JPS60261134A - Electron-ray drawing device - Google Patents

Electron-ray drawing device

Info

Publication number
JPS60261134A
JPS60261134A JP59117216A JP11721684A JPS60261134A JP S60261134 A JPS60261134 A JP S60261134A JP 59117216 A JP59117216 A JP 59117216A JP 11721684 A JP11721684 A JP 11721684A JP S60261134 A JPS60261134 A JP S60261134A
Authority
JP
Japan
Prior art keywords
electron beam
electromagnetic lens
signal
diameter
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117216A
Other languages
Japanese (ja)
Inventor
Moriyuki Isobe
磯部 盛之
Fumitoshi Sato
文俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP59117216A priority Critical patent/JPS60261134A/en
Publication of JPS60261134A publication Critical patent/JPS60261134A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To shorten total drawing time while maintaining the accuracy of drawing by changing over the diameter of electron beam projected to a material in response to the size of a figure. CONSTITUTION:Electron rays generated from an electron gun 1 and accelerated are focussed by electromagnetic lenses 2, 3, and projected onto the material to be drawn 5 arranged onto a stage 4. When a comparatively large figure is drawn, each electromagnetic lens 2, 3 is supplied with excitation currents so that electron beam having a comparatively large diameter are projected to the material 5, when a small figure is drawn, several electromagnetic lens is supplied with excitation currents so that the electron beam having a small diameter are projected. Excitation currents for increasing the diameter of electron beam are set previously to registers 6a, 9a, and excitation currents for reducing the diameter of electron beam are set beforehand to registers 6b, 9b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子線描画装置に関し、特に、描画時間の短
縮が可能な電子線描画装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electron beam lithography system, and particularly to an electron beam lithography system that can shorten lithography time.

[従来技術] 電子線描画装置においては、加速された電子線を集束レ
ンズによって集束し、微小径のガウシャン分布をし7j
電子線を被描画材料上に照射すると共に該電子線を偏向
し、該電子線の偏向と該材料の機械的な移動とによって
該材料上に所望図形の描画を行っている。通常、描画材
料上の電子線の径は、描画づべき図形内の最小図形寸法
に対応しており、一般的には、最小図形寸法の1/4〜
115とされている。この描画すべき図形内には、各種
の大きさのものが含まれており、づべてを最小図形寸法
に対応した径の電子線で描画すると多大な時間を費すこ
とになる。
[Prior art] In an electron beam lithography system, an accelerated electron beam is focused by a focusing lens to form a Gaussian distribution with a minute diameter.
An electron beam is irradiated onto a material to be drawn and the electron beam is deflected, and a desired figure is drawn on the material by deflecting the electron beam and mechanically moving the material. Normally, the diameter of the electron beam on the drawing material corresponds to the minimum figure size within the figure to be drawn, and is generally 1/4 to 1/4 of the minimum figure size.
It is said to be 115. The figure to be drawn includes objects of various sizes, and it would take a lot of time to draw all of them with an electron beam having a diameter corresponding to the minimum figure size.

[発明の目的1 本発明は上述した点に鑑みてなされたもので、高い精度
の描画を高速で行うことのできる電子線描画装置を提供
することを目的としている。
[Object of the Invention 1] The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an electron beam lithography apparatus that can perform high-precision lithography at high speed.

[発明の構成] 本発明に基づく電子線描画装置は、電子線発生部と、該
電子線発生部からの加速された電子線を被描画材料上に
集束するための?Hi!レンズと、該材料上の電子線径
を予め定めた複数種に切換えるため、該電磁レンズに異
なった励磁電流を切換えて供給し得るレンズ電源と、該
電磁レンズの消磁を行うための消磁信号を発生する手段
と、該レンズ、電源からの励磁電流と該消磁信号発生手
段からの消磁信号を切換えて該電磁レンズに供給するた
めの切換え手段と、該被描画材料上の電子線照射位置を
ステップ状に変化させるだめの電子線偏向手段と、描画
データに基づいて該電磁レンズの励磁電流の切換えを指
令する制御手段とを備えており、該制御手段は該励磁電
流の切換えに先立って該電磁レンズに励磁電流に代えて
消磁信号を供給□するJ:うに構成されている。
[Structure of the Invention] An electron beam lithography apparatus according to the present invention includes an electron beam generating section and a device for focusing an accelerated electron beam from the electron beam generating section onto a material to be lithography. Hi! A lens, a lens power supply capable of switching and supplying different excitation currents to the electromagnetic lens in order to switch the diameter of the electron beam on the material to a plurality of predetermined types, and a demagnetizing signal for demagnetizing the electromagnetic lens. a switching means for switching and supplying the excitation current from the lens, an excitation current from the power supply and a demagnetizing signal from the demagnetizing signal generating means to the electromagnetic lens, and a step for changing the electron beam irradiation position on the material to be drawn. The electron beam deflector is provided with an electron beam deflecting means for changing the shape of the electromagnetic lens, and a control means for instructing switching of the excitation current of the electromagnetic lens based on drawing data, and the control means is configured to control the electromagnetic lens before switching the excitation current. A demagnetizing signal is supplied to the lens in place of the excitation current.

[実施例] 以下、本発明の実施例を添附図面に基づいて詳述づる。[Example] Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図において、1は電子銃であり、該電子銃1から発
生し、加速された電子線は、電磁レンズ2.3にj;っ
て集束され、ステージ4上に配置された被描画材料5上
に照射される。該電磁レンズ2には、レジスタ5a、6
bに予めセットされた所望電流のいずれかがスイッチS
1によって選択され、増幅器7によって増幅されて供給
される。
In FIG. 1, reference numeral 1 denotes an electron gun, and an accelerated electron beam generated from the electron gun 1 is focused by an electromagnetic lens 2. 5. The electromagnetic lens 2 includes resistors 5a and 6.
Either of the desired currents preset in b is applied to the switch S.
1, and is amplified and supplied by amplifier 7.

更に、該スイッチS1と増幅器7との間にはスイッチS
2が設けられており、スイッチS1によって選択された
励磁電流と消磁信号発生回路8からの消磁信号とが選択
的に該電磁レンズ2に供給されるように4M感されてい
る。又、該電磁レンズ3には、Lノジスタ9a 、9b
に予めセットされた所望電流のいずれかがスイッチS3
によって選択され、増幅器10によって増幅されて供給
される。
Further, a switch S is connected between the switch S1 and the amplifier 7.
2 is provided, and 4M is sensed so that the excitation current selected by the switch S1 and the demagnetizing signal from the demagnetizing signal generation circuit 8 are selectively supplied to the electromagnetic lens 2. Further, the electromagnetic lens 3 includes L nozzles 9a and 9b.
Any of the desired currents preset to switch S3
and is amplified and supplied by the amplifier 10.

更に、該スイッチS3と増幅器10との間にはスイッチ
S4が設けられており、スイッチS3によって選択され
た励磁電流と消磁信号発生回路8からの消磁信号とが選
択的に該電磁レンズ3に供給されるように構成されてい
る。該材料5に照射される電子線は、静電偏向器11に
供給される偏向信号に応じてステップ状に偏向され、該
材料−Fの電子線照射位置は変えられる。該材料5への
描画は、該電子線の偏向とステージ4の移動によって行
われるが、該静電偏向器11に供給される偏向信号は、
メモリ12に記憶されている描画データに基づいてデー
タコントローラ13.コンピュータ14.、D−A変換
器15.増幅器16を介して供給され、該ステージ4は
描画データに基づく移動信号により、ステージ駆動機構
17によって駆動される。該コンピュータ14は描画デ
ータに基づいて、各スイッチの切換えを制御すると共に
、ブランキング電極18にブランキング信号を供給づる
。該材料の上部には、反射電子検出器19が配置されて
おり、該検出器19によって検出された信号は増幅器2
0によって増幅され、該コンビコータ14に供給される
。該増幅器20の増幅率は帰還抵抗21a、21bによ
って決定されるが、該抵抗21a、21bはコンピュー
タ14がらの指令により、スイッチS5によってそのい
ずれかが選択される。
Further, a switch S4 is provided between the switch S3 and the amplifier 10, and the excitation current selected by the switch S3 and the demagnetizing signal from the demagnetizing signal generation circuit 8 are selectively supplied to the electromagnetic lens 3. is configured to be The electron beam irradiated onto the material 5 is deflected in a stepwise manner according to a deflection signal supplied to the electrostatic deflector 11, and the electron beam irradiation position on the material -F is changed. Drawing on the material 5 is performed by deflecting the electron beam and moving the stage 4, but the deflection signal supplied to the electrostatic deflector 11 is
Based on the drawing data stored in the memory 12, the data controller 13. Computer 14. , DA converter 15. The stage 4 is driven by a stage drive mechanism 17 using a movement signal based on the drawing data. The computer 14 controls switching of each switch based on the drawing data, and also supplies a blanking signal to the blanking electrode 18. A backscattered electron detector 19 is arranged on the top of the material, and the signal detected by the detector 19 is sent to an amplifier 2.
0 and supplied to the combi coater 14. The amplification factor of the amplifier 20 is determined by the feedback resistors 21a and 21b, and one of the resistors 21a and 21b is selected by the switch S5 according to a command from the computer 14.

上述した如き構成の動作を、第2図に示す図形を描画づ
る場合を例に以下説明する。
The operation of the above-mentioned configuration will be explained below by taking as an example the case where the figure shown in FIG. 2 is drawn.

第2図はチップCを示しており、該チップCの端部には
位置合せ用のマークMが付されており、該チップC内に
は、比較的大きい図形りと小さい図形Sとが描画される
。基本的に、該大きい図形l−を描画するに当っては、
比較的大きな径の電子線が該材料5に照射されるように
各電磁レンズ2゜3には励!i電流が供給され、又、小
さい図形Sを描画するに当っては、比較的小さな径の電
子線が該材料5に照射されるように各電磁レンズに励磁
電流が供給される。該電子線の径を大きくするための電
磁レンズ2,3の励磁電流は夫々レジスタ6a、9aに
セットされており、又、電子線の径を小さくするための
電磁レンズ2.3の励磁電流は夫々レジスタ6b、gb
にセットされている。
FIG. 2 shows a chip C. An alignment mark M is attached to the end of the chip C, and within the chip C, a relatively large figure and a small figure S are drawn. be done. Basically, when drawing the large figure l-,
Each electromagnetic lens 2°3 is energized so that the material 5 is irradiated with an electron beam of relatively large diameter. i current is supplied, and when drawing a small figure S, an excitation current is supplied to each electromagnetic lens so that the material 5 is irradiated with an electron beam having a relatively small diameter. The excitation currents of the electromagnetic lenses 2 and 3 for increasing the diameter of the electron beam are set in registers 6a and 9a, respectively, and the excitation current of the electromagnetic lenses 2.3 for decreasing the diameter of the electron beam is set as follows. registers 6b and gb respectively
is set to .

この結果、電子線の径を大きくづる場合、電子銃からの
電子線は第1の電磁レンズ2によって図中実線で示す如
く比較的小さく集束され、電磁レンズ3の絞りを通過す
る電子線が多くされ、材料5に照射される電子線電流値
は大きくされる。一方、電子線の径を小さくする場合、
電子銃1からの電子線は第1の電磁レンズ2によって図
中点線で示す如く比較的大きく集束され、電磁レンズの
絞りを通過する電子線は少なくされることから、材料5
に照射される電子線電流値は小さくされる。このように
複数の電磁レンズを使用して材料5上に照射される電子
線の径と電子線電流値を制御する理由は、材料に塗布さ
れているレンズ]・の感度が材料全面に渡って一定であ
ることから、電子線の径を大きくすると、それに応じて
電子線の電流値を増加させ、電子線の径が相異しても、
常に材料4には略一定の電流密度の電子線を照射する必
要があるためである。
As a result, when the diameter of the electron beam is increased, the electron beam from the electron gun is focused into a relatively small size by the first electromagnetic lens 2, as shown by the solid line in the figure, and many of the electron beams pass through the aperture of the electromagnetic lens 3. The electron beam current value with which the material 5 is irradiated is increased. On the other hand, when reducing the diameter of the electron beam,
The electron beam from the electron gun 1 is relatively largely focused by the first electromagnetic lens 2 as shown by the dotted line in the figure, and the number of electron beams passing through the aperture of the electromagnetic lens is reduced.
The electron beam current value irradiated to is made small. The reason why multiple electromagnetic lenses are used to control the diameter of the electron beam irradiated onto the material 5 and the electron beam current value is that the sensitivity of the lens coated on the material extends over the entire surface of the material. Since it is constant, when the diameter of the electron beam is increased, the current value of the electron beam is increased accordingly, and even if the diameter of the electron beam is different,
This is because it is necessary to always irradiate the material 4 with an electron beam having a substantially constant current density.

さて、第2図に示した図形の描画データはメモリ12に
記憶されており、該データはデータコントローラ13を
介して]ンビュータ14に供給される。該データに基づ
き、まず小さな図形Sの描画が開始されるが、該コンピ
ュータ14は最初にブランキング信号をブランキング電
極18に供給し、電子線の材料5への照射を停止する。
Now, the drawing data for the figure shown in FIG. 2 is stored in the memory 12, and the data is supplied to the computer 14 via the data controller 13. Based on the data, drawing of the small figure S is first started, but the computer 14 first supplies a blanking signal to the blanking electrode 18 and stops irradiating the material 5 with the electron beam.

その後、スイッチS2.34を図中点線の状態に接続し
、消磁信号発生回路8からの消磁信号が増幅器7゜10
を介して夫々電磁レンズ2.3に供給される。
Thereafter, the switch S2.34 is connected to the state indicated by the dotted line in the figure, and the degaussing signal from the degaussing signal generation circuit 8 is transmitted to the amplifier 7.10.
are respectively supplied to electromagnetic lenses 2.3.

該消磁信号は第3図に示す如く徐々にその強度が減少す
る正弦波であり、この信号の供給により、該電磁レンズ
2.3は消磁される。該レンズの消磁が終了すると、該
コンピュータはスイッチS2゜S4を図中実線の状態に
切換え、スイッチS1゜S3を点線の状態に切換え、レ
ジスタ6bにセットされている励磁電流を電磁レンズ2
に、レジスタ9bにセットされている励磁電流を電磁レ
ンズ3に供給する。更に、増幅器20の帰還抵抗は、ス
イッチS5によって比較的増幅率が高くなるように21
f)が選択される。この状態でステージ4が移動され、
マークMを含むフィールド部分が電子線光軸上に移動さ
せられ、該マーク部分への電子線の照射により、該マー
クの位置検出が行われる。この時、該増幅器20の増幅
率は比較的高くされており、該材料への電子線電流値が
低い状態であっても、マーク検出信号を所定の大きさの
信号としてコンピュータ14に供給することができ該コ
ンピュータにおいては、用意されたスレッショールドレ
ベル以上の信号をマーク信号として検知する。該マーク
位置の検出後、該マーク位置を基準として該チップC内
の小さな図形Sの描画が、該ステージ4の移動、偏向器
11への偏向信号の供給、ブランキング電極へのブラン
キング信号の制御によって行われる。この時、ステップ
状偏向信号のステップ幅は、電子線の径に応じて狭くさ
れている。該チップ内の小さな図形Sの描画が全て終了
リ−ると、コンピュータ14は、ブランキング電極18
へのブランキング信号の供給によって電子線の材料への
照射を再び停止し、スイッチS2.84を点線の状態に
切換え、消磁信号を各電磁レンズ2.3に供給し、該レ
ンズの消磁が行われる。該消磁が終了後、該スイッチ8
1〜S5は図中実線の状態に切換えられ、電磁レンズ2
にはレジスタ6aからの励磁電流が供給され、電磁レン
ズ3にはレジスタ9aからの励磁電流が供給される、1
その結果、該材料5に照射される電子線の径は比較的大
きくされると共に、電子線電流値は該径の大きさに応じ
て大きくされる。その後、ステージ5はマーク部分が光
軸上に配置されるように移動させられ、径の大きな電子
線によるマーク位置の検出が行われる。この際、電流値
が高く太い径の電子線によるマーク部分の走査に伴い、
反射電子検出器19によって検出される信号の強度は必
然的に大きくなるが、増幅器20の増幅度は帰還抵抗2
1aが選択されているために比較的小さくされており、
コンピュータ14に供給される検出信号の強度レベルは
、該コンピュータに用意されたスレッショールドレベル
に最適なものとされる。該マークMの位置の検出が終了
した後、該チップC内の大きな図形1−の描画が、コン
ピュータ14からのステージ4.偏向器11.ブランキ
ング電極18の制御によって実行される。この時、ステ
ップ状偏向信号のステップ幅は、電子線の径に応じて広
くされ、単位面積当りのステップ数は少なくなり、小さ
な電子線径での描画時に比較して大幅な描画時間の短縮
が可能となる。
The demagnetizing signal is a sine wave whose intensity gradually decreases as shown in FIG. 3, and by supplying this signal, the electromagnetic lens 2.3 is demagnetized. When the lens has been demagnetized, the computer switches the switches S2 and S4 to the state shown by the solid line in the figure, switches the switch S1 and S3 to the state shown by the dotted line, and transfers the excitation current set in the register 6b to the electromagnetic lens 2.
Then, the excitation current set in the register 9b is supplied to the electromagnetic lens 3. Further, the feedback resistor of the amplifier 20 is set to 21 by the switch S5 so that the amplification factor is relatively high.
f) is selected. In this state, stage 4 is moved,
A field portion including the mark M is moved onto the electron beam optical axis, and the position of the mark is detected by irradiating the mark portion with the electron beam. At this time, the amplification factor of the amplifier 20 is set relatively high, and even if the electron beam current value to the material is low, the mark detection signal can be supplied to the computer 14 as a signal of a predetermined magnitude. The computer detects a signal above a prepared threshold level as a mark signal. After detecting the mark position, drawing of a small figure S in the chip C using the mark position as a reference involves moving the stage 4, supplying a deflection signal to the deflector 11, and supplying a blanking signal to the blanking electrode. done by control. At this time, the step width of the stepped deflection signal is narrowed according to the diameter of the electron beam. When all the small figures S in the chip have been drawn, the computer 14 closes the blanking electrode 18.
The irradiation of the material with the electron beam is stopped again by supplying a blanking signal to the blanking signal, the switch S2.84 is switched to the dotted line state, and a demagnetizing signal is supplied to each electromagnetic lens 2.3, so that the lens is demagnetized. be exposed. After the degaussing is completed, the switch 8
1 to S5 are switched to the state shown by the solid line in the figure, and the electromagnetic lens 2
An excitation current is supplied from the resistor 6a to the electromagnetic lens 3, and an excitation current from the resistor 9a is supplied to the electromagnetic lens 3.
As a result, the diameter of the electron beam irradiated onto the material 5 is made relatively large, and the electron beam current value is made large in accordance with the size of the diameter. Thereafter, the stage 5 is moved so that the mark portion is placed on the optical axis, and the mark position is detected using a large diameter electron beam. At this time, as the mark part is scanned by an electron beam with a high current value and a large diameter,
Although the intensity of the signal detected by the backscattered electron detector 19 inevitably increases, the amplification degree of the amplifier 20 increases due to the feedback resistor 2.
Since 1a is selected, it is relatively small,
The intensity level of the detection signal supplied to the computer 14 is optimized for the threshold level provided in the computer. After the detection of the position of the mark M is completed, drawing of the large figure 1- in the chip C is performed by the computer 14 at the stage 4. Deflector 11. This is executed by controlling the blanking electrode 18. At this time, the step width of the stepped deflection signal is widened according to the diameter of the electron beam, the number of steps per unit area is reduced, and the writing time is significantly reduced compared to when writing with a small electron beam diameter. It becomes possible.

[発明の変形] 本発明は、上述した実施例に限定されず、幾多の変形が
可能である。例えば、説明の容易さから、特定のチップ
への描画を例に説明したが、通常、材料4としては多数
のチップを含むウェハが用いられるため、その場合には
、最初に電子線の径を小さくして各チップ内の小さな図
形の全てを描画し、その後、電子線の径を大きくしてウ
ェハに含まれる全てのチップ内の大きな図形を描画する
ことは好ましい。又、描画の順序は最初に大きな図形を
描画し、その後、小さな図形の描画を行うようにしても
良い。更に、電子線の径の切換えは、2段階に限定され
ず、ウェハ内の各チップに描画″リベき図形の種類に応
じて3段階以上に切換えることは可能である。更に又、
スイッチS5によって増幅器20の増幅率を変化させる
ようにしたが、該増幅器の増幅率は一定とし、コンピュ
ータ14のスレッショールドレベルを材料に照射する電
子線の径(電流値)に応じて変化させるように構成して
b良い。
[Modifications of the Invention] The present invention is not limited to the embodiments described above, and can be modified in many ways. For example, for ease of explanation, we have explained drawing on a specific chip as an example, but since a wafer containing many chips is usually used as the material 4, in that case, the diameter of the electron beam must first be determined. It is preferable to draw all the small figures in each chip by increasing the diameter of the electron beam, and then to draw the large figures in all the chips included in the wafer by increasing the diameter of the electron beam. Further, the drawing order may be such that a large figure is drawn first, and then a small figure is drawn. Further, the diameter of the electron beam is not limited to two stages, but can be changed to three or more stages depending on the type of pattern to be drawn on each chip within the wafer.Furthermore,
The amplification factor of the amplifier 20 is changed by the switch S5, but the amplification factor of the amplifier is kept constant, and the threshold level of the computer 14 is changed according to the diameter (current value) of the electron beam irradiated to the material. It is good to configure it like this.

[効果] 以上詳述した如く、本発明においては、材料へ照射され
る電子線の径を描画する図形の寸法に応じて切換え、比
較的大きな寸法の図形に対しては、大きな径の電子線を
照射して図形の描画を行うようにしているため、要求さ
れる描画精度を維持した上でトータルの描画時間を短縮
することができる。
[Effect] As detailed above, in the present invention, the diameter of the electron beam irradiated onto the material is changed according to the dimensions of the figure to be drawn, and for relatively large figures, the diameter of the electron beam with a large diameter is changed. Since the figure is drawn by irradiating the image, the total drawing time can be shortened while maintaining the required drawing accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
チップに描画される図形を示す図、第3図は消磁信号を
示す図である。 1・・・電子銃 2.3・・・電磁レンズ 4・・・ステージ 5・・・被描画材料 6.9・・・レジスタ 7.10.16.20・・・増幅器 8・・・消磁信号発生回路 11・・・静電偏向器 12・・・メモリ 13・・・データコントローラ 14・・・コンピュータ 15・・・D−A変換器 17・・・ステージ駆動機構 18・・・ブランキング電極 19・・・反射電子検出器 21・・・帰還抵抗
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a figure drawn on a chip, and FIG. 3 is a diagram showing a degaussing signal. 1... Electron gun 2.3... Electromagnetic lens 4... Stage 5... Material to be drawn 6.9... Register 7.10.16.20... Amplifier 8... Demagnetization signal Generation circuit 11...electrostatic deflector 12...memory 13...data controller 14...computer 15...DA converter 17...stage drive mechanism 18...blanking electrode 19 ... Backscattered electron detector 21 ... Feedback resistor

Claims (3)

【特許請求の範囲】[Claims] (1)電子線発生部と、該電子線発生部からの加速され
た電子線を被描画材料上に集束するための電磁レンズと
、該材料上の電子線径を予め定めた複数種に切換えるた
め、該電磁レンズに異なった励磁電流を切換えて供給し
得るレンズ電源と、該電磁レンズの消磁を行うための消
磁信号を発生する手段ど、該レンズ電源からの励磁電流
と該消磁信号発生手段からの消磁信号を切換えて該電磁
レンズに供給するための切換え手段と、該被描画材料上
の電子線照射位置をステップ状に変化させるための電子
線偏向手段と、描画データに基づいて該電磁レンズの励
磁電流の切換えを指令する制御手段とを備えており、該
制御手段は該励磁電流の切換えに先立って該電磁レンズ
に励磁電流に代えて消磁信号を供給するように構成され
ている電子線描画装置。
(1) An electron beam generating section, an electromagnetic lens for focusing the accelerated electron beam from the electron beam generating section onto a material to be drawn, and switching the diameter of the electron beam on the material to a plurality of predetermined types. Therefore, a lens power supply capable of switching and supplying different excitation currents to the electromagnetic lens, a means for generating a degaussing signal for demagnetizing the electromagnetic lens, and an excitation current from the lens power supply and a means for generating the degaussing signal. a switching means for switching a demagnetizing signal from the electromagnetic lens and supplying the demagnetizing signal to the electromagnetic lens; an electron beam deflecting means for changing the electron beam irradiation position on the drawing material in a stepwise manner; control means for instructing switching of the excitation current of the lens; the control means is configured to supply a demagnetization signal to the electromagnetic lens in place of the excitation current prior to switching of the excitation current; Line drawing device.
(2)該材料への電子線の照射に基づいて、該材料から
得られる電子を検出する検出器を設け、該電磁レンズへ
の励磁電流の切換えに連動して該検出器の出力信号の増
幅度を変化させるようにした特許請求の範囲第1項記載
の電子線描画装置。
(2) Provide a detector that detects electrons obtained from the material based on irradiation of the material with an electron beam, and amplify the output signal of the detector in conjunction with switching the excitation current to the electromagnetic lens. An electron beam lithography apparatus according to claim 1, wherein the electron beam lithography apparatus is configured to change the degree of intensity.
(3)該電磁レンズの消磁が行われている時に、該被描
画材料への電子線の照射が阻止される特許請求の範囲第
1項記載の電子線描画装置。
(3) The electron beam drawing apparatus according to claim 1, wherein irradiation of the material to be drawn with the electron beam is prevented when the electromagnetic lens is demagnetized.
JP59117216A 1984-06-07 1984-06-07 Electron-ray drawing device Pending JPS60261134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117216A JPS60261134A (en) 1984-06-07 1984-06-07 Electron-ray drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117216A JPS60261134A (en) 1984-06-07 1984-06-07 Electron-ray drawing device

Publications (1)

Publication Number Publication Date
JPS60261134A true JPS60261134A (en) 1985-12-24

Family

ID=14706265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117216A Pending JPS60261134A (en) 1984-06-07 1984-06-07 Electron-ray drawing device

Country Status (1)

Country Link
JP (1) JPS60261134A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489579A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron ray exposure system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489579A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron ray exposure system

Similar Documents

Publication Publication Date Title
KR100241995B1 (en) Electron beam exposing device
US4199689A (en) Electron beam exposing method and electron beam apparatus
US3922546A (en) Electron beam pattern generator
US4853870A (en) Electron beam exposure system
EP0421695B1 (en) Electron beam exposuring device and exposuring method using the same
US5631113A (en) Electron-beam exposure system for reduced distortion of electron beam spot
US4829444A (en) Charged particle beam lithography system
US5153441A (en) Electron-beam exposure apparatus
JPS60261134A (en) Electron-ray drawing device
US6344655B1 (en) Multicolumn charged-particle beam lithography system
JP2904620B2 (en) Charged particle beam drawing method
JP2914926B2 (en) Charged particle beam exposure method
JPS62183514A (en) Ion beam lithography equipment
JP3157968B2 (en) Charged particle beam exposure method
JP3313586B2 (en) Electron beam lithography system
JPS58145122A (en) Electron beam exposure device
JPH0423315A (en) Electron beam lithography equipment
JPS5998523A (en) Electron beam exposing apparatus
JP4583936B2 (en) Charged particle beam device and control method of charged particle beam device
JPH05190432A (en) Charged particle beam aligner
JP2557847B2 (en) Operation analysis method and operation analysis apparatus for semiconductor integrated circuit
JPH0226371B2 (en)
JPH0323617A (en) Ion beam lithography
JPS60201624A (en) Electron beam drawing equipment
JPS62285417A (en) Apparatus for electron beam exposure