磁弁25を閉鎖して空気の巻き
込みを停止すると共にポンプP1を稼動して新しい有機
性汚水りを導入する。即ち硝化・脱窒内の曝気が停止さ
れると共にBOD成分が増加しはじめて嫌気性雰囲気が
形成yれ有機性汚水り中のBOD成分を水素供与体とし
て脱窒反応が進行する。即ち硝化汚泥中の窒素分はN2
ガスに分解除去されると共に分離槽13における汚水は
汚泥と上澄液に分離し、分離槽13の頂部を溢流した」
二澄液は溢流槽24に入り系外へ排出される。上澄液と
分離された汚泥は汚泥レベル文を形成し汚泥流入部19
を通して循環され且つ汚泥の一部は汚泥抜出管20から
系外へ排出される。
When the nitrification reaction progresses to some extent through repeated sludge circulation,
The solenoid valve 25 is closed by the timer 10 to stop air entrainment, and the pump P1 is operated to introduce new organic sewage. That is, as the aeration in the nitrification and denitrification is stopped, the BOD component begins to increase, an anaerobic atmosphere is formed, and the denitrification reaction proceeds using the BOD component in the organic wastewater as a hydrogen donor. In other words, the nitrogen content in nitrified sludge is N2
At the same time as it was decomposed into gas and removed, the sewage in the separation tank 13 was separated into sludge and supernatant liquid, which overflowed the top of the separation tank 13.
The clear liquid enters the overflow tank 24 and is discharged out of the system. The sludge separated from the supernatant liquid forms a sludge level structure and flows into the sludge inflow section 19.
A portion of the sludge is circulated through the sludge and discharged from the sludge extraction pipe 20 to the outside of the system.

尚汚泥流入部19を形成しているので汚泥レベル文は運
転中安定した高さを示し、上澄液の層を乱すおそれもな
い。以下循環ポンプP2によって槽内汚泥を循環させな
がら、電磁弁25の開放とポンプP1の運転を一定時間
毎に交互に繰り返すことによって有機性汚水りの硝化e
脱窒処理が交互に行なわれる。尚本発明装置において有
機性汚水りは脱窒処理(硝化・脱窒サイクル)を繰り返
し受けるので脱窒率の極めて高い処理水を得ることj 
″<−6z6″’fLMi、@+=w′″hjf95%
赴+yJl*を得ている。従って硝化運転中に有機性汚
水りの導入を中断しない場合でも脱窒率をそれ程低下さ
せることなく汚水処理を行なうことができる。尚実施例
装置では曝気時にエジェクタ23を利用するので、曝気
用のプロワ−を設ける必要がなく、設備コストの低減に
一層寄与できる。
Since the sludge inflow section 19 is formed, the sludge level exhibits a stable height during operation, and there is no fear of disturbing the supernatant liquid layer. Thereafter, while circulating the sludge in the tank using the circulation pump P2, the opening of the solenoid valve 25 and the operation of the pump P1 are alternately repeated at regular intervals to nitrify the organic sewage.
Denitrification treatments are carried out alternately. In addition, in the device of the present invention, organic sewage is repeatedly subjected to denitrification treatment (nitrification/denitrification cycle), so treated water with an extremely high denitrification rate can be obtained.
″<-6z6″’fLMi, @+=w′″hjf95%
I am getting ``Go+yJl*''. Therefore, even if the introduction of organic sewage is not interrupted during nitrification operation, sewage treatment can be carried out without significantly reducing the denitrification rate. In the apparatus of the embodiment, since the ejector 23 is used during aeration, there is no need to provide an aeration blower, which can further contribute to reducing equipment costs.

好気状態は曝気により溶存酸素(D O)が2mg/l
程度あるいはそれ以下の程度となるように空気吹込量を
設定するようにし、一方嫌気状態は曝気停止後DOが速
やかに無くなるよう原水流入量等を設定するようにする
。1回の曝気時間は通常5〜60分、停止時間は10〜
20分で運転するが、曝気および曝気停止時間の合計を
1サイクルの時間とすると、1日の間に行なわれるサイ
クル数は最高で96回7日程度となる。
In aerobic conditions, dissolved oxygen (D O) is 2 mg/l due to aeration.
The amount of air blown in should be set so that the amount of air is blown in at or below the same level as the above, and the amount of raw water inflow, etc., should be set so that the DO will disappear quickly after the aeration stops in the anaerobic state. One aeration time is usually 5 to 60 minutes, and the stop time is 10 to 60 minutes.
Although it operates for 20 minutes, if the total time of aeration and aeration stop time is considered to be one cycle time, the maximum number of cycles performed in one day is about 96 times in 7 days.

上記サイクル数は、前記した従来の硝化液循環方式にお
ける循環比に相当するもので、従来の循環比が3程度で
あることを考えると上記本発明のサイクル数はそれを大
巾に上回る数であり、これが本発明において例えば95
%以上という高窒素除去率を達成する理由である。
The above number of cycles corresponds to the circulation ratio in the conventional nitrification liquid circulation method described above, and considering that the conventional circulation ratio is about 3, the number of cycles according to the present invention is much larger than that. In the present invention, for example, 95
This is the reason for achieving a high nitrogen removal rate of over %.

本発明の基本構成は上記の通りであるが、未発1 明装置の汚泥濃度を高め脱窒処理能力を更に発揮させる
為には硝化・脱窒槽12に固形成分(例えば土砂、活性
炭9石灰、高炉スラグ、転炉スラグhg)Nを混入させ
ることが推奨される。即ち上記固形成分を混入するとこ
れが核となってその回りに高い濃度で微生物が付着成育
するため、硝化脱窒反応が迅速に進行する。これととも
に活性汚泥の沈降性も大巾に向上する。又上記固形成分
として石灰、高炉スラグ、転炉スラグ等のCa含有物質
を利用すると遊離のCaと有機性汚水中に含まれる燐成
分(POa−P)が反応し、Ca塩(リン酸カルシウム
)として捕捉・除去されるので余剰汚泥として槽より引
き抜かれる固形成分を適宜補充し槽内pHを8程度にす
れば窒素と燐の同時除去を安定して行なうことができる
The basic configuration of the present invention is as described above. It is recommended to mix blast furnace slag, converter slag (hg)N. That is, when the above-mentioned solid component is mixed, this forms a nucleus around which microorganisms adhere and grow at a high concentration, so that the nitrification-denitrification reaction proceeds rapidly. Along with this, the settling properties of activated sludge are also greatly improved. In addition, when Ca-containing substances such as lime, blast furnace slag, and converter slag are used as the solid component, free Ca reacts with phosphorus components (POa-P) contained in organic wastewater, and is captured as Ca salt (calcium phosphate).・Nitrogen and phosphorus can be removed stably at the same time by appropriately replenishing the solid components that are removed from the tank as surplus sludge and adjusting the tank internal pH to about 8.

本発明は以上の様に構成されており、固形成分を添加し
MLSSを高めることができるので装置をコンパクトに
することができる。又汚泥循環状態で脱窒反応が行なわ
れるので水素供与体と硝化汚泥の接触効率が高く、脱窒
反応効率も優れてぃ2 る、即ち単位時間当たりの汚水処理量が大きく、コンパ
クトな装置でありながら多量の汚水を処理することがで
きる。又処理によって得られた汚泥は脱水性が良好で、
堆肥化することによって肥料として利用することができ
る。
The present invention is configured as described above, and since the MLSS can be increased by adding solid components, the apparatus can be made compact. In addition, since the denitrification reaction is carried out in the sludge circulation state, the contact efficiency between the hydrogen donor and the nitrified sludge is high, and the denitrification reaction efficiency is also excellent.2 In other words, the amount of sewage treated per unit time is large, and the device is compact. It is possible to treat a large amount of wastewater. In addition, the sludge obtained through treatment has good dewatering properties,
It can be used as fertilizer by composting.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

実施例 本発明装置に下水を導入し第1表に示す条件下で硝化・
脱窒処理を行なったところ第2表に示す処理水が得られ
た。
Example Sewage was introduced into the apparatus of the present invention and nitrified and sewage was carried out under the conditions shown in Table 1.
When the denitrification treatment was carried out, treated water shown in Table 2 was obtained.

第1表 第2表 5 第1.2表に示す様に実施例においては97.4%と優
れた脱窒率が得られると共に、転炉スラグの投入によっ
て燐をも除去することができた。又反応は迅速に進行す
るので汚水滞留時間(4詩間)に示される様に短時間に
汚水を処理することができた。尚本発明において汚水滞
留時間が短かくて済むということは、一定量の汚水を処
理するのに処理装置の規模が小さくて済むことを意味し
、逆に同一規模であれば処理量が増大することを意味す
る。
Table 1 Table 2 Table 5 As shown in Table 1.2, in the example, an excellent denitrification rate of 97.4% was obtained, and phosphorus was also removed by adding converter slag. . In addition, since the reaction proceeded quickly, the wastewater could be treated in a short time as shown by the wastewater residence time (4 poems). In addition, in the present invention, the short residence time of sewage means that the scale of the treatment equipment can be small to treat a certain amount of sewage, and conversely, if the scale is the same, the amount of treatment will increase. It means that.

ちなみに第1,2表に示す実施例と、従来の硝化液循環
方式とを比較すると、従来の方式の(第1脱窒槽、硝化
槽、第2脱窒槽、再曝気槽の容積比が、1 : 1.3
3 : 0.88 : 0.33で、滞留時間合計を1
5.284)間、循環比4.水温16〜22℃で、実施
例と同じ下水を処理した時の)処理水の全窒素除去率は
平均74%、最高86%程度(容積負荷は第1脱窒槽と
硝化槽との合計容積に対しては0.030 kg BO
n/m3・day程度、全槽の合計容積に対しては0.
021 kg BOD/m3・day程度)である。
By the way, when comparing the examples shown in Tables 1 and 2 with the conventional nitrification liquid circulation system, it is found that in the conventional system (the volume ratio of the first denitrification tank, nitrification tank, second denitrification tank, and re-aeration tank is 1. : 1.3
3: 0.88: 0.33, the total residence time is 1
5.284), circulation ratio 4. When the same sewage as in the example was treated at a water temperature of 16 to 22°C), the total nitrogen removal rate of the treated water was 74% on average, and the maximum was about 86% (the volume load is the total volume of the first denitrification tank and nitrification tank). against 0.030 kg BO
About n/m3・day, 0.0 for the total volume of all tanks.
021 kg BOD/m3・day).

1に れに対し本発明の高容積負荷化によって装置を小型化す
ることができると共にメタノールの添加が不要であるに
も関わらず高窒素除去率が得られる。更には装置の維持
管理が容易等の利点を有する。
By increasing the volume load of the present invention, the apparatus can be made smaller, and a high nitrogen removal rate can be obtained even though the addition of methanol is not necessary. Furthermore, it has advantages such as easy maintenance and management of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の汚水処理装置を示す説明図、第2図は本
発明に係る汚水処理装置を示す断面説明図である。 l・・・脱窒槽 2・・・硝化槽 3・・・順流ライン 4・・・返送ライン5・・・排出
ライン 6・・・沈降分離槽12・・・硝化・脱窒槽 
13・・・分離槽14・・・有機性汚水導入ライン 15・・・循環汚泥導入ライン 18・・・空気導入ライン 17・・・第1汚泥下降管 1日・・・上澄排出ライン 18・・・汚泥流入部 2o・・・汚泥抜出管21・・
・オーバーフロー管 22・・・第2汚泥下降管 出願人 株式会社 神戸製鋼所 う 9 第1図
FIG. 1 is an explanatory diagram showing a conventional sewage treatment device, and FIG. 2 is a cross-sectional explanatory diagram showing a sewage treatment device according to the present invention. l... Denitrification tank 2... Nitrification tank 3... Downflow line 4... Return line 5... Discharge line 6... Sedimentation separation tank 12... Nitrification/denitrification tank
13... Separation tank 14... Organic sewage introduction line 15... Circulating sludge introduction line 18... Air introduction line 17... First sludge descending pipe 1st... Supernatant discharge line 18... ...Sludge inflow section 2o...Sludge extraction pipe 21...
・Overflow pipe 22...Second sludge descending pipe Applicant: Kobe Steel, Ltd. U9 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 間欠的曝気槽と分離槽が併設され、前記間欠的曝気槽に
は有機性汚水導入手段及び間欠的に空気を導入する手段
を設け、他方分離槽には汚泥下降管を設けると共に頂部
には上澄液排出ライン、中間部からは汚泥流入部を介し
て汚泥循環ラインを引出し該汚泥循環ラインを前記間欠
的曝気槽の下部へ再導入する循環手段を設け、更に間欠
的曝気槽の頂部と前記汚泥下降管をオーバーフロー管で
連結し1間欠的曝気槽の汚泥を分離槽の汚泥下降管に流
入させる構造としてなることを特徴とする生物学的汚水
処理装置。
An intermittent aeration tank and a separation tank are installed together, and the intermittent aeration tank is provided with means for introducing organic sewage and a means for intermittently introducing air, while the separation tank is provided with a sludge downpipe and an upper pipe at the top. A clear liquid discharge line, a circulation means for drawing out a sludge circulation line from the intermediate part via a sludge inlet and reintroducing the sludge circulation line to the lower part of the intermittent aeration tank, and furthermore, 1. A biological sewage treatment device characterized by having a structure in which sludge downcomers are connected by an overflow pipe and sludge from one intermittent aeration tank flows into the sludge downcomer of a separation tank.
JP11872384A 1984-06-08 1984-06-08 Biological sewage treating apparatus Pending JPS60261596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11872384A JPS60261596A (en) 1984-06-08 1984-06-08 Biological sewage treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11872384A JPS60261596A (en) 1984-06-08 1984-06-08 Biological sewage treating apparatus

Publications (1)

Publication Number Publication Date
JPS60261596A true JPS60261596A (en) 1985-12-24

Family

ID=14743484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11872384A Pending JPS60261596A (en) 1984-06-08 1984-06-08 Biological sewage treating apparatus

Country Status (1)

Country Link
JP (1) JPS60261596A (en)

Similar Documents

Publication Publication Date Title
US7547394B2 (en) Wastewater treatment with aerobic granules
US5651892A (en) Biodegradeable effluent nutrient removal
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
JP4114128B2 (en) Waste water purification apparatus and method
JPS5881491A (en) Purification of filthy water with activated sludge
CN112551828A (en) Low-carbon-nitrogen-ratio rural domestic sewage treatment device and treatment process thereof
CN116002861A (en) Built-in internal and external mixed liquid backflow two-stage anoxic-aerobic device and process for precipitation
JPH11244891A (en) Method for denitrification treating waste water and treating system
JP2002172399A (en) Denitrification treatment method
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
JPS61200893A (en) Method of purifying waste water
JPS60261596A (en) Biological sewage treating apparatus
JPS58146495A (en) Treatment of organic waste liquid
JPS61287498A (en) Biological treatment of organic sewage
CN109987706A (en) A kind of MSBR biochemical processing method of intensified denitrification and dephosphorization function
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
JP2673488B2 (en) Method and apparatus for treating organic wastewater
CN115611424B (en) Method for treating stainless steel pickling high nitrate nitrogen wastewater
CN113620426B (en) Multistage anoxic-aerobic sewage treatment equipment and method
CN114426329B (en) Method and device for enhancing nitrogen and phosphorus removal of SBR system
KR20010092160A (en) Sewage and waste water disposal plant
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
JPH0751691A (en) Treatment of sewage
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch