JPS602613A - Smelting method of ferrous alloy by melt reduction - Google Patents

Smelting method of ferrous alloy by melt reduction

Info

Publication number
JPS602613A
JPS602613A JP11057083A JP11057083A JPS602613A JP S602613 A JPS602613 A JP S602613A JP 11057083 A JP11057083 A JP 11057083A JP 11057083 A JP11057083 A JP 11057083A JP S602613 A JPS602613 A JP S602613A
Authority
JP
Japan
Prior art keywords
reduction
charged
smelting
furnace
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11057083A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katayama
裕之 片山
Masatoshi Kuwabara
桑原 正年
Hideki Ishikawa
英毅 石川
Tsutomu Saito
力 斎藤
Noriyuki Inoue
井上 典幸
Masaki Fujita
正樹 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Japan Metals and Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd, Nippon Steel Corp filed Critical Japan Metals and Chemical Co Ltd
Priority to JP11057083A priority Critical patent/JPS602613A/en
Publication of JPS602613A publication Critical patent/JPS602613A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To obtain inexpensively a ferrous alloy of the component condition desirable for post-stages by matching a preliminary reduction furnace suitable for a stationary operation and a melt reduction furnace of a top and bottom blown converter type suitable for a non-stationary operation. CONSTITUTION:Two units of reaction vessels of a top and bottom blown converter type and a preliminary reduction furnace which preheats and preliminarily reduces ore contg. iron oxide or the molding thereof by the high temp. waste gas from said vessels are combined. The operation in said reaction vessels is then divided to the two for the period when the preheated and the preliminarily reduced ore or the molding thereof is charged and for the period when the same is not charged; at the same time, the operation cycles are shifted from each other. The preheated or preliminarily reduced ore or molding is charged into either of the reaction vessels of the top and bottom blown converter type.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄系合金を溶融還元法により製造するための方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing an iron-based alloy by a smelting reduction method.

ここで言う鉄系合金とは溶銑あるいは半溶銑(C:1.
5〜4%)のようなFe−C合金、フェロクロム、フェ
ロマンガンなどのFe−X−C(X :Mn 。
The iron-based alloy referred to here is hot metal or semi-hot metal (C: 1.
Fe-C alloys such as 5-4%), Fe-X-C (X:Mn) such as ferrochrome, ferromanganese.

Si・・・)などの合金を意味し、いずれも鉄鋼材料を
製造するための中間成品という性格を持っている。
It refers to alloys such as Si...), and all of them have the characteristics of being intermediate products for manufacturing steel materials.

(従来技術) これらの合金はいずれも鉱石を高炉あるいは電気炉など
のように還元力の強い炉で製錬する方法で製造されてき
た。これらの炉の共通点はシャフト型であり、還元反応
は溶融酸化物が高温に加熱されたコークス充填層を滴下
する間におとることである。すなわち、反応は連続的に
おこっている。
(Prior Art) All of these alloys have been manufactured by smelting ore in a furnace with strong reducing power, such as a blast furnace or an electric furnace. The common feature of these furnaces is that they are shaft-type, and the reduction reaction takes place while the molten oxide drips through a bed of coke heated to a high temperature. That is, the reaction occurs continuously.

しかし、これらの方法では次のような問題がある。However, these methods have the following problems.

(1)充填層の通気性を維持するために、鉱石および炭
材とも強度の高いものが要求され、それを調達するため
に要する費用が大である。
(1) In order to maintain the permeability of the packed bed, high strength ore and carbon materials are required, and the cost required to procure them is large.

(2) エネルギー源として電力を用いる場合にはその
エネルギーコストが高い。
(2) When electricity is used as an energy source, the energy cost is high.

(3) フェロクロム製造の場合のように鉱石が難溶性
の場合には、溶滴滴下方式では還元反応を十分平衡値に
近いところまで進めることができず、排出するスラグ中
のクロム含有量が2〜5チと高い値を示している。
(3) When the ore is poorly soluble, as in the case of ferrochrome production, the droplet dropping method cannot advance the reduction reaction sufficiently close to the equilibrium value, and the chromium content in the discharged slag is It shows a high value of ~5.

(4)一方、炉内には局所的な高温部(羽口部、あるい
はアーク部)が存在するため、5Io2の還元反応がお
こシやすぐ、得られる成品si含有量を低減することが
むつかしい。
(4) On the other hand, since there are local high-temperature parts (tuyere or arc parts) in the furnace, the reduction reaction of 5Io2 occurs, and it is difficult to reduce the Si content of the resulting product. .

(5)鉱石の還元を意識的に抑制した場合(結果的には
メタル成分回収歩留シの低下に結びつく)以外は生成す
る鉄系合金として炭素不飽和のものを得ることがむつか
しい。炉床の湯だまシ部に酸化性ガスを吹き込んで脱炭
するなどの方法は、シャフト炉では実際には採用困難で
ある。
(5) Unless the reduction of the ore is consciously suppressed (resulting in a decrease in metal component recovery yield), it is difficult to obtain a carbon-unsaturated iron-based alloy. Methods such as decarburizing by blowing oxidizing gas into the molten metal part of the hearth are difficult to employ in shaft furnaces.

これらの問題点を解決するための方法の一つが上底吹転
炉型反応容器を用いる製錬法である。すなわち、底吹ガ
スにより溶融合金及び溶融スラグを強攪拌しつつ、そと
に鉱石あるいはそれを予備還元したも、の、還元剤とし
ての炭材、フラックスおよび酸素を供給することによっ
て、発熱、溶融、還元反応を進める方法である。(以下
、これ全上底吹転炉型容器による溶融還元法と呼ぶ。)
この方法では溶融物の強攪拌という手段を導入すること
により、前述のシャフト炉の問題点を解決できる。
One of the methods for solving these problems is a smelting method using a top-bottom blown converter type reaction vessel. That is, while the molten alloy and molten slag are strongly stirred by bottom-blowing gas, the ore or its pre-reduced material is supplied with carbonaceous material, flux, and oxygen as reducing agents to generate heat and melt the ore. , is a method of proceeding with the reduction reaction. (Hereinafter, this will be referred to as the smelting reduction method using a full top and bottom blown converter type vessel.)
In this method, the above-mentioned problems of the shaft furnace can be solved by introducing a means of strong stirring of the molten material.

すなわち、 (1)充填層の通気性維持の制約から解放される。That is, (1) Freed from the restriction of maintaining air permeability of the packed bed.

(11) フェロアロイに対しても、還元エネルギーと
して一次エネルギーを直接用いることができる。
(11) Primary energy can also be used directly as reduction energy for ferroalloys.

(iill 強還元を利用して、酸化物の還元反応を促
進し、平衡値に近づけることができる。また、シャフト
炉と異な)、溶融還元域への酸化物の供給を行う時期と
、酸化物の供給をとめて仕上げ還元を行う時期に分ける
ことができる。これも排出するスラグの該成分酸化物量
を低下するのに役立つ。
(iill Strong reduction can be used to promote the reduction reaction of oxides and bring them closer to the equilibrium value. Also, unlike a shaft furnace), the timing of supplying oxides to the smelting reduction zone and the It can be divided into periods when the supply of water is stopped and finishing reduction is performed. This also helps to reduce the amount of these component oxides in the discharged slag.

すなわち、完全連続型ではなく、パッチ処理の長所を数
カ込むことができる。
In other words, it is not a completely continuous process, but can incorporate some of the advantages of patch processing.

(V 強攪拌によシ炉内温度の均一化が進み、局所的な
高温部が存在しないため、5Io2の還元反応が抑制さ
れ、後工程にとって望ましいsl含有量の低い鉄系合金
(例・低Si溶銑、低Stフェロクロム)が得られる。
(V Strong stirring promotes homogenization of the temperature inside the furnace, and there are no local high-temperature areas, so the reduction reaction of 5Io2 is suppressed, and iron-based alloys with low sl content (e.g., Si hot metal, low St ferrochrome) are obtained.

しかし、従来のシャフト型方式にかえて、上底吹転炉型
容器による溶融還元法を実用化するためには、次のよう
な問題点を解決しなければならない0 (1)溶融還元炉から出る排出がスの顕熱及び潜熱を炉
外で有効利用する方式と組合せる必要がある。
However, in order to put into practical use the smelting reduction method using a top-bottom blowing converter type vessel instead of the conventional shaft type method, the following problems must be solved0 (1) From the smelting reduction furnace It is necessary to combine this with a method that effectively utilizes the sensible heat and latent heat of the exhaust gas outside the furnace.

シャフト炉ではシャフト部で装入物の予熱、予備還元が
効率的に行われている。溶融還元法では排ガスを一旦炉
外に導き、例えばロータリーキルンのような設備を用い
て装入物の予熱・予備還元を行う場合に、そのマツチン
グという点から最適条件を見出す必要がある。予備還元
炉は本来、連続式、定常的操業に適している。これと、
パッチ的要素を取シ込むことによってその長所を発揮で
きる上底吹転炉型の操業をどのようにマツチングさせる
かということである。
In a shaft furnace, the charge is efficiently preheated and pre-reduced in the shaft section. In the smelting reduction method, when exhaust gas is once led out of the furnace and equipment such as a rotary kiln is used to preheat and pre-reduce the charge, it is necessary to find optimal conditions from the viewpoint of matching. Pre-reduction furnaces are originally suitable for continuous, steady-state operation. This and
The question is how to match the operation of the top-bottom blowing converter type, which can take advantage of its advantages by incorporating patch elements.

(2)溶融還元炉では強攪拌が前提となるので、耐火物
の損傷が、温度勾配をつけられるシャフト(5) 炉の場合よシおとシやすい。したがって、耐火物損傷防
止のために、スラグ成分としては侵食性の高くないもの
に調整すること(特に(T、Fe%)を低くすること)
、及びスラグ温度を極力低い値に保つことが望ましい。
(2) Since strong agitation is a prerequisite in a smelting reduction furnace, damage to the refractory is much easier than in the case of a shaft (5) where a temperature gradient can be created. Therefore, in order to prevent damage to refractories, the slag component should be adjusted to one that is not highly corrosive (in particular, (T, Fe%) should be lowered).
It is desirable to keep the slag temperature and the slag temperature as low as possible.

−万単位時間あたりの酸化物の還元量は、温度が低いほ
ど、かつスラグ中の該成分の酸化物’(FeO+ Cr
2O5’ + MnOなど)の含有量が低いほど小さく
なる。したがって上記の耐火物損傷防止のための対策は
、溶融還元炉の生産性を低下するおそれがある。耐火物
負荷を小さく一つの炉の生産性を大圧するにはどうすれ
ばよいかということである。
-The lower the temperature, the lower the reduction amount of oxide per 10,000 units of time, and the lower the reduction amount of oxide of the component in the slag (FeO + Cr
2O5' + MnO, etc.), the lower the content. Therefore, the above measures for preventing damage to refractories may reduce the productivity of the smelting reduction furnace. The question is how to reduce the load on refractories and increase the productivity of a single furnace.

(発明の目的) 本発明の目的とするところは、鉄系合金の溶融還元製錬
にあたシ、従来のシャフト型方式にかえて上底吹転炉型
容器による溶融還元法を実用化するにあたって生ずる種
々の問題点を解決し安価に鉄系合金を製造することので
きる溶融還元精錬法を提供するにある。
(Objective of the Invention) The object of the present invention is to put into practical use a smelting reduction method using a top-bottom blowing converter type vessel instead of the conventional shaft type method for smelting and smelting iron-based alloys. It is an object of the present invention to provide a smelting reduction refining method which can solve various problems that arise in the process and can produce iron-based alloys at low cost.

(6) (発明の構成・作用) 本発明の要旨とするところは上底吹転炉型反応容器2基
と、該上底吹転炉型反応容器からの高温排ガスによシ鉄
酸化物を含む鉱石或はその成型物を予熱、予備還元する
予備還元炉とを組合せて、鉄系合金を製造するに際し、
上記各上底吹転炉型反応容器における操業を、予熱・予
備還元された鉱石或はその成型物を装入する時期と装入
しない時期の2つに分けるとともに、各上底吹転炉型反
応容器間で操業サイクルをずらせて、何れかの上底吹転
炉型反応容器に予熱・予備還元された鉱石或はその成型
物が装入される状態で操業を行なうことを特徴とする鉄
系合金の溶融還元製錬法にあるO 上底吹転炉型反応容器を用いる溶融還元法において、前
記の問題点を解決するための考え方は次の通シである。
(6) (Structure and operation of the invention) The gist of the present invention is to provide two top-bottom blown converter type reaction vessels, and to supply iron oxide to the high-temperature exhaust gas from the top-bottom blown converter type reaction vessels. When manufacturing iron-based alloys in combination with a pre-reduction furnace that preheats and pre-reduces the ore containing ore or its molded product,
The operation in each of the above-mentioned top-bottom blown converter type reaction vessels is divided into two periods: a period in which preheated and pre-reduced ore or its molded product is charged, and a period in which it is not charged. An iron manufacturing method characterized in that the operation cycle is shifted between the reaction vessels and the operation is carried out with preheated and prereduced ore or its molded product being charged into one of the top-bottom blown converter type reaction vessels. In the smelting reduction method using a top-bottom blown converter type reaction vessel in the smelting reduction smelting method for O-based alloys, the idea for solving the above-mentioned problems is as follows.

(1) 予熱、予備還元を行う設備は定常状態で操業し
、極力Fe0分の予備還元を進めて、溶融還元炉に供給
されるFeO含有量を低くする。その理由はスラグのF
eOチが耐火物侵食性に及ぼす影響が大きいからである
(1) The equipment for preheating and pre-reduction is operated in a steady state, and the pre-reduction of Fe0 is carried out as much as possible to lower the FeO content supplied to the smelting reduction furnace. The reason is slag F
This is because eO has a large influence on the corrosion resistance of refractories.

(2)一方、溶融還元炉は該成分酸化物含有量が比較的
高いが溶融スラグ温度の低い状態で操業される時期(溶
融還元第1期)と、溶融スラグ温度はそれより高めるが
F’eO含有量が低い状態で操業される時期(溶融還元
第2期)に分けることによって、耐火物損傷防止と高生
實性維持の間の矛盾を解消する。これは、第1期のみ酸
化物を含む原料を溶融還元炉に装入することによって実
現できる。
(2) On the other hand, the smelting reduction furnace is operated at a time when the component oxide content is relatively high but the molten slag temperature is low (first stage of smelting reduction), and when the molten slag temperature is higher than that, F' The conflict between preventing damage to refractories and maintaining high productivity is resolved by dividing the process into a period in which the eO content is low (melting reduction second stage). This can be realized by charging the raw material containing oxides into the melting reduction furnace only in the first stage.

(3)定常状態で連続操業される予備還元炉と、非定常
状態でパッチ的要素を取り込んで操業される溶融還元炉
のマツチングを、予備還元炉1基に対し、溶融還元炉2
基の組合せという設備条件を採用し、かつ、操業パター
ンを適正化することによって実現する。
(3) Matching of a pre-reduction furnace that is operated continuously in a steady state and a smelting reduction furnace that is operated with patchy elements in an unsteady state for one pre-reduction furnace and two smelting reduction furnaces.
This will be achieved by adopting equipment conditions such as a combination of bases and optimizing the operating pattern.

以下、フェロクロムを溶融還元法により製錬する場合を
例にとって説明する。設備は、予備還元に用いられるロ
ータリーキルン1基に対して、溶融還元に用いられる上
底吹転炉型反応容器2基の組合せからなる。
Hereinafter, the case where ferrochrome is smelted by the smelting reduction method will be explained as an example. The equipment consists of one rotary kiln used for preliminary reduction and two top-bottom blown converter reactors used for melt reduction.

予備還元炉を組合せる第一の理由は、溶融還元炉から出
る高温排ガスを利用して装入原料を予熱、予備還元する
ことによシ、溶融還元炉に要求される熱負荷を軽減する
ためである。例えば、クロム鉱石中のクロム分の70%
及び鉄分の90%が予備還元され、かつ1000℃に予
熱された状態で溶融還元炉に装入できれば、クロム鉱石
を予備還元しないで装入した場合に比して、溶融還元炉
での必要発熱量は約30%でよいことになる。また、装
入する原料中の鉄分の大半が予備還元されていると、生
成するスラグ中のT、Fa %を低くでき、耐火物の侵
食を軽減できる。
The first reason for combining a pre-reduction furnace is to reduce the heat load required on the smelting-reduction furnace by preheating and pre-reducing the charging material using the high-temperature exhaust gas emitted from the smelting-reduction furnace. It is. For example, 70% of the chromium content in chromium ore
If chromium ore can be charged into the smelting reduction furnace with 90% of the iron content pre-reduced and preheated to 1000°C, the required heat generation in the smelting reduction furnace will be lower than when chromium ore is charged without being pre-reduced. The amount should be approximately 30%. Further, if most of the iron content in the raw material to be charged is pre-reduced, the T and Fa percentages in the generated slag can be lowered, and corrosion of the refractory can be reduced.

第1図は溶融還元炉の設備の1例を示す。溶融還元炉2
は、予備還元されたクロムベレットの供給を受けて、そ
れを溶融するとともに残留しているクロム、鉄の還元を
進め、最終的にクロム・鉄合金溶湯と、脈石物を主体と
する溶融スラグを得るための装置である。転炉状にした
のは、この場(9) 合の反応の進行のために必須の条件であるスラグ−メタ
ルの強攪拌を実現するためである。底部から酸素を含む
ガスの吹込みを行うための羽口3(複数個のこともある
)と、上方から酸素を炉内に吹込むためのランス4が付
属している。
FIG. 1 shows an example of equipment for a melting reduction furnace. Melting reduction furnace 2
receives the pre-reduced chromium pellets, melts them and reduces the remaining chromium and iron, and finally produces molten chromium-iron alloy and molten slag mainly composed of gangue. This is a device for obtaining. The reason why the converter was used was to achieve strong stirring of the slag-metal, which is an essential condition for the reaction to proceed in this case (9). A tuyere 3 (there may be more than one) for blowing oxygen-containing gas from the bottom and a lance 4 for blowing oxygen into the furnace from above are attached.

12はベレット分配装置でロータリーキルン1と溶融還
元炉2の間に位置し、ロータリーキルン1から供給され
る半還元クロムにレットを所定の溶融還元炉のいずれか
に送シ込むのに用いられる。
Reference numeral 12 denotes a pellet distribution device located between the rotary kiln 1 and the smelting reduction furnace 2, and used to feed pellets into the semi-reduced chromium supplied from the rotary kiln 1 to any of the predetermined smelting and reduction furnaces.

操業方法は次の通シである。The operating method is as follows.

ロータリーキルンでは、炭素分を内装したクロム鉱石ペ
レットと、還元促進のために外装炭(例えばコークス塊
)を装入して、溶融還元炉から出る高温排ガスを熱源と
して4レツトを最高1450℃まで加熱して固相予備還
元を行う。
In a rotary kiln, chromium ore pellets containing carbon and outer charcoal (e.g. coke lumps) are charged to promote reduction, and the high-temperature exhaust gas from the smelting reduction furnace is used as a heat source to heat 4 pellets to a maximum of 1450°C. Perform solid-phase preliminary reduction.

溶融還元炉は半連続、半バッチ型の操業を行う。The smelting reduction furnace performs semi-continuous, semi-batch type operation.

すなわち、前ヒートで生成したスラグの80%以上と高
クロム溶湯の約2Aを出湯し、定格溶湯量の約173が
炉内に残留した状態から述べる。
That is, the description will be made from a state in which more than 80% of the slag generated in the previous heat and about 2 A of high chromium molten metal were tapped, and about 173 liters of the rated molten metal remained in the furnace.

溶融還元第1期においては、溶湯中に底吹羽口(10) 3から酸素を含むガス(例えば羽口を二重管とし外側の
管からプロパンガス、Arなどの羽目保護がス、内側の
管から酸素ガスを供給する)、上吹ランス4から酸素を
吹きつつ、ロータリーキルン1から予熱・予備還元され
たクロムペレット、炭材、フラックス(主として石灰)
を溶融還元炉に供給する。炭材の醸化発熱(C→COあ
るいはCo2)と、炭素(固体炭材あるいはメタル中に
溶けた炭素)とクロムあるいは鉄酸化物の還元反応、及
び脈石と7ラツクスによる造滓が進む。
In the first stage of melting and reduction, gas containing oxygen (for example, the tuyere is made into a double pipe, and propane gas, Ar, etc. is injected into the molten metal from the bottom blowing tuyeres (10) 3 to protect the siding, such as propane gas or Ar from the outer pipe). chromium pellets, carbonaceous material, and flux (mainly lime) that have been preheated and pre-reduced from the rotary kiln 1 while blowing oxygen from the top-blowing lance 4
is supplied to the melting reduction furnace. The fermentation heat of carbonaceous material (C→CO or Co2), the reduction reaction of carbon (solid carbonaceous material or carbon dissolved in metal) and chromium or iron oxide, and slag formation using gangue and 7 lacs proceed.

溶湯中に底吹羽口3から酸素を含むガス(例えば羽口を
二重管とし、外側の管からプロパンガス、Arなどの羽
口保護ガス、内側の管から酸素がスを供給する)を吹込
む。この底吹ガスの効果は、(i) メタル及び生成す
るスラグ層を強攪拌してクロム酸化物の還元反応速度を
大にすること、(11) メタル中の炭素を燃焼してメ
タル浴を加熱し、メタルを適度の温度(凝固点より20
℃以上、100℃以下の温度)に維持すること、(ii
i+ 必要によシ、炭素不飽和の成品浴湯を得るために
、一部排滓を行ってから吹酸を行って脱炭すること の3つである。
A gas containing oxygen is supplied into the molten metal from the bottom blowing tuyere 3 (for example, the tuyere is made of a double pipe, and the outer pipe supplies propane gas, tuyere protective gas such as Ar, and the inner pipe supplies oxygen gas). Infuse. The effects of this bottom blowing gas are: (i) Strongly stirring the metal and the generated slag layer to increase the reduction reaction rate of chromium oxide; (11) Burning the carbon in the metal and heating the metal bath. and then heat the metal to a moderate temperature (20° below the freezing point).
℃ or higher and 100℃ or lower); (ii)
i+ If necessary, in order to obtain carbon-unsaturated product bath water, there are three steps: partial removal of slag and decarburization by blowing acid.

所定量の半還元クロム4レットを装入し終ると、溶融還
元は第2期に移行する。第2期においては、半還元クロ
ムベレットの供給を行わないで、吹酸、攪拌(必要に応
じて炭材は補給する)を続ける。
After charging a predetermined amount of semi-reduced chromium 4lets, the smelting reduction shifts to the second stage. In the second period, the semi-reduced chromium pellets are not supplied, and blowing acid and stirring are continued (charcoal material is replenished as necessary).

第2期においては第1期とは異なシ溶融還元炉内へのク
ロム酸化物の供給はないので、処理時間とともにスラグ
中の酸化物として存在するクロム量は減少する。スラグ
の到達クロムチ(酸化物として存在するもの)は低くな
る。この値は0.7〜0.05%の範囲に低下すること
が可能であるが、実用的にはクロム歩留、経済性、生成
スラグの利用目的および後述のような第1期、第2期の
時間調整などの諸点から目標(T、Cr4)が設定され
る。
In the second stage, unlike in the first stage, there is no supply of chromium oxide into the smelting reduction furnace, so the amount of chromium present as oxides in the slag decreases with the processing time. The amount of chromium thi (present as oxide) in the slag is low. This value can be lowered to a range of 0.7 to 0.05%, but in practice it depends on the chromium yield, economic efficiency, purpose of using the generated slag, and the first and second stages as described below. Targets (T, Cr4) are set from various points such as time adjustment.

スラグ中のクロム濃度を所定の値まで低下すると、炉を
傾動して排滓する。使用する炉の形状及び使用する鉱石
、炭材などの条件にょシ中間排滓なしでは操業がやりに
くい場合には、中間排滓(すなわち上記サイクル2回以
上で1回溶融金属を出湯するということになる)を行う
。排滓後、メタルを出湯する前に、必要によってメタル
の脱炭を主として底吹酸素によって行うことにより、炭
素不飽和のメタルを得ることができる。ついで生成した
メタルの出湯を行うがその30〜501は炉内に残留さ
せることによって底吹羽口を保護しつつ操業を繰返して
ゆく。
When the chromium concentration in the slag is reduced to a predetermined value, the furnace is tilted and the slag is discharged. Depending on the shape of the furnace used and the conditions such as the ore and carbonaceous materials used, if it is difficult to operate without intermediate slag, use intermediate slag (i.e., tapping the molten metal once in two or more of the above cycles). become). After the slag is discharged and before the metal is tapped, carbon-unsaturated metal can be obtained by decarburizing the metal mainly using bottom-blown oxygen, if necessary. Next, the produced metal is tapped out, and the operation is repeated while protecting the bottom blowing tuyeres by leaving the metals 30 to 501 in the furnace.

なお、溶融還元炉に半還元クロムペレットの供給を行う
時期(前記の溶融還元第1期)と、それ以外の時期(前
記の溶融還元第2期、脱炭期、出滓、出湯、その他)が
は#7等しくなるようにし、稼動中の2つの溶融還元炉
の操業サイクルをずらせることによシ、半還元クロムベ
レットはいずれかの溶融還元炉に装入されるようにする
In addition, the period when semi-reduced chromium pellets are supplied to the smelting reduction furnace (the above-mentioned smelting reduction first stage) and the other times (the above-mentioned smelting reduction second stage, decarburization period, slag, tapping, etc.) #7 is made equal, and by shifting the operating cycles of the two smelting and reducing furnaces in operation, the semi-reduced chromium pellets are charged into either of the smelting and reducing furnaces.

なお、溶融還元炉2基からの排出ガスは一つに合せて、
利用(例えば予備還元用)する。
In addition, the exhaust gas from the two melting reduction furnaces is combined into one,
Use (for example, for preliminary reduction).

実施例 定格溶融金属量(すなわち出湯直前の溶湯量)が50t
の上底吹転炉を2基、反応容器として用(13) い、半還元クロムベレットを原料として、生成したフェ
ロクロムの2A (約33t)は出湯し、IAを残して
半連続的に操業を行った。溶融還元炉の炉底には、底吹
羽口(内管径20闘の二重管)4本が取付けられておシ
、内管は純酸素、外管はゾロパンがスを保護ガスとして
流す。上吹ランスのノズルは全部で7孔(中心に1孔、
周囲に6孔)である。
Example Rated amount of molten metal (i.e. amount of molten metal just before tapping) is 50 tons
Two upper-bottom blowing converters are used as reaction vessels (13), and 2A (approximately 33 tons) of ferrochrome produced using semi-reduced chromium pellets as raw material is tapped out, leaving IA for semi-continuous operation. went. At the bottom of the melting reduction furnace, four bottom blowing tuyeres (double pipes with an inner diameter of 20mm) are installed, and the inner pipes flow pure oxygen and the outer pipes flow zolopane as a protective gas. . The top blow lance has a total of 7 nozzles (one hole in the center,
(6 holes around the circumference).

溶融還元の主原料であるクロム鉱石は、コークスととも
に混合粉枠抜造粒してペレットにし、乾燥後ロータリー
キルンに装入し溶融還元炉から出る高温ガスを加熱源と
して、予備還元、予熱を行った。溶融還元炉に供給され
る炭材の80チは、ロータリーキルンに外装炭として装
入し、半還元ペレットの還元率の向上と溶融還元炉に供
給する炭材の予熱を行う。ロータリーキルンは定常操業
を行う(キルン回転数、0.4 r、p、m e dし
、ト定常連続排出)。ペレットは分配装置を用いて、2
つの溶融還元炉のいずれか一方に供給される。
Chromium ore, which is the main raw material for smelting reduction, is made into pellets by extracting the mixed powder together with coke and granulating it, and after drying, it is charged into a rotary kiln, where it is pre-reduced and preheated using the high-temperature gas emitted from the smelting reduction furnace as a heating source. . The 80 pieces of carbon material supplied to the smelting reduction furnace are charged into the rotary kiln as outer coal to improve the reduction rate of the semi-reduced pellets and to preheat the carbon material to be supplied to the smelting reduction furnace. The rotary kiln performs steady operation (kiln rotation speed: 0.4 r, p, m e d, steady continuous discharge). Using a dispensing device, the pellets are
It is supplied to either one of the two melting reduction furnaces.

溶融還元炉へ供給される半還元クロムベレットの(14
) 平均成分、温度は次の通りである。
The semi-reduced chromium pellets (14
) The average components and temperatures are as follows.

T、Cr : 36 %、T、Fe : 189J、C
r分還元率:66%、鉄分還元率:92チ、MgO: 
10 %、At203: 10 %、5in2: 9 
q6、温度:1000tl::。
T, Cr: 36%, T, Fe: 189J, C
r content reduction rate: 66%, iron content reduction rate: 92chi, MgO:
10%, At203: 10%, 5in2: 9
q6, temperature: 1000tl::.

−溶融遣元製煉第1期− 残し湯17tに酸素を含むガスを上底吹しながら、予熱
された予備還元ベレットと炭材、石灰を装入する。
-First phase of melting and refining- Preheated pre-reduced pellets, carbonaceous materials, and lime are charged into 17 tons of remaining hot water while blowing oxygen-containing gas from the top and bottom.

吹酸速度は、上吹14000 Nm3/hr 、底吹1
60ONm’/h r X 4である。溶融合金相の温
度が1580〜1630℃の間にコントロールされるよ
うに、予備還元4レツトの装入速度を調整する。
The acid blowing speed is 14000 Nm3/hr for top blowing and 1 for bottom blowing.
60ONm'/hr x 4. The charging rate of the pre-reduced 4-lets is adjusted so that the temperature of the molten alloy phase is controlled between 1580-1630°C.

45分で半還元ペレ、)64t、炭材20t。64 tons of semi-reduced pellets in 45 minutes, 20 tons of carbon material.

石灰7.Otを装入する。この期に装入する炭材のうち
、80チは通常の塊コークス(上記炭材C)を、又10
チは上記炭材Aを四−タリーキルンを通して、又残シ1
0チは上記炭材Bを炭材ホッノ臂−から直接溶融還元炉
へ装入する。
Lime7. Charge Ot. Of the carbon materials to be charged in this period, 80 inches are ordinary lump coke (carbon material C above), and 10 inches are
The above carbon material A was passed through a four-tally kiln, and the remaining carbon material A was passed through a four-tally kiln.
In the case of 0-chi, the above-mentioned carbon material B is directly charged into the melting reduction furnace from the carbon material's arm.

−溶融還元製錬第2期− 半還元ベレットの供給を止め、炭材を炭材供給ホッノ4
−より溶融還元炉に、3分おきに100kgづつ投入す
る。底吹酸素量は一定に保ち、上吹吹酸量は、5分おき
に、8500 Nm3/h r 、 4000 Nm3
/hr sQ Nm /hr と変化させ、スラグ中の
Cr分の還元を進める。(第2図は溶融還元中のスラグ
中T、Cr%の推移の一例を示す)。
-Second phase of smelting reduction smelting- Stop the supply of semi-reduced pellets and supply carbonaceous material Honno 4
- Inject 100 kg into the melting reduction furnace every 3 minutes. The bottom blown oxygen amount was kept constant, and the top blown acid amount was 8500 Nm3/hr and 4000 Nm3 every 5 minutes.
/hr sQ Nm /hr to proceed with the reduction of Cr in the slag. (Figure 2 shows an example of changes in T and Cr% in slag during melt reduction).

溶融還元炉の最終スラグ組成は、Cab:19%、5I
O2: 20チ、MgO: 24チ、At203:22
チ、T、Cr : 0.6 %、T、Fe : 0.7
%であった。
The final slag composition of the melting reduction furnace is Cab: 19%, 5I
O2: 20chi, MgO: 24chi, At203:22
T, T, Cr: 0.6%, T, Fe: 0.7
%Met.

次いで生成スラグの約90%を中間排滓したのち20分
吹酸を続けて溶湯の脱炭を行う。出湯された金属の成分
は、次の通シである。
Next, after approximately 90% of the produced slag is removed as slag, the molten metal is decarburized by continuing to blow acid for 20 minutes. The components of the tapped metal are as follows:

Cr:53!%、Fe : 37%、C:6.5%、S
l:0.5チ、S : 0.0015%、P : 0.
0035%。
Cr:53! %, Fe: 37%, C: 6.5%, S
l: 0.5chi, S: 0.0015%, P: 0.
0035%.

このように溶融還元第1期は45分で、一方、第2期が
15分、脱炭期20分、出滓、出湯10分でちゃ、各溶
融還元炉へのベレットの供給を行う時間は45分、ベレ
ットの供給を行わない時間が45分となっておシ、ロー
タリーキルン1基と、溶融還元炉2基の操業がマツチン
グしている。
In this way, the first stage of smelting reduction takes 45 minutes, while the second stage takes 15 minutes, the decarburization stage takes 20 minutes, and the slag and hot water taps take 10 minutes.The time required to supply pellets to each smelting reduction furnace is The time during which pellets were not fed was 45 minutes, and the operations of one rotary kiln and two melting reduction furnaces were matched.

なお、本発明で述べた溶融還元炉の数(2)は稼動状態
のものを指す。したがって、もし、溶融還元炉の1基が
耐火物張替など炉整備を行っているとすれば、ロータリ
ーキルン1基、稼動中の溶融還元炉2基、整備中の溶融
還元炉1基という組合せになる。
Note that the number of melting reduction furnaces (2) mentioned in the present invention refers to those that are in operation. Therefore, if one of the smelting reduction furnaces is undergoing furnace maintenance such as replacing refractories, the combination of 1 rotary kiln, 2 smelting reduction furnaces in operation, and 1 smelting reduction furnace undergoing maintenance Become.

以上、フェロクロムを例として述べたが、予備還元炉−
上底吹転炉型溶融還元炉の組合せにより溶融還元を行え
る他の鉄系合金(溶銑、半溶銑、フェロマンがンなど)
にも本発明を適用することができる。また、ロータリー
キルン以外の固相予備還元炉(例:シャフト型、流動層
型)を用いる場合についても、本発明を適用することが
できる。
The above was described using ferrochrome as an example, but the preliminary reduction furnace
Other ferrous alloys (hot metal, semi-hot metal, ferromanganese, etc.) that can be melted and reduced using a top-bottom blowing converter type smelting reduction furnace.
The present invention can also be applied to. The present invention can also be applied to cases where a solid phase pre-reduction furnace (eg, shaft type, fluidized bed type) other than a rotary kiln is used.

(発明の効果) 以上のように本発明は、定常的に操業されるのが適した
予備還元炉と、非定常的な操業によシその長所を発揮で
きる上底吹転炉型溶融還元炉をマツチングさせる方策を
示すものであ夛、鉄鋼材料製造のための中間成品として
鉄系合金を、安価にかつ、後工程にとって望ましい成分
条件にできる(17) 等、経済的な効果が大である。
(Effects of the Invention) As described above, the present invention provides a pre-reduction furnace suitable for steady operation and a top-bottom blown converter melting reduction furnace that can exhibit its advantages in unsteady operation. This method has great economic effects, such as making it possible to use iron-based alloys as intermediate products for manufacturing steel materials at low cost and with desirable composition conditions for subsequent processes (17). .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するのに用いる上底吹転炉型溶融
還元炉を示す説明図、第2図は溶融還元炉操業中のスラ
グ中のT、 Cr含有量の推移の1例を示す図である。 1:ロータリーキルン 2:溶融還元炉3:羽口 4:
上吹ランス 5 : フード 6 :炭材、フラックス用ホ、バμ7
:溶湯 8ニスラグ 9 ニクロムベレット 10 :炭材 11 :気泡 12:ベレット分配装置。 (1g) P寺 間 (rnjn ) 第1頁の続き C発 明 者 斎藤力 北九州市へ幡東区枝光1−1− 1新日本製鐵株式會社生産技術 研究所内 塑発 明 者 井上典幸 北九州市へ幡東区大字前田字洞 岡2142−3日本重化学工業株式 %式% 岡2142−3日本重化学工業株式 会社九州工場内 ・ル出 願 人 日本重化学工業株式会社東京都中央区
日本橋小網町8番 4号
Fig. 1 is an explanatory diagram showing a top-bottom blowing converter type smelting reduction furnace used to carry out the present invention, and Fig. 2 shows an example of changes in T and Cr contents in slag during operation of the smelting reduction furnace. FIG. 1: Rotary kiln 2: Melting reduction furnace 3: Tuyere 4:
Top blowing lance 5: Hood 6: Carbon material, flux E, B μ7
: Molten metal 8 Varnish slag 9 Nichrome pellet 10 : Carbon material 11 : Bubbles 12 : Bullet distribution device. (1g) P Terama (rnjn) Continued from page 1 C Inventor: Riki Saito Kitakyushu City, Nippon Steel Corporation, Industrial Technology Laboratory, 1-1-1 Edamitsu, Hatto-ku Inventor: Noriyuki Inoue, Kitakyushu City 2142-3 Oaza Maeda, Horoka, Hatato-ku Japan Heavy Chemical Industries, Ltd. 2142-3 Oka 2142-3 Japan Heavy Chemical Industries, Ltd., Kyushu Plant, Ru Applicant: Japan Heavy Chemical Industries, Ltd. 8, Nihonbashi Koami-cho, Chuo-ku, Tokyo number 4

Claims (1)

【特許請求の範囲】[Claims] 上底吹転炉型反応容器2基と、該上底吹転炉型反応容器
からの高温排ガスによシ鉄酸化物を含む鉱石或はその成
型物を予熱、予備還元する予備還元炉とを組合せて、鉄
系合金を製造するに際し、上記各上底吹転炉型反応容器
における操業を、予熱・予備還元された鉱石或はその成
型物を装入する時期と装入しない時期の2つに分けると
ともに、各上底吹転炉型反応容器間で操業サイクルをず
らせて、何れかの上底吹転炉型反応容器に予熱・予備還
元された鉱石或はその成型物が装入される状”態で操業
を行なうことを特徴とする鉄系合金の溶融還元製錬法。
Two top-bottom blown converter type reaction vessels and a pre-reduction furnace for preheating and pre-reducing ore containing iron oxide or its molded product using high-temperature exhaust gas from the top-bottom blown converter type reaction vessel. In combination, when manufacturing iron-based alloys, the operation in each of the above-mentioned top-bottom blown converter reactors is divided into two periods: a time when preheated and pre-reduced ore or its molded product is charged, and a time when it is not charged. At the same time, the operation cycle is shifted between each top-bottom blown converter type reaction vessel, and the preheated and pre-reduced ore or its molded product is charged to one of the top-bottom blown converter type reaction vessels. This is a smelting reduction smelting method for iron-based alloys that is characterized by operating in a state of
JP11057083A 1983-06-20 1983-06-20 Smelting method of ferrous alloy by melt reduction Pending JPS602613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11057083A JPS602613A (en) 1983-06-20 1983-06-20 Smelting method of ferrous alloy by melt reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11057083A JPS602613A (en) 1983-06-20 1983-06-20 Smelting method of ferrous alloy by melt reduction

Publications (1)

Publication Number Publication Date
JPS602613A true JPS602613A (en) 1985-01-08

Family

ID=14539176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11057083A Pending JPS602613A (en) 1983-06-20 1983-06-20 Smelting method of ferrous alloy by melt reduction

Country Status (1)

Country Link
JP (1) JPS602613A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240708A (en) * 1986-04-12 1987-10-21 Ishikawajima Harima Heavy Ind Co Ltd Method for melting steel raw material
JPS62247018A (en) * 1986-04-18 1987-10-28 Ishikawajima Harima Heavy Ind Co Ltd Melting method for raw material for steel products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240708A (en) * 1986-04-12 1987-10-21 Ishikawajima Harima Heavy Ind Co Ltd Method for melting steel raw material
JPS62247018A (en) * 1986-04-18 1987-10-28 Ishikawajima Harima Heavy Ind Co Ltd Melting method for raw material for steel products

Similar Documents

Publication Publication Date Title
US11421289B2 (en) Method and apparatus for the production of cast iron, cast iron produced according to said method
CA2236587C (en) Duplex procedure for the production of metals and metal alloys from oxidic metal ores
JPS6123245B2 (en)
JP5132155B2 (en) Steel and steel making
US3947267A (en) Process for making stainless steel
JPS6250545B2 (en)
JPS602613A (en) Smelting method of ferrous alloy by melt reduction
JPS609815A (en) Production of high chromium alloy by melt production
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
JPH0435529B2 (en)
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JPH06940B2 (en) Method for smelting reduction refining of high manganese iron alloy
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JP2713795B2 (en) Stainless steel smelting method
JPH0551616A (en) Production of low-s, low-p molten iron
JPS609814A (en) Production of high chromium alloy unsaturated with carbon by melt reduction
JPS6152208B2 (en)
JPS59113159A (en) Method for refining high chromium alloy by melting and reduction
JPH0892627A (en) Production of stainless steel
JPS59232205A (en) Production of molten high chromium metal unsaturated with carbon
JPH032312A (en) Production of low-phosphorus pig iron
JPS605088A (en) Slag for use of soil improver
JPS59140349A (en) Method for increasing combustion rate of carbonaceous material under coexistence of large amount of slag
JPH032933B2 (en)
JPS59232207A (en) Producton of molten base metal for stainless steel by melt reduction of chromium ore