JPS60259759A - Egr controller for diesel engine - Google Patents

Egr controller for diesel engine

Info

Publication number
JPS60259759A
JPS60259759A JP59115106A JP11510684A JPS60259759A JP S60259759 A JPS60259759 A JP S60259759A JP 59115106 A JP59115106 A JP 59115106A JP 11510684 A JP11510684 A JP 11510684A JP S60259759 A JPS60259759 A JP S60259759A
Authority
JP
Japan
Prior art keywords
egr
load
egr control
atmospheric pressure
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59115106A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kawamura
川村 佳久
Yukihiro Eto
江藤 幸寛
Giichi Shioyama
塩山 議市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59115106A priority Critical patent/JPS60259759A/en
Publication of JPS60259759A publication Critical patent/JPS60259759A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To assure good exhaust performance even on a highland by providing means for comparing between the referential load corresponding with the rotation speed and the engine load and means for correcting EGR control command under low atmospheric pressure. CONSTITUTION:A throttle valve 6 and an EGR control valve 7 are arranged respectively in the intake path and EGR path. Means 21 for operating the target EGR rate on the basis of the detected levels from a load sensor 18 and a rotation sensor 19 and means 22 for controlling the openings of the throttle valve 6 and the EGR control valve 7 with correspondence to EGR control command are provided. While means 24 for operating the referential load corresponding with the rotation speed on the basis of the detected value from an atmospheric pressure detecting means 23 and means 25 for comparing said referential load with the engine load are provided. Furthermore means 26 for correcting the EGR control command under low atmospheric pressure with correspondence to the comparison results is provided. In such a manner, good exhaust performance can be assured even on a high land.

Description

【発明の詳細な説明】 (技術分野) この発明は、ディーゼルエンジンの排気還流制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an exhaust gas recirculation control device for a diesel engine.

(従来技術) エンジンから排出されるNOxを低減する目的で排気の
一部を吸気中に還流し、燃焼を抑制する排気還流装置(
EGR装置)が知られているが、この排気還流装置では
、エンジンの運転性を損わずに排気組成を改善するため
には、還流する排気(EGRガス)の流量を運転状態に
応じて適正に制御する必要がある。
(Prior art) Exhaust recirculation device (which recirculates part of the exhaust gas into the intake air to suppress combustion in order to reduce NOx emitted from the engine)
In order to improve the exhaust composition without impairing engine drivability, the flow rate of the recirculated exhaust gas (EGR gas) must be adjusted appropriately according to the operating conditions. need to be controlled.

第7図は従来のディーゼルエンジンに装備される排気還
流制御装置の一例で(1981DATSUN−810デ
イーゼルサービスマニユアル・・・日i自動車■198
1年3月発行等参照)、1はエアクリーナ、2は吸気通
路、3はエンジン本体、4は排気通路、5は吸気通路2
と排気通路4とを連通ずるEGR通路な示し、吸気通路
2にはEGR通路5の開口部よシも上流側に絞り弁6が
、またEGR通路5の途中にはEGR制御弁7がそれぞ
れ介装されている。
Figure 7 shows an example of an exhaust recirculation control device installed in a conventional diesel engine (1981 DATSUN-810 Diesel Service Manual...Nippon i Motors ■198
1 is the air cleaner, 2 is the intake passage, 3 is the engine body, 4 is the exhaust passage, 5 is the intake passage 2
The intake passage 2 is provided with a throttle valve 6 on the upstream side of the opening of the EGR passage 5, and an EGR control valve 7 is provided in the middle of the EGR passage 5. equipped.

絞り弁6はダイヤフラム装置8により駆動され、ダイヤ
フラム装置8の圧力室9に負圧源(バキュームポンプ、
バキュームタンク等)10からの負圧が作用すると所定
の半開位置に、同じく圧力室9に大気が開放されると全
開位置になる。このときの負圧−大気圧の切換は、制御
回路11からの信号に応動する三方電磁弁12を介して
なされる。
The throttle valve 6 is driven by a diaphragm device 8, and a negative pressure source (vacuum pump,
When negative pressure from a vacuum tank, etc.) 10 is applied, the chamber is placed in a predetermined half-open position, and when the pressure chamber 9 is exposed to the atmosphere, it is placed in a fully open position. Switching between negative pressure and atmospheric pressure at this time is performed via a three-way solenoid valve 12 that responds to a signal from a control circuit 11.

EGR制御弁7は第2のダイヤフラム装置13により駆
動され、その圧力室14に負圧源10からの負圧がその
まま作用すると全開位置に、その負圧が減圧(オリフィ
ス15による)されると半開位置に、圧力室14が大気
に開放されると全閉位置になる。このときの負圧−減圧
−大気圧の切換は、制御回路11からの信号に応動する
第2゜第3の三方電磁弁16.17による。ただし、三
方電磁弁12.16.17はそれぞれ通電ONでボー)
/とmを連通し、通電OFFでボートlとnを連通する
The EGR control valve 7 is driven by the second diaphragm device 13, and when the negative pressure from the negative pressure source 10 directly acts on the pressure chamber 14, it is in the fully open position, and when the negative pressure is reduced (by the orifice 15), it is in the half open position. When the pressure chamber 14 is opened to the atmosphere in the fully closed position. The switching between negative pressure, reduced pressure, and atmospheric pressure at this time is performed by second and third three-way solenoid valves 16 and 17 that respond to signals from the control circuit 11. However, three-way solenoid valves 12, 16, and 17 are blank when energized respectively)
/ and m are connected, and when the power is turned off, boats l and n are connected.

そして、制御回路11は、図示しない燃料噴射ポンプの
コントロールレバーに追従する負荷センサ18を介して
エンジンの負荷状態を、回転センサ19を介してエンジ
ンの回転速度を、また水温センサ20を介してエンジン
の冷却水温等をそれぞれ検出し、運転状態に応じたEG
Rガス量、EGR率となるように前記三方電磁弁12,
16゜17を駆動する。
The control circuit 11 detects the engine load condition via a load sensor 18 that follows a control lever of a fuel injection pump (not shown), the engine rotation speed via a rotation sensor 19, and the engine rotation speed via a water temperature sensor 20. Detects the cooling water temperature, etc., and adjusts the EG according to the operating condition.
The three-way solenoid valve 12,
Drive 16°17.

例えば、比較的高率の排気還流を行なう必要のある低負
荷域では、絞り弁6が半開位置、EGR制御弁7が全開
位置となるように制御して、このとき絞シ弁6の下流側
に生じる負圧で十分量のEGRガスを還流する。
For example, in a low load range where a relatively high rate of exhaust gas recirculation is required, the throttle valve 6 is controlled to be in a half-open position and the EGR control valve 7 is in a fully open position. A sufficient amount of EGR gas is refluxed by the negative pressure generated.

部分負荷域では、この状態から絞り弁6を全開位置にし
て吸入負圧の発生を解除し、ある程度負荷が大きくなる
とEGR制御弁7を半開位置にしてEGRガス量を減少
させる。
In the partial load range, the throttle valve 6 is set to the fully open position from this state to cancel the generation of suction negative pressure, and when the load increases to a certain extent, the EGR control valve 7 is set to the half open position to reduce the amount of EGR gas.

さらに負荷が大きく々る高負荷域では、エンジンの高い
出力を維持するようにEGR制御弁7を全閉にして排気
還流を停止する。
Furthermore, in a high load range where the load is large, the EGR control valve 7 is fully closed to stop exhaust gas recirculation so as to maintain a high output of the engine.

 3− また、エンジンのスタート時や暖機運転時には始動性を
良好に保ち、暖機な促進するために同じ(EGR制御弁
7を全開にする。
3- Also, when starting the engine or warming up the engine, in order to maintain good startability and promote warm-up, the EGR control valve 7 is fully opened.

このようにして、エンジンの運転状態に応じた適正な排
気還流を行なうのである。
In this way, appropriate exhaust gas recirculation is performed depending on the operating state of the engine.

しかしながら、このように排気還流を制御していても、
例えばエンジンを大気圧の低い高地にて運転する場合に
は、空気密度が低下しエンジンの吸入空気重量が減少す
るため、相対的に燃料の供給量が増えると共に、EGR
ガス量も増えてしまう。したがって、高地等ではNOx
はよく低減されるものの、燃焼状態が悪化しやすく、こ
のためスモークやパーティキュレートの排出を招くとい
う問題があった。
However, even if exhaust recirculation is controlled in this way,
For example, when an engine is operated at high altitudes with low atmospheric pressure, the air density decreases and the weight of the air intake into the engine decreases, which increases the amount of fuel supplied and increases EGR.
The amount of gas will also increase. Therefore, at high altitudes, NOx
Although it is well reduced, the combustion condition tends to deteriorate, which causes the problem of smoke and particulate emissions.

(発明の目的) この発明は、このような問題点に着目してなされたもの
で、高地等においても良好な排気性能を確保することを
目的としている。
(Object of the Invention) The present invention was made in view of these problems, and aims to ensure good exhaust performance even at high altitudes.

(発明の開示) この発明は、第1図に示すように吸気通路の途 4− 中に介装される絞勺弁6と、この絞シ弁6よりも下流側
の吸気通路と排気通路とを連通ずるEGR通路の途中に
介装されるEGR制御弁7と、エンジンの負荷と回転速
度を検出する手段18.19と、これらの検出値に基づ
いて目標EGR率を演算する手段21と、この目標EG
R率よJEGR制御指令値を算出し、この指令値に応じ
て前記絞)弁6とEGR制御弁7の開度を制御する手段
22とを備えたディーゼルエンジンの排気還流制御装置
において、大気圧を検出する手段23と、この検出値か
ら前記回転速度に対する基準負荷を演算する手段24と
、この基準負荷と前記エンジン負荷とを比較する手段2
5と、この比較結果に応じて大気圧の低いときに前記E
GR制御指令値を補正する手段26とを設ける。
(Disclosure of the Invention) As shown in FIG. an EGR control valve 7 interposed in the middle of an EGR passage communicating with the engine; means 18 and 19 for detecting engine load and rotational speed; and means 21 for calculating a target EGR rate based on these detected values; This goal EG
In an exhaust gas recirculation control device for a diesel engine, which includes means 22 for calculating a JEGR control command value from the R rate and controlling the opening degrees of the throttle valve 6 and the EGR control valve 7 according to this command value, the atmospheric pressure means 23 for detecting, means 24 for calculating a reference load for the rotational speed from this detected value, and means 2 for comparing this reference load with the engine load.
5, and according to this comparison result, when the atmospheric pressure is low, the above E
Means 26 for correcting the GR control command value is provided.

したがって、高地等において排気還流が過多となるよう
なことはなく、このためスモーク等の発生を防止しつつ
NOxを効率良く低減することが可能となる。
Therefore, exhaust gas recirculation does not become excessive at high altitudes, etc., and therefore, it is possible to efficiently reduce NOx while preventing the generation of smoke and the like.

(実施例) 第2図は本発明の実施例をフローチャートにて表わした
もので、その機械的な構成は第、7図と、機能的な構成
は第1図と同様である。
(Embodiment) FIG. 2 shows an embodiment of the present invention in the form of a flowchart, the mechanical configuration of which is the same as that of FIGS. 7 and 7, and the functional configuration of which is the same as that of FIG. 1.

まず、101.102において、負荷検出手段(負狗セ
ンザ)18と回転速度検出手段(回転センサ)19と冷
却水温検出手段(第1図では図示していない)20から
のエンジン負荷91回転速度N、冷却水温Tが目標EG
R率演算手段21に、大気圧検出手段(圧力センサ)2
3からの大気圧Pが基準負荷演算手段24 VL:読込
まれる。
First, at 101 and 102, the engine load 91 rotation speed N is detected from the load detection means (low dog sensor) 18, rotation speed detection means (rotation sensor) 19, and cooling water temperature detection means (not shown in FIG. 1) 20. , cooling water temperature T is the target EG
The R rate calculation means 21 includes an atmospheric pressure detection means (pressure sensor) 2.
The atmospheric pressure P from 3 is read into the reference load calculation means 24 VL:.

冷却水温Tが下限温度Toよシも低いときには103か
ら118へ行き、排気還流を行なわないように制御手段
22がEGR制御指令値Sd (後述する)を辿択する
When the cooling water temperature T is lower than the lower limit temperature To, the process goes from 103 to 118, and the control means 22 follows the EGR control command value Sd (described later) so as not to recirculate the exhaust gas.

冷却水温Tが下限温度TOよりも高いときには104.
105へ行き、演算手段21によりエンジン負荷Qと回
転速度Nとから第3図に示すように設定された目標EG
R率(MEGR)が選出されると共に、このMEGRよ
シ制御手段22がE G R制御指令値を算出する。
104 when the cooling water temperature T is higher than the lower limit temperature TO.
105, the calculation means 21 calculates the target EG set from the engine load Q and rotational speed N as shown in FIG.
The R rate (MEGR) is selected, and the MEGR control means 22 calculates an EGR control command value.

そして、このとき大気圧Pが所定値p+(例えば1気圧
)以上であれば、106から後述する補正ルーチンをバ
イパスして135へ行き、前記EGR制御指令値に応じ
て絞り弁6とEGR制御弁7の開度が制御されるが、こ
の場合前記MEGRによって弁6,7を第4図に示すよ
りなA、B、C,Dの4つのステージに段階的に切換制
御するようになっている。
At this time, if the atmospheric pressure P is equal to or higher than a predetermined value p+ (for example, 1 atm), the process goes to 135, bypassing the correction routine described later from 106, and adjusting the throttle valve 6 and the EGR control valve according to the EGR control command value. The opening degree of valve 7 is controlled, and in this case, the MEGR is used to control valves 6 and 7 to be switched in stages to four stages A, B, C, and D as shown in FIG. .

例えば、MEGRが高率域(第3図のCゾーン)では弁
6,7がAステージとなるようにEGR制御指令値Sa
が選出され、中重職(bゾーン)では弁6,7がBステ
ージとなるように、低率域(Cゾーン)では弁6,7が
Cステージと々るようにO重職(dゾーン)では弁6,
7がDステージとなるようにEGR制御指令値Sb、S
c、Sdが選出される。
For example, when MEGR is in a high rate range (zone C in Figure 3), the EGR control command value Sa is set so that valves 6 and 7 are in the A stage.
is selected, and in middle-level positions (B zone), valves 6 and 7 are in the B stage, in low-rate areas (C zone), valves 6 and 7 are in the C stage, and in O-level positions (d zone). valve 6,
EGR control command values Sb, S so that 7 becomes the D stage.
c, Sd are selected.

そして、135にてそのEGR制御指令値Sa〜Sdに
応じた制御信号が三方電磁弁12,16゜17に出力さ
れ、絞り弁6およびEGR制御弁7の開度を制御する。
Then, at 135, a control signal corresponding to the EGR control command values Sa to Sd is output to the three-way solenoid valves 12, 16 and 17 to control the opening degrees of the throttle valve 6 and the EGR control valve 7.

一方、大気圧Pが所定値P1よシも低く下限値P。On the other hand, the atmospheric pressure P is lower limit P which is lower than the predetermined value P1.

よシも高いときには106,107から108゜109
.110へ行き、このとき前記MEGRがdゾーンであ
れば135の、Cゾーンであれば111〜118の、b
ゾーンであれば119〜126の、Cゾーンであれば1
27〜134のフローに入る。
When the height is high, it is 106,107 to 108°109
.. 110, and at this time, if the MEGR is in the d zone, it is 135, and if it is in the C zone, it is in 111 to 118, b.
119-126 for zone, 1 for C zone
Enter the flow from 27 to 134.

ただし、大気圧Pが下限値P。よシも低いときには、前
述の冷却水温Tが下限温度T。よシも低いときと同様、
107から118に行く。
However, atmospheric pressure P is the lower limit value P. When the temperature is too low, the above-mentioned cooling water temperature T is the lower limit temperature T. Just like when it's low,
Go from 107 to 118.

111.119,127では、基準負荷演算手段24に
より予めc、b、Cゾーンの回転速度Nに対する基準負
荷Qco 、 Qbo s Qaoが読出され、112
.120.128では大気圧Pから基準負荷Qco 、
 Qbo 、 Qaoに対応して第5図に示される負荷
修正量Da 、Db 、Daが選出される。
At 111.119 and 127, the reference loads Qco and Qbos Qao for the rotational speeds N of zones c, b, and C are read out in advance by the reference load calculating means 24, and 112
.. 120.128, from atmospheric pressure P to reference load Qco,
Load correction amounts Da, Db, and Da shown in FIG. 5 are selected corresponding to Qbo and Qao.

113.121.129にて基準負荷Qco I Qb
o +Qaoから負荷修正量Da 、Db 、Daが減
算され、減算後の基準負荷Qc 、Qb 、Qaと前記
エンジン負荷Qとが比較手段25により114,122
゜130にて比較される。
Reference load Qco I Qb at 113.121.129
The load correction amounts Da, Db, Da are subtracted from o +Qao, and the reference loads Qc, Qb, Qa after the subtraction and the engine load Q are determined by the comparison means 25 to be 114, 122.
It is compared at ゜130.

第6図にある回転速度Nのときの」二記基準負荷と負荷
修正量の1例を示すと、大気圧Pが低いときほど基準負
荷Qc 、Qb 、Qaか減少され、各ゾーンの範囲を
狭めるようになっている。
An example of the reference loads and load correction amounts at the rotational speed N in Figure 6 shows that the lower the atmospheric pressure P is, the lower the reference loads Qc, Qb, and Qa are, reducing the range of each zone. It is becoming narrower.

そして、115.123.131にて比較結果△Qが正
であれば、各ゾーンに対応した前記EGR制御指令値S
c 、Sb 、Saがそのまま選出され、116・11
7 、124・125 、132・133から135に
行く。
If the comparison result ΔQ is positive at 115.123.131, the EGR control command value S corresponding to each zone
c, Sb, and Sa are selected as they are, and 116.11
Go from 7, 124/125, 132/133 to 135.

他方、比較結果△Qが負であればそれぞれ118゜12
6.134へ行き、補正手段26によシEGR制御指令
値Sc 、Sb 、SaがSd 、Sc 、Sbに切換
えられる。
On the other hand, if the comparison result △Q is negative, then 118°12
6.134, the EGR control command values Sc, Sb, and Sa are changed to Sd, Sc, and Sb by the correction means 26.

このEGR制御指令値S a −S dに応じた制御信
号が135にて出力されることは前述した通りであシ、
なおこのSa〜Sdは136にて前回のEGR制御指令
値として記憶される。また、第2図中のHは制御の安定
性を保つために設けたヒステリシスで、比較結果△Qが
ヒステリシスH以上に大きくならないとEGR制御指令
値S a −S dを切換えないようにしている。
As mentioned above, the control signal corresponding to the EGR control command value S a - S d is output at 135.
Note that these Sa to Sd are stored in step 136 as the previous EGR control command value. In addition, H in Figure 2 is a hysteresis provided to maintain control stability, and the EGR control command value S a - S d is not switched unless the comparison result △Q becomes greater than the hysteresis H. .

このような構成のため、大気圧Pが下限値P。よりも低
いときには、絞り弁6、EGR制御弁7が第4図のDス
テージの開度に設定され、したがって空気密度がかなシ
小さい極高地において排気還流を行なうことはない。ま
た、冷却水温Tが下限値T。よりも低い暖機時も同様で
ある。
Due to this configuration, the atmospheric pressure P is the lower limit value P. When the temperature is lower than that, the throttle valve 6 and the EGR control valve 7 are set to the opening degree of the D stage shown in FIG. 4, so that exhaust gas recirculation is not performed at extremely high altitudes where the air density is extremely low. Also, the cooling water temperature T is the lower limit value T. The same is true when warming up at a temperature lower than .

他方、冷却水温TがT。よりも高く大気圧Pが1気圧以
上のときには、エンジン負荷Qと回転速度Nにより目標
EGR率が選出され、目標EGR率に合ったステージ(
第4図参照)となるように絞り弁6、EGR制御弁7の
開度が制御される。したがって、低地においてエンジン
の運転状態に応じた適正な排気還流が行なわれる。
On the other hand, the cooling water temperature T is T. When the atmospheric pressure P is higher than 1 atm, the target EGR rate is selected based on the engine load Q and rotational speed N, and the stage corresponding to the target EGR rate (
The opening degrees of the throttle valve 6 and the EGR control valve 7 are controlled so as to achieve the following (see FIG. 4). Therefore, appropriate exhaust gas recirculation is performed in lowlands depending on the operating state of the engine.

これに対して、冷却水温TがT。よりも高く大気圧Pが
P。<P≦1のときには、大気圧Pに応じて各ゾーン(
第3図参照)の基準負荷が修正され、つまり大気圧Pが
低いときほどa、b、Cゾーンの範囲が狭められる。そ
して、その基準負荷とそのときのエンジン負荷Qとが比
較され、エンジン負荷QがCゾーンからはずれたときに
はbゾーン、bゾーンからはずれたときにはCゾーン、
Cゾーンからはずれたときにはdゾーンへと切換えるよ
うに、絞シ弁6、EGR制御弁7の開度が制御される。
On the other hand, the cooling water temperature T is T. The atmospheric pressure P is higher than P. When <P≦1, each zone (
The reference load (see FIG. 3) is modified, that is, the lower the atmospheric pressure P is, the narrower the ranges of zones a, b, and C are. Then, the reference load and the engine load Q at that time are compared, and when the engine load Q is out of the C zone, it is in the b zone, and when it is out of the b zone, it is in the C zone.
The opening degrees of the throttle valve 6 and the EGR control valve 7 are controlled so that when the vehicle deviates from the C zone, it switches to the D zone.

したがって、大気圧Pが低いときほど低いEGR率で排
気還流が行なわれ、このため空気密度が小さい高地にお
いて排気還流が過多となるようなことはない。
Therefore, when the atmospheric pressure P is low, exhaust gas recirculation is performed at a lower EGR rate, and therefore, exhaust gas recirculation does not become excessive at high altitudes where air density is low.

この結果、高地においてもエンジンの良好な燃焼状態を
維持することができ、NOxが的確に低減されると共に
、スモークやパーティキュレートの発生を十分に防止す
ることができる。
As a result, a good combustion state of the engine can be maintained even at high altitudes, NOx can be accurately reduced, and the generation of smoke and particulates can be sufficiently prevented.

なお、本実施例では弁6,7を4段階で制御したが、そ
の開度をより細かくもしくはリニアに制御しても良く、
このようにすればさらに的確な排気還流制御が得られる
Although the valves 6 and 7 are controlled in four stages in this embodiment, the opening degree may be controlled more finely or linearly.
In this way, more accurate exhaust gas recirculation control can be obtained.

(発明の効果) 大気圧の低い高地において、スモーク等の発生を防止し
つつNOxを低減することができ、排気性11− 能の一層の向上が図れるという効果がある。
(Effects of the Invention) In highlands where atmospheric pressure is low, NOx can be reduced while preventing the generation of smoke, etc., and there is an effect that exhaust performance 11- is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクレーム対応図、第2図は本発明の実施例を示
すフローチャート、第3図はエンジン負荷と回転速度に
対する目標EGR率の設定例を示すグラフ、第4図はス
テーソ別の制御動作を示す表図、第5図は基準負荷修正
量の設定例を示すグラフ、第6図は各ゾーンの範囲の1
例を示すグラフ、第7図は従来例の構成断面図である。 2・・・吸気通路、4・・・排気通路、5・・・EGR
通路、6・・・絞り弁、7・・・EGR制御弁、12,
16゜17・・・三方電磁弁、18・・・負荷センサ、
19・・・回転センサ、20・・・水温センサ、21・
・・目標EGR率演算手段、22・・・制御手段、23
・・・大気圧検出手段、24・・・基準負荷演算手段、
25・・・比較手段、26・・・補正手段。 特許出願人 日産自動車株式会社 12− −400− 痕I牽川瞼
Fig. 1 is a diagram corresponding to complaints, Fig. 2 is a flowchart showing an embodiment of the present invention, Fig. 3 is a graph showing an example of setting the target EGR rate with respect to engine load and rotation speed, and Fig. 4 is a control operation for each stator. Figure 5 is a graph showing an example of setting the standard load correction amount, Figure 6 is a graph showing an example of setting the standard load correction amount, and Figure 6 is a graph showing an example of setting the standard load correction amount.
A graph showing an example, and FIG. 7 is a sectional view of a conventional example. 2...Intake passage, 4...Exhaust passage, 5...EGR
Passage, 6... Throttle valve, 7... EGR control valve, 12,
16゜17...Three-way solenoid valve, 18...Load sensor,
19... Rotation sensor, 20... Water temperature sensor, 21.
...Target EGR rate calculation means, 22...Control means, 23
...Atmospheric pressure detection means, 24...Reference load calculation means,
25... Comparison means, 26... Correction means. Patent Applicant: Nissan Motor Co., Ltd. 12- -400- Kata I Kenkawafu

Claims (1)

【特許請求の範囲】[Claims] 吸気通路の途中に介装される絞夛弁と、この絞シ弁よシ
も下流側の吸気通路と排気通路とを連通ずるEGR通路
と、このEGR通路の途中に介装されるEGR制御弁と
、エンジンの負荷と回転速度を検出する手段と、これら
の検出値に基づいて目標EGR率を演算する手段と、こ
の目標EGR率よすEGR制御指令値を算出し、この指
令値に応じて前記絞シ弁とEGR制御弁の開度な制御す
る手段とを備えたディーゼルエンジンの排気還流制御装
置において、大気圧を検出する手段と、この検出値から
前記回転速度に対する基準負荷を演算する手段と、この
基準負荷と前記エンジン負荷とを比較する手段と、この
比較結果に応じて大気圧の低いときに前記EGR制御指
令値を補正する手段とを設けたことを特徴とするディー
ゼルエンジンの排気還流制御装置。
A throttle valve installed in the middle of the intake passage, an EGR passage that connects the intake passage and the exhaust passage on the downstream side of the throttle valve, and an EGR control valve installed in the middle of the EGR passage. a means for detecting the load and rotational speed of the engine; a means for calculating a target EGR rate based on these detected values; and a means for calculating the target EGR rate plus an EGR control command value, In the exhaust gas recirculation control device for a diesel engine, which includes the throttle valve and means for controlling the opening degree of the EGR control valve, means for detecting atmospheric pressure, and means for calculating a reference load for the rotational speed from the detected value. and means for comparing the reference load and the engine load, and means for correcting the EGR control command value when atmospheric pressure is low according to the comparison result. Reflux control device.
JP59115106A 1984-06-05 1984-06-05 Egr controller for diesel engine Pending JPS60259759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115106A JPS60259759A (en) 1984-06-05 1984-06-05 Egr controller for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115106A JPS60259759A (en) 1984-06-05 1984-06-05 Egr controller for diesel engine

Publications (1)

Publication Number Publication Date
JPS60259759A true JPS60259759A (en) 1985-12-21

Family

ID=14654377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115106A Pending JPS60259759A (en) 1984-06-05 1984-06-05 Egr controller for diesel engine

Country Status (1)

Country Link
JP (1) JPS60259759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4325040A1 (en) * 2021-04-15 2024-02-21 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4325040A1 (en) * 2021-04-15 2024-02-21 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US6170469B1 (en) Integrated internal combustion engine control system with high-precision emission controls
JPS6335819B2 (en)
JPS6118659B2 (en)
JPH0432220B2 (en)
CA1210475A (en) Method and apparatus for controlling diesel engine exhaust gas recirculation partly as a function of exhaust particulate level
EP1245818B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
JPS58150063A (en) Exhaust gas recirculation device of internal-combustion engine
JP2583361B2 (en) Exhaust recirculation system for a turbocharged diesel engine
JPS60259759A (en) Egr controller for diesel engine
JPS6318023B2 (en)
JP3371520B2 (en) Engine exhaust recirculation control device
JPS60230555A (en) Exhaust reflux controller for diesel engine
JPS5896158A (en) Apparatus for controlling exhaust recirculation in internal-combustion engine
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JPH06336957A (en) Egr control device for diesel engine
JP3728930B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPS60259748A (en) Egr controller for diesel engine
JPH0223804Y2 (en)
JPS60259760A (en) Egr controller for diesel engine
JP3470468B2 (en) Control unit for diesel engine
JP3632446B2 (en) EGR control device for internal combustion engine
JP2590237B2 (en) Exhaust gas recirculation control system for diesel engine
JP2522751Y2 (en) Exhaust recirculation device
JPH02275055A (en) Exhaust gas recirculation controller for engine
JPH074319A (en) Egr device of diesel engine