JPS6026058B2 - Optical fiber coating method - Google Patents

Optical fiber coating method

Info

Publication number
JPS6026058B2
JPS6026058B2 JP52053097A JP5309777A JPS6026058B2 JP S6026058 B2 JPS6026058 B2 JP S6026058B2 JP 52053097 A JP52053097 A JP 52053097A JP 5309777 A JP5309777 A JP 5309777A JP S6026058 B2 JPS6026058 B2 JP S6026058B2
Authority
JP
Japan
Prior art keywords
optical fiber
coating
coating tank
polymer
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52053097A
Other languages
Japanese (ja)
Other versions
JPS53138748A (en
Inventor
聰 青木
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52053097A priority Critical patent/JPS6026058B2/en
Publication of JPS53138748A publication Critical patent/JPS53138748A/en
Publication of JPS6026058B2 publication Critical patent/JPS6026058B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 ‘1’ 発明の利用分野 本発明は、光フアィバに均一な膜厚でポリマを被覆する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION '1' Field of Application of the Invention The present invention relates to a method of coating an optical fiber with a polymer in a uniform film thickness.

■ 従来技術 従来、低損失光フアィバは、気相化学反応法により作製
されたものが主流をしめている。
■Prior Art Conventionally, low-loss optical fibers have been mainly produced by gas-phase chemical reaction methods.

この気相化学反応法により作製された光ファイバプリフ
オーム(第1図の1)には多くの気泡が含まれ、またそ
の表面に多くの傷がついている。そのため、このような
プリフオームを線引きして得たフアィバの機械強度は少
さく、線引き後、あるいは線引きと同時に光フアィバ外
周表面にポリマを被覆して補強やその後の保護が行なわ
れている。本発明者も、これらの従来方法を検討した。
まず、第1図に示すようにに線引きと同時にポリマを被
覆する方法を検討した。第1図はプリフオーム1を一定
速度で加熱源3により加熱された炉芯管2内に送り込み
、加熱、溶融されたプリフオームの下端部を引き出して
ドラム6に取りつけ、光フアイバ12がモータコントロ
ーラ8で駆動されるドラム6により巻き取られる間に、
光フアィバの線蓬dを検出器4で検出し、線径測定装置
5で測定し、その後、ポリマ被覆槽9、加熱装置11を
通して光フアィバ外周表面にポリマ10を被覆する装置
の概略図である。光フアィバに線径変動がある場合には
線径測定袋贋5の出力を制御回路7に入力し、制御回路
の出力信号をモータコントローラ8にフィードバックし
てドラム6の回転数を変えて線径制御を行なう。ところ
がこの装置を用いて種々の実験を行なった結果、次のよ
うな問題点のあることがわかった。すなわち、光ファイ
バプリフオームの外蓬変動や外乱によるプリフオーム溶
融温度のゆらぎがあると、光フアィバには線蓬変動が生
ずる。すると線径制御機構によりドラム6の回転数が変
化し、巻き取り速度を変化させて線蓬制御が働く。この
線径制御により光フアイバ素線の線径は一定に保たれる
が、巻き取り速度の変化により、光フアィバの被覆槽9
の通過速度が変化し、被覆膜厚に変動が生じた。また、
被覆剤10は被覆を続けるうちに消費され、その液面は
徐々に下がってくるため、被覆剤10を被覆槽9の底部
にあるノズルより押し出す圧力が低下し、被覆膜厚は徐
々に小さくなった。第2図に、第1図に示す装置により
線引きされた光フアィバ黍線12の線蚤dを検出器4、
測定器5により測定した結果、被覆された光フアィバ1
3の線蓬がを検出器4′、測定器5′により測定した結
果を示す。これは外径8肌のプリフオームを7柵/肌で
加熱源に送り込み、線引温度1950o○で、光フアィ
バの糠径を130山肌に設定し、ポリマ剤にジメチルホ
ルムァミド溶液内にポリフッソ化ピニ1′デンを溶解し
た液を用いたものである。第2図に示されるように、フ
アィバ秦線の線径は線径制様により、130±lAmと
なっているが、被覆された光フアィバの線径には変動が
生じている。このように被覆膜厚が不均一であると、被
覆による補強の効果が低下したり、伝送特性にも悪影響
がある。‘31 発明の目的本発明は上記従来法の問題
点を解決し、光フアィバ外周表面にボリマを均一に被覆
することを目的とする。
The optical fiber preform (1 in FIG. 1) manufactured by this gas phase chemical reaction method contains many air bubbles and has many scratches on its surface. Therefore, the mechanical strength of the fiber obtained by drawing such a preform is low, and the outer peripheral surface of the optical fiber is coated with a polymer after or simultaneously with drawing for reinforcement and subsequent protection. The present inventor also studied these conventional methods.
First, as shown in FIG. 1, a method of coating the wire with a polymer at the same time as drawing the wire was investigated. In FIG. 1, a preform 1 is fed at a constant speed into a furnace core tube 2 heated by a heating source 3, the lower end of the heated and melted preform is pulled out and attached to a drum 6, and an optical fiber 12 is connected to a motor controller 8. While being wound up by the driven drum 6,
FIG. 2 is a schematic diagram of an apparatus that detects the wire diameter d of the optical fiber with a detector 4, measures it with a wire diameter measuring device 5, and then coats the outer peripheral surface of the optical fiber with a polymer 10 through a polymer coating tank 9 and a heating device 11. . If there is a change in the diameter of the optical fiber, the output of the wire diameter measurement bag counterfeit 5 is input to the control circuit 7, and the output signal of the control circuit is fed back to the motor controller 8 to change the rotation speed of the drum 6 to measure the wire diameter. control. However, as a result of conducting various experiments using this device, it was found that there were the following problems. That is, when there is a fluctuation in the preform melting temperature due to fluctuations in the thickness of the optical fiber preform or disturbances, fluctuations in the thickness of the optical fiber occur. Then, the rotational speed of the drum 6 is changed by the wire diameter control mechanism, and the winding speed is changed to perform wire wrapping control. This wire diameter control keeps the wire diameter of the optical fiber constant, but due to changes in the winding speed, the optical fiber coating tank 9
The passing speed of the coating changed, and the coating thickness varied. Also,
As the coating continues, the coating agent 10 is consumed and its liquid level gradually decreases, so the pressure to push out the coating agent 10 from the nozzle at the bottom of the coating tank 9 decreases, and the coating film thickness gradually decreases. became. In FIG. 2, the line flea d of the optical fiber thread 12 drawn by the apparatus shown in FIG. 1 is detected by the detector 4,
As a result of measurement by the measuring device 5, the coated optical fiber 1
3 shows the results of measuring the line 3 with the detector 4' and the measuring device 5'. In this process, a preform with an outer diameter of 8 skins is sent to a heating source with 7 rails/skin, the drawing temperature is 1950o○, the bran diameter of the optical fiber is set to 130 mounds, and the polymer agent is polyfluorinated in dimethylformamide solution. A solution containing pini-1'dene is used. As shown in FIG. 2, the wire diameter of the fiber wire is 130±lAm due to the wire diameter regulation, but the wire diameter of the coated optical fiber varies. If the thickness of the coating is non-uniform in this way, the reinforcing effect of the coating will be reduced and the transmission characteristics will also be adversely affected. '31 OBJECTS OF THE INVENTION It is an object of the present invention to solve the problems of the above-mentioned conventional methods and to uniformly coat the outer circumferential surface of an optical fiber with a polymer.

‘41 発明の総括説明 本発明は、ポリマ被覆槽の出口部が弾力性のある材料で
形成されており、この世口部に外圧を加えて変形させる
ことにより、出口部の内径を自在に変えることのできる
ポリマ被覆槽を用い、被覆された光フアィバの線径検出
量を、出口部に外圧を加えるためのガスノズルのガス流
量制御回路に入力し、ガス流量を変化させることで、ポ
リマ被覆槽出口部の内径を変化させ、被膜膜厚の均一な
光フアィバを得る被覆方法である。
'41 General description of the invention The present invention provides that the outlet part of a polymer coating tank is formed of an elastic material, and that the inner diameter of the outlet part can be freely changed by applying external pressure to the mouth part and deforming it. Using a polymer-coated tank that can be This is a coating method that obtains an optical fiber with a uniform coating thickness by changing the inner diameter of the fiber.

‘51 実施例 以下、本発明を実施例を参照して詳細に説明する。'51 Example Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図に本発明による、ポリマ被覆槽の断面図を示す。
このポリマ被覆槽は内筒14を外筒15よりなり、内筒
14と外筒15の上部は壁16により閉じられており、
下部は内筒14の周囲に隙間をもつように壁17がある
。この隙間に速力性のある材料、本実施例ではゴム膜1
8を張り、ガス入口19よりガスを流入する。ガスは小
さな穴20より流出する。このとき流入するガス流量が
、流出するガス流量より大きくなると内筒14と外筒1
5の間の空間のガス圧が高まり、ゴム膜18が変形し、
第3図bに示すようにポリマ被覆槽の出口部の内径が変
化する。ガス流入量を増せば内部の圧力が高まり出口部
の内径は小さくなる。ガス流入量を減少させれば、内部
の圧力は低下し、出口部の内径は大きくなる。第4図に
上記のポリマ被覆槽を用いた光フアィバの被覆方法の概
略図を示す。光フアィバ12に糠蚤変動がある場合、検
出器4により線径dを検出し、線蓬測定器5の出力を制
御回路7に入力し、この出力信号をモータコントローラ
8にフイードバツクしてドラム6の回転数を変えること
により、巻き取り速度を変えて、所望の線径4になるよ
うに線径制御を行なう。このとき光フアィバの被覆槽2
1を通過する速度が変化するため、被覆膜厚に変動が生
づる。そこで本発明では被覆された光フアィバ13の線
律紅′を検出器4′で検出し、線径測定器5′により測
定する。この被覆された光フアィバの線蓬検出量Vd′
をガス流量制御回路22に入力する。このとき、ガス流
量制御回路22には被覆された光フアイバの線径に相当
する信号Vrが入力されている。ガス流量制御回路22
でVd′とVrが比較、増幅され、Vr≠Vdの場合、
ガス流量制御回路22の出力にVmが生ずる。ガス流量
制御回路22の出力信号Vmはガスバルブ駆動モータ2
4に入力され、ガスバルブ25を駆動する。そして、ポ
リマ被覆槽21に流入するガス流量を変化させることに
より、ゴム膜18に加わる圧力を制御し、ポリマ被覆槽
21の出口部(ノズル)の内径を変えることにより、被
覆膜厚を均一に制御する。Vr>Vd′の場合にはガス
硫入量を減少するようにして、ポリマ被覆槽内部の圧力
を低くし、出口部の内径を大きくし、又、Vr<Vd′
の場合にはガス流入量を増大させるようにして、ポリマ
被覆槽内の圧力を高め、出口部の内径を小さくするよう
に構成する。本実施例では外径8肋のプリフオームを7
肋/凧の速度で加熱源に送り込み、線引温度195ぴ0
で、光フアィバ素線の線蓬を130仏のに設定し、ポリ
マ被覆剤10にジメチルホルムアミド溶液内にポリフッ
化ビニリデンを溶解した液を用い、被覆膜厚を10仏の
、すなわち被覆された光フアィバの線径がを150仏凧
に設定して行なったものである。第5図に光フアイバ素
線の線蓬dの測定結果、本発明より被覆した光フアィバ
の線律亀′の測定結果を示す。図より明かなように、本
発明によれば、被覆膜厚loAmに均一に被覆すること
が可能となった。第6図aにゴム膜の取り付けを容易に
したポリマ被覆槽の断面図の実施例を示す。
FIG. 3 shows a cross-sectional view of a polymer coating tank according to the present invention.
This polymer coating tank consists of an inner cylinder 14 and an outer cylinder 15, and the upper parts of the inner cylinder 14 and the outer cylinder 15 are closed by a wall 16.
At the bottom, there is a wall 17 around the inner cylinder 14 with a gap. A material with high speed, in this example, a rubber film 1 is filled in this gap.
8 and let gas flow in from the gas inlet 19. Gas flows out through small holes 20. At this time, if the inflowing gas flow rate is larger than the outflowing gas flow rate, the inner cylinder 14 and the outer cylinder 1
The gas pressure in the space between 5 increases, and the rubber membrane 18 deforms.
As shown in FIG. 3b, the inner diameter of the outlet of the polymer coating tank changes. If the amount of gas inflow is increased, the internal pressure will increase and the inner diameter of the outlet will become smaller. If the amount of gas inflow is reduced, the internal pressure will decrease and the inner diameter of the outlet will increase. FIG. 4 shows a schematic diagram of a method of coating an optical fiber using the above polymer coating tank. When the optical fiber 12 has a bran or flea fluctuation, the wire diameter d is detected by the detector 4, the output of the wire flea measuring device 5 is input to the control circuit 7, and this output signal is fed back to the motor controller 8 to control the drum 6. By changing the number of revolutions of the wire, the winding speed is changed and the wire diameter is controlled so that the desired wire diameter 4 is obtained. At this time, the optical fiber coating tank 2
Since the speed at which the particles pass through 1 changes, variations occur in the coating film thickness. Therefore, in the present invention, the wire diameter of the coated optical fiber 13 is detected by a detector 4' and measured by a wire diameter measuring device 5'. The line detection amount Vd' of this coated optical fiber
is input to the gas flow rate control circuit 22. At this time, a signal Vr corresponding to the diameter of the coated optical fiber is input to the gas flow rate control circuit 22. Gas flow control circuit 22
Vd' and Vr are compared and amplified, and if Vr≠Vd,
Vm is generated at the output of the gas flow rate control circuit 22. The output signal Vm of the gas flow rate control circuit 22 is supplied to the gas valve drive motor 2.
4 and drives the gas valve 25. By changing the gas flow rate flowing into the polymer coating tank 21, the pressure applied to the rubber membrane 18 is controlled, and by changing the inner diameter of the exit part (nozzle) of the polymer coating tank 21, the thickness of the coating film is made uniform. to control. In the case of Vr>Vd', the amount of gas sulfur is reduced, the pressure inside the polymer coating tank is lowered, and the inner diameter of the outlet part is increased, and if Vr<Vd'
In this case, the pressure inside the polymer coating tank is increased by increasing the amount of gas inflow, and the inner diameter of the outlet portion is reduced. In this example, a preform with an outer diameter of 8 ribs is used.
Feed it to the heating source at the speed of a rib/kite, and the drawing temperature was 195 pi.
Then, the wire thickness of the optical fiber was set to 130 mm, and a solution of polyvinylidene fluoride dissolved in dimethylformamide solution was used as the polymer coating material 10, and the coating thickness was set to 10 mm, that is, the coating thickness was set to 10 mm. The diameter of the optical fiber was set to 150 mm. FIG. 5 shows the measurement results of the wire curvature d of the optical fiber strand and the measurement results of the wire curvature ′ of the optical fiber coated according to the present invention. As is clear from the figure, according to the present invention, it became possible to uniformly coat the film with a coating thickness loAm. FIG. 6a shows an embodiment of a cross-sectional view of a polymer coating tank that facilitates the attachment of a rubber membrane.

このポリマ被覆槽はテーパ状の内筒26とテーパ状の外
筒27よりなり、内筒26と外筒27の上部は壁28に
より閉じられており、内筒26と外筒27の下部の隙間
を閉じるように、パイプ状のゴム膜29を第6図bに示
すように愛がえしてめくり外筒27にかぶせ、内筒26
、外筒27と同じテーパをもつ、リング30,31を打
ち込み、ゴム膜29を固定したものである。【6} ま
とめ 以上、説明したごとく、本発明によれば、線怪制御によ
る光フアィバのポリマ被覆槽の通過速度の変化により生
ずる被覆膜厚の変動、ポリマ剤の使用による減少の液面
低下によるポリマ押し出し量の低下による被覆膜厚の変
動を、ポリマ被覆槽の出口部(ノズル)を弾力性のある
材料で形成し、この世口部に外圧を加えて変形させ、出
口部の内径を変化させることで被覆膜厚を制御する方法
により、均一な膜厚に被覆された光フアィバを得ること
が可能となった。
This polymer coating tank consists of a tapered inner cylinder 26 and a tapered outer cylinder 27. The upper parts of the inner cylinder 26 and the outer cylinder 27 are closed by a wall 28, and there is a gap between the lower part of the inner cylinder 26 and the outer cylinder 27. Turn the pipe-shaped rubber membrane 29 over as shown in FIG.
, rings 30 and 31 having the same taper as the outer cylinder 27 are driven in, and a rubber membrane 29 is fixed. [6] Summary As explained above, according to the present invention, fluctuations in the coating film thickness caused by changes in the passage speed of the optical fiber through the polymer coating tank due to line density control, and decreases in the liquid level due to the use of polymer agent. The variation in coating film thickness caused by the decrease in the amount of polymer extruded due to By controlling the coating thickness by changing the coating thickness, it has become possible to obtain an optical fiber coated with a uniform thickness.

この結果、光フアィバの品質の向上に大きな効果がある
As a result, there is a great effect on improving the quality of the optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の被覆方法を示す概断図、第2図は従釆方
法による被覆された光フアィバの線怪変動を示す図、第
3図は本発明によるポリマ被覆槽を示す図、第4図は本
発明による被覆方法を示す概略図、第5図は本発明によ
り被覆された光フアィバの線蓬変動を示す図、第6図は
ゴム膜の固定を容易にしたポリマ被覆槽の実施例を示す
図である。 第3図 多’図 努之図 第4図 多ナ図 多ク図
FIG. 1 is a schematic diagram showing a conventional coating method, FIG. 2 is a diagram showing line variations of an optical fiber coated by a conventional coating method, and FIG. 3 is a diagram showing a polymer coating tank according to the present invention. Figure 4 is a schematic diagram showing the coating method according to the present invention, Figure 5 is a diagram showing the line variation of the optical fiber coated according to the present invention, and Figure 6 is a diagram showing the implementation of a polymer coating tank that facilitates fixation of the rubber film. It is a figure which shows an example. Figure 3: Many diagrams; Figure 4: Many diagrams; Figure 4: Many diagrams;

Claims (1)

【特許請求の範囲】 1 ポリマの充填された被覆槽内に光フアイバを入れ、
該被覆槽に形成された出口部から光フアイバを引き出す
ことにより、光フアイバ外周表面にポリマを被覆する方
法において、前記出口部を弾力性材料で形成し、該出口
部を介して前記被覆槽に空間を設け、該空間に加えられ
るガス圧によつて前記出口部を変形し、前記出口部の内
径を制御することを特徴とする光フアイバの被覆方法。 2 特許請求の範囲第1項において、上記空間に加えら
れるガス圧が被覆槽から引き出されたフアイバの被覆濃
厚に応じて制御されることを特徴とする光フアイバの被
覆方法。3 特許請求の範囲第1項において、上記被覆
槽が二重筒管により空間を構成することを特徴とする光
フアイバの被覆方法。 4 特許請求の範囲第3項において、上記出口部がパイ
プ状のゴム膜を裏がえしてめくり、上記被覆槽に固定し
たもので構成されることを特徴とする光フアイバの被覆
方法。 5 特許請求の範囲第3項において、上記被覆槽がテー
パ状に構成されることを特徴とする光フアイバの被覆方
法。
[Claims] 1. Putting an optical fiber into a coating tank filled with polymer,
In the method of coating the outer peripheral surface of an optical fiber with a polymer by pulling out the optical fiber from an outlet portion formed in the coating tank, the outlet portion is formed of an elastic material, and the fiber is drawn out from the outlet portion formed in the coating tank. A method for coating an optical fiber, comprising: providing a space; and controlling the inner diameter of the outlet by deforming the outlet by gas pressure applied to the space. 2. A method for coating an optical fiber according to claim 1, characterized in that the gas pressure applied to the space is controlled in accordance with the coating density of the fiber pulled out from the coating tank. 3. The method for coating an optical fiber according to claim 1, wherein the coating tank has a space formed by a double cylindrical tube. 4. The method for coating an optical fiber according to claim 3, wherein the outlet portion is formed by turning over a pipe-shaped rubber membrane and fixing it in the coating tank. 5. The method for coating an optical fiber according to claim 3, wherein the coating tank is configured in a tapered shape.
JP52053097A 1977-05-11 1977-05-11 Optical fiber coating method Expired JPS6026058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52053097A JPS6026058B2 (en) 1977-05-11 1977-05-11 Optical fiber coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52053097A JPS6026058B2 (en) 1977-05-11 1977-05-11 Optical fiber coating method

Publications (2)

Publication Number Publication Date
JPS53138748A JPS53138748A (en) 1978-12-04
JPS6026058B2 true JPS6026058B2 (en) 1985-06-21

Family

ID=12933270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52053097A Expired JPS6026058B2 (en) 1977-05-11 1977-05-11 Optical fiber coating method

Country Status (1)

Country Link
JP (1) JPS6026058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443610A (en) * 1994-01-29 1995-08-22 Corning Incorporated Apparatus for controlling fiber diameter during drawing

Also Published As

Publication number Publication date
JPS53138748A (en) 1978-12-04

Similar Documents

Publication Publication Date Title
JPH06321583A (en) Method and device for coating optical waveguide fiber
JP2512509B2 (en) Fishing line manufacturing method and device
JPS6026058B2 (en) Optical fiber coating method
US4101614A (en) Blown film process
KR950000628B1 (en) Resin coating device for optical fiber
JPH09132424A (en) Method for drawing optical fiber
JPS5941936B2 (en) Optical fiber coating method
FI94989C (en) secondary coating
JP2018048050A (en) Manufacturing method and manufacturing device of optical fiber
JPH0251439A (en) Production of optical fiber
JP2000001341A (en) Resin coating device for optical fiber
KR100318928B1 (en) Optical fiber coating device
JP3301136B2 (en) Optical fiber manufacturing method and optical fiber manufacturing apparatus
JPS6236981B2 (en)
JPH0656456A (en) Device for drawing optical fiber
JPH01305829A (en) Method for drawing optical fiber
JPS62162647A (en) Drawing device for optical fiber
JPS6034721B2 (en) Method for reducing optical fiber diameter variation
JPS61158838A (en) Production of quartz hollow fiber
JPH07300350A (en) Apparatus for drawing optical fiber and method for the same
JPH02149451A (en) Production of inorganic coated optical fiber and device therefor
JPH0137342B2 (en)
JPH0535094B2 (en)
JPH064493B2 (en) Method for producing optical glass fiber
JP6252652B2 (en) Optical fiber manufacturing method