JPS60259270A - Serum separation and replacement apparatus - Google Patents

Serum separation and replacement apparatus

Info

Publication number
JPS60259270A
JPS60259270A JP60058148A JP5814885A JPS60259270A JP S60259270 A JPS60259270 A JP S60259270A JP 60058148 A JP60058148 A JP 60058148A JP 5814885 A JP5814885 A JP 5814885A JP S60259270 A JPS60259270 A JP S60259270A
Authority
JP
Japan
Prior art keywords
plasma
circuit
pump
pressure
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60058148A
Other languages
Japanese (ja)
Other versions
JPS6312633B2 (en
Inventor
池田 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
SB Kawasumi Laboratories Inc
Original Assignee
Kawasumi Laboratories Inc
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories Inc, Kuraray Co Ltd filed Critical Kawasumi Laboratories Inc
Priority to JP60058148A priority Critical patent/JPS60259270A/en
Publication of JPS60259270A publication Critical patent/JPS60259270A/en
Publication of JPS6312633B2 publication Critical patent/JPS6312633B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産! f、の利用分野) 木9.FIJノは、閉鎖体外循環回路中に備えられた口
過器により血球成分と血漿成分を分離する装置の改良に
関するものである。
[Detailed description of the invention] (Field of use of production! f) Tree 9. FIJ No. relates to an improvement in a device for separating blood cell components and plasma components using a sip device provided in a closed extracorporeal circulation circuit.

(従来技術及びその問題点) 腎不全、111不全、自己免疫疾患等の治療方法として
近時、血漿分離交換法が知られている。
(Prior art and its problems) Plasma separation and exchange methods have recently been known as a treatment method for renal failure, 111 insufficiency, autoimmune diseases, and the like.

この方法は、 ・般に閉鎖体外循環回路中でa過膜によ
り血漿成分を連続的に分離し、血球成分を体内に返還す
る方法である。この場合廃棄される血漿中には高分子量
の毒素と結合した状態で低分子量有効成分が含まれてお
り、これらの成分を体内に所定量補う必要がある。
This method: - Generally, plasma components are continuously separated using an a-filter membrane in a closed extracorporeal circulation circuit, and blood cell components are returned to the body. In this case, the discarded plasma contains low molecular weight active ingredients in a state bound to high molecular weight toxins, and it is necessary to supplement the body with a predetermined amount of these ingredients.

従来こうした補充液の注入方法としては、たとえば補充
液と掃出液をgI量器で計量し、両者の和のバランスを
とるようにしたものがあるが、この方式は操作性や精度
の点で問題がある。
Conventional methods for injecting replenishment fluid include measuring the replenishment fluid and scavenging fluid using a gI meter and balancing the sum of the two, but this method has disadvantages in terms of operability and accuracy. There's a problem.

また、特開昭53−100696号で開示されているご
とく、体液貯留部における空間部の圧力変化に応じて排
液ポンプと補液ポンプの移送量を等しくなるようにコン
トロールする方式も知られている。しかし、同公報で提
案されたものは、口過器で口過する前にあらかじめ必要
借の補充液を打入しておく、いわゆる1ia希釈〃ミで
あり、口過器に入る体液は薄まっているために開用の口
液を除去しても口過効率が劣るという欠点がある。
Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 100696/1984, a method is also known in which the amounts of fluid transferred by the drainage pump and the replacement fluid pump are controlled to be equal in accordance with pressure changes in the space in the body fluid storage section. . However, what was proposed in the same bulletin was the so-called 1ia dilution, in which the necessary replenishment fluid was injected in advance before swabbing with a mouthpiece, and the body fluid entering the mouthpiece was diluted. Because of this, there is a drawback that the oral fluid efficiency is poor even if the oral fluid is removed.

また血漿分離交換法は、人丁腎臓と異なり、補充液とし
て中なる電解質液ではなく、アルブミン プラズマネー
ト等の高価な血液製剤を使用しなければならず、前希釈
法のこと〈、除去部を見込んだ多年の補充液をあらかし
め11人する方法はなじまない。
In addition, unlike human kidneys, the plasma exchange method requires the use of expensive blood products such as albumin plasmanate as a replenisher instead of the electrolyte solution contained therein. I'm not familiar with the method of using 11 people to plan on replenishing fluids for many years.

本発明はこのような問題点を解決するために提案された
ものである。
The present invention was proposed to solve these problems.

(問題点を解決するためのL段) 本発明は実施例に対応する第1図及び第2図に示すよう
に、閉鎖体外循環回路中に口過器5を備え、この口過器
5で血球成分と血漿成分とを分離する血漿分離交換装置
において、前記口過器5の血液導入側と血漿導出側の差
圧を検出する手段P1を設け、血漿導出回路8に前記差
圧検出r段との連動制御により設定圧または設定圧以ト
となるように流量調整可能なポンプM2を設けるととも
に、血球導出回路17に補液導入回路18を設け、この
補液導入回路に血漿導出量に応して流量調整されるポン
プM工を設け、さらに前記血球導出回路17にJIT−
力計Pを設けるようにしたものである。
(L stage for solving problems) As shown in FIGS. 1 and 2 corresponding to the embodiment, the present invention includes a mouth strainer 5 in a closed extracorporeal circulation circuit, and this mouth strainer 5 In a plasma separation and exchange device for separating blood cell components and plasma components, a means P1 for detecting a differential pressure between the blood introduction side and the plasma output side of the mouth filter 5 is provided, and the plasma extraction circuit 8 is provided with the differential pressure detection stage r. A pump M2 is provided which can adjust the flow rate so that the pressure is at or below the set pressure by interlocking control with the blood cell deriving circuit 17, and a replacement fluid introducing circuit 18 is provided in the blood cell deriving circuit 17. A pump M whose flow rate is adjusted is provided, and the blood cell deriving circuit 17 is provided with a JIT-
A force meter P is provided.

(作用) 血漿導出回路のポンプM2は、口過器2の導入側と導出
側の差圧検出手段からの情報により、設定圧または設定
圧以下となるように駆動し、口過器の膜2に異常な圧力
が加わらないようにコノI・ロールするとともに、補液
導入回路18のポンプ画は前記血漿導出量に応じて駆動
し、適量の補液を血球導出回路17に供給する。また、
患者側のシャント等にトラブルが生じ、そのために口過
膜2に異常な圧力が加わらないように血球導出回路17
の圧力計P3によりモニタをしているものである。
(Function) The pump M2 of the plasma extraction circuit is driven to a set pressure or less than the set pressure based on information from the differential pressure detection means between the inlet side and the outlet side of the oral filter 2, and the membrane 2 of the oral filter At the same time, the pump of the replacement fluid introducing circuit 18 is driven according to the amount of plasma drawn out, and an appropriate amount of replacement fluid is supplied to the blood cell drawing circuit 17. Also,
The blood cell derivation circuit 17 is designed to prevent abnormal pressure from being applied to the perostomy membrane 2 due to problems with the shunt, etc. on the patient side.
This is monitored by a pressure gauge P3.

(実施例) 第1図は本発明の一実施例を示したもので。(Example) FIG. 1 shows an embodiment of the present invention.

その構成を作用と共に説明すると、まず患者から血液導
入回路lを通してポンプM1により血液を導入し、 4
1−血液貯留器4に貯留する。続く口過器5はポリビニ
ルアルコール膜等の口過膜2によって仕切られており、
血液貯留器4から防圧により、前記口過膜2を介して血
球成分と血漿成分とに分離される。
To explain its configuration along with its function, first, blood is introduced from the patient through the blood introduction circuit 1 by the pump M1, and 4
1-Reserve blood in blood reservoir 4. The following mouth strainer 5 is partitioned by a mouth strainer membrane 2 such as a polyvinyl alcohol membrane,
The blood from the blood reservoir 4 is separated into blood cell components and plasma components via the oral membrane 2 by pressure protection.

ここで分離された血漿成分は排液/ヘング等に回収され
るが、血漿分離法に用いられる口過器5の口過膜2のポ
アサイズは0.02〜0.4用程度で、通常の血液透析
に使用される膜よりそのポアサイズが大きい。したがっ
て、そのポアサイズが血球の大きさに近づき、たとえば
ポンプM2により膜2に異常な防圧が加わったような場
合、血球が膜孔を無理に通過しようとするため、溶血を
起こす危険性がある。
The plasma components separated here are collected as drainage/heng, etc., but the pore size of the membrane 2 of the membrane 2 of the membrane 5 used in the plasma separation method is about 0.02 to 0.4, which is normal. Its pore size is larger than membranes used for hemodialysis. Therefore, if the pore size approaches the size of blood cells and, for example, abnormal pressure is applied to the membrane 2 by pump M2, the blood cells will forcefully try to pass through the membrane pores, leading to the risk of hemolysis. .

そこで本発明では、前記口過器5の血液導入側と血漿導
出側の差圧を感知する手段で、たとえば、第1図に示す
ような、血液導入側と血漿導出側の差圧、1lP1を設
け、この差圧計P1との連動制御により、血漿導出回路
8に設けられたポンプM2の回転数を自動的に変え、も
しくはスイッチを自動的に0N−OFFせしめることで
、差圧ttP+が設定圧または設定圧以下となるように
流量調整するものである。
Therefore, in the present invention, a means for sensing the differential pressure between the blood inlet side and the plasma outlet side of the mouth strainer 5 is used to detect, for example, the differential pressure 1lP1 between the blood inlet side and the plasma outlet side as shown in FIG. By interlocking control with this differential pressure gauge P1, the rotation speed of the pump M2 provided in the plasma extraction circuit 8 is automatically changed, or the switch is automatically turned ON-OFF, so that the differential pressure ttP+ becomes the set pressure. Alternatively, the flow rate is adjusted so that the pressure is below the set pressure.

本実施例の場合、前記差圧計P】は口過器5の手前に有
する血液貯留器4とポンプMzの手前に有する血漿貯留
器7の差圧を計測するように構成されており、この差圧
がl OOm+nHg以下好ましくは60 mmHg以
下となるように、前記ポンプM助流量を15〜20mm
1/分にコントロールしている。
In the case of this embodiment, the differential pressure gauge P] is configured to measure the differential pressure between the blood reservoir 4 disposed in front of the sip device 5 and the plasma reservoir 7 disposed in front of the pump Mz. The auxiliary flow rate of the pump M is set to 15 to 20 mm so that the pressure is 1 OOm + nHg or less, preferably 60 mmHg or less.
It is controlled at 1/min.

また第1図において、17は血球を患者に返血するため
の血球導出回路であり、この血球導出回路17には血液
貯留器14が設けられ、その上流に補液導入回路18が
分岐して設けられるにの補液導入回路18からは、補液
容器16に収容されたアルブミンやHES等の補液がポ
ンプ洩によって前記血液貯留器14に送られる。
Further, in FIG. 1, 17 is a blood cell derivation circuit for returning blood cells to the patient, and this blood cell derivation circuit 17 is provided with a blood reservoir 14, and a replacement fluid introduction circuit 18 is branched and provided upstream thereof. From the replacement fluid introduction circuit 18, a replacement fluid such as albumin or HES contained in the replacement fluid container 16 is sent to the blood reservoir 14 due to pump leakage.

本発明ではこの補液を導入するに際し、前記血漿導出回
路8の流量に応じて、補液導入ポンプ洩をコントロール
している。具体的には前記ポンプMzと直接連動制御さ
せてもよいし、ポンプMλと他のポンプが連動制御して
いる場合には、他のポンプを介して間接的にポンプMl
と連動制御させてもよい。
In the present invention, when introducing this replacement fluid, leakage of the replacement fluid introduction pump is controlled according to the flow rate of the plasma derivation circuit 8. Specifically, the pump Mz may be controlled directly in conjunction with the pump Mz, or if the pump Mλ and another pump are controlled in conjunction with each other, the pump Ml may be controlled indirectly through the other pump.
It may be controlled in conjunction with.

また本発明では、前記血球導出回路17の途中に血液貯
留器14が設けられるとともに、この血液貯留器14に
圧力計P3が設けられており、患者の状態(貧血等)や
シャントでのトラブルをモニタするとともに、患者の腕
の動き等によって、血液導出回路17にJr力変化が生
し、それに起因して口過器5の膜2に異常圧がイ4しる
のをモニタして防いでいる。
In addition, in the present invention, a blood reservoir 14 is provided in the middle of the blood cell deriving circuit 17, and a pressure gauge P3 is provided in this blood reservoir 14 to monitor the patient's condition (anemia, etc.) and troubles with the shunt. At the same time, it also monitors and prevents abnormal pressure from occurring in the membrane 2 of the mouthpiece device 5 due to changes in the blood lead-out circuit 17 due to movements of the patient's arm, etc. There is.

第2図は、本発明を二重口過型血漿分離交換装置に適用
した場合の実施例であり、第1図の′実施例に第20過
器11を組込んだものである。同実施例では第1図にお
ける口過器5が第10過器となり、ここで分離された血
漿成分は血漿導出回路8を通ってff<20過器11に
送られる。
FIG. 2 shows an embodiment in which the present invention is applied to a double-port plasma separation and exchange apparatus, in which a 20th filter 11 is incorporated in the embodiment '' of FIG. In this embodiment, the mouth strainer 5 in FIG. 1 becomes the tenth strainer, and the plasma components separated here are sent to the ff<20 strainer 11 through the plasma derivation circuit 8.

前記第20過器11は、内部がエチレンビニルアルコー
ル膜等の口過膜10で仕切られており1、該第20過器
11に導入された血漿は前記ポンプFVjZと後記排出
回路12に設けられたポンプM3との流量差によって生
ずる陽圧により、高分子−帆物質と低分子酸物質とに分
離される。分離された高分子量物質は排出回路12を通
って導出され、貯留容器13にtll出されるが、この
場合、ポンプM2.とM3の流量がアンバランスになる
とfJS20過器11に異畠な圧力が加わり、安定した
口過・分離作用が得られない。そこで本実施例では、ポ
ンプMえとM3の流量比を連動制御して、第20過器1
1における血漿導入量と高分子酸物質排出量の流量比を
所定値に調整しているものである。例えば前記ポンプM
2の流量が15mm1/分であった場合、ポンプM3の
流量はそのl/3−1/4即ち3−5mm1/分となる
ように自動的に制御されることになる。
The inside of the 20th filtration device 11 is partitioned by a filtration membrane 10 such as an ethylene vinyl alcohol membrane 1, and the plasma introduced into the 20th filtration device 11 is connected to the pump FVjZ and a discharge circuit 12, which will be described later. Due to the positive pressure generated by the difference in flow rate between the pump M3 and the pump M3, the material is separated into a polymer-acid material and a low-molecular acid material. The separated high molecular weight substances are led out through a discharge circuit 12 and discharged into a storage container 13, in this case pump M2. If the flow rates of M3 and M3 become unbalanced, an abnormal pressure will be applied to the fJS20 filter 11, making it impossible to obtain stable filtration and separation effects. Therefore, in this embodiment, the flow rate ratio of the pumps M and M3 is controlled in conjunction with each other, and the 20th filter 1
1, the flow rate ratio between the amount of plasma introduced and the amount of polymeric acid substance discharged is adjusted to a predetermined value. For example, the pump M
If the flow rate of pump M3 is 15 mm1/min, the flow rate of pump M3 will be automatically controlled to be 1/3-1/4 of that, or 3-5 mm1/min.

なお、図中Pzは前記血漿貯留器9に設けられた圧力旧
であり、第20過器11に高圧が加わると口過II!J
!10等がパンクする危険性があるため、このW力1i
IPzでモニターしている。
In addition, in the figure, Pz is the pressure level provided in the plasma reservoir 9, and when high pressure is applied to the 20th pressure vessel 11, the temperature rises. J
! Since there is a risk of puncture of the 10th class, this W force 1i
Monitored by IPz.

他方、前記第20過器11で分離された低分子量物質は
、導出回路15を通って血液貯留器14に送られ、前記
第10過器5がら導出回路17を通って送られる血球成
分と合流した後、患者の体内に返還yれることになる。
On the other hand, the low molecular weight substances separated in the 20th filter 11 are sent to the blood reservoir 14 through the derivation circuit 15, and are combined with the blood cell components sent from the 10th filtration device 5 through the derivation circuit 17. After that, it will be returned to the patient's body.

また前記第20過器IIにおいて除去された血漿分を補
うため、補液容器16がらアルブミンやHES等の補液
を導入回路18を通して血液貯留器14に送っている。
In addition, in order to supplement the plasma removed in the 20th tube II, a replacement fluid such as albumin or HES is sent from the replacement fluid container 16 to the blood reservoir 14 through the introduction circuit 18.

本実施例ではこの補液を導入するに際し、前記導入回路
18に設けられた補液導入用のポンプM4す前記高分子
借物質の排出回路12に設けられたポンプM3とを連動
制御させ、間接的に前記ポンプMzと連動制御させてい
る。このようにすれば、高分子−重物質の導出早ど補液
の11人量とが等量となるように流星調整することがで
きる。例えば前記したごとくポンプM3の流量が3〜5
mm1/分の場合、ポンプMψこれと同し流量となるよ
う調整されるものであり、これにより過不足なく血液貯
留!14に補液か注入されることになる。
In this embodiment, when introducing this replacement fluid, the pump M4 for introducing replacement fluid provided in the introduction circuit 18 and the pump M3 provided in the discharge circuit 12 for the polymer borrowed material are controlled in conjunction with each other, and indirectly. It is controlled in conjunction with the pump Mz. In this way, it is possible to adjust the amount of the polymer-heavy substance so that the amount of the replacement fluid is equal to the amount of the 11-person replacement fluid. For example, as mentioned above, the flow rate of pump M3 is 3 to 5.
In the case of mm1/min, the pump Mψ is adjusted so that the flow rate is the same as this, so that the blood is stored in just the right amount. Replacement fluid will be injected on the 14th.

本発明による場合、I記した各ポンプMえ。According to the present invention, each of the pumps listed in I.

M32M4の連動制御手段は電気的制御であってもよい
が、各回路8.12.13を構成するチューブを2木ま
たは3本適宜組合せて同時にしごくようにしてもよい。
The interlocking control means of M32M4 may be electrical control, but two or three tubes constituting each circuit 8, 12, and 13 may be appropriately combined and squeezed at the same time.

その−例として第3図に示すごとく、回路8のチューブ
8aと回路12.18(7)チューブ12a、18ac
y)内径を変え、たとえば、チューブ8aの内径を8+
nm、チューブ12a、18.aの内径を4ml11と
して同一駆動ローラ20でこれらチューブを同時にしご
くようにすると、各チューブの径に応して流酸調整が可
能となる。
As an example, as shown in FIG. 3, tube 8a of circuit 8 and circuit 12.
y) Change the inner diameter, for example, change the inner diameter of tube 8a to 8+
nm, tubes 12a, 18. If the inner diameter of tube a is set to 4 ml 11 and these tubes are simultaneously squeezed by the same drive roller 20, it becomes possible to adjust the flow acid according to the diameter of each tube.

以上説明したものは本発明の−・例であり、第10過器
5や第20過器ifは中空糸型その他のタイプを用いて
もよく、また他の機器類も本発明の趣旨に従って変更可
能である。
What has been described above is an example of the present invention, and the 10th filter 5 and the 20th filter if may be of a hollow fiber type or other types, and other devices may also be modified according to the spirit of the present invention. It is possible.

(効果) 以−1−説明した本発明によれば、閉鎖体外循環回路に
備えられた口過器で血球成分と血漿成分とを分離する場
合、前記口過器の血液導入側と血漿導出側の差圧を検出
して、その差圧検出手段との連動制御により血漿導出側
ポンプの流量調整を行なうにしたので、口過膜に加わる
圧力を導入側と導出側の相対圧から検出することができ
、血漿導出側ポンプによって、常にバランスのとれた圧
力コントロールをすることができる。このため異常な除
圧等による血球破壊等を防ぐことができる。
(Effects) According to the present invention described below, when blood cell components and plasma components are separated by a mouthpiece provided in a closed extracorporeal circulation circuit, the blood inlet side and the plasma outlet side of the mouthpiece are separated. Since the flow rate of the pump on the plasma output side is adjusted by detecting the differential pressure between the membranes and the differential pressure detection means, the pressure applied to the oral membrane can be detected from the relative pressure on the inlet side and the outlet side. The plasma discharge pump allows for always balanced pressure control. Therefore, destruction of blood cells due to abnormal pressure reduction etc. can be prevented.

また本発明によれば、補液導出ポンプはシビアに流量コ
ントロールされた前記血漿導出流量に応じてコントロー
ルされるため、貴重な血液製剤を必要量だけ注入するこ
とが可能である。
Further, according to the present invention, since the replacement fluid delivery pump is controlled according to the plasma delivery flow rate which is strictly controlled, it is possible to inject only the necessary amount of valuable blood products.

さらに、血球導出回路の圧力計によりシャントのトラブ
ル、その外の要因によって口過器の膜に異常圧が生しる
のを未然に防ぐことができる等、血漿分離交換装置の安
全性が向」−することになる。
Furthermore, the safety of the plasma separation and exchange device has been improved by using a pressure gauge in the blood cell extraction circuit to prevent abnormal pressure from occurring in the membrane of the mouthpiece due to problems with the shunt or other factors. -I will do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例を示す概略図、第3
図は本発明におけるポンプ制御手段の他の実施例を示す
概略図である。 図中、lは血液導入回路、2は口過膜、5は口過器、8
は血漿導出回路、17はm球導出回路、18は補液導入
回路、P、は差圧計、P3は圧力計、Mえは血液導出ポ
ンプ、M4(f補液導入ポンプある。 特許 出願人 川澄並学工業株式会社 同 株式会社 クラレ 代理人 弁理士 西 野 茂 美 第 1 図
1 and 2 are schematic diagrams showing embodiments of the present invention;
The figure is a schematic diagram showing another embodiment of the pump control means in the present invention. In the figure, l is the blood introduction circuit, 2 is the oral membrane, 5 is the oral passage device, and 8
17 is a plasma derivation circuit, 17 is an m bulb derivation circuit, 18 is a replacement fluid introduction circuit, P is a differential pressure gauge, P3 is a pressure gauge, M is a blood derivation pump, and M4 (f is a replacement fluid introduction pump. Patent applicant Namanabu Kawasumi Kogyo Co., Ltd. Kuraray Co., Ltd. Agent Patent Attorney Shigeru Nishino Figure 1

Claims (1)

【特許請求の範囲】[Claims] 閉鎖体外循環回路中に口過器を備え、この口過器で血球
成分と血漿成分とを分離する血漿分離交換装置において
、前記口過器の血液導入側と面漿導出側の差圧を検出す
る手段を設け、血漿導出回路に前記差圧検出手段との連
動制御により設定圧または設定圧以下となるように流量
調整n/能なポンプを設けるとともに、血球導出回路に
補液導入回路を設け、この補液導入回路に血漿導出部に
応じて流部調整されるポンプを設け、さらに前記血球導
出回路に圧力シ1を設けたことを特徴とする血漿分離交
換装置。
In a plasma separation and exchange device that includes a mouth strainer in a closed extracorporeal circulation circuit and separates blood cell components and plasma components with the mouth strainer, the differential pressure between the blood inlet side and the plasma outlet side of the mouth strainer is detected. providing a pump capable of adjusting the flow rate so that the pressure is at or below the set pressure by interlocking control with the differential pressure detection means in the plasma derivation circuit; and providing a replacement fluid introduction circuit in the blood cell derivation circuit; A plasma separation and exchange apparatus characterized in that the replacement fluid introduction circuit is provided with a pump whose flow rate is adjusted according to the plasma extraction section, and the blood cell extraction circuit is further provided with a pressure pump 1.
JP60058148A 1985-03-25 1985-03-25 Serum separation and replacement apparatus Granted JPS60259270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058148A JPS60259270A (en) 1985-03-25 1985-03-25 Serum separation and replacement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058148A JPS60259270A (en) 1985-03-25 1985-03-25 Serum separation and replacement apparatus

Publications (2)

Publication Number Publication Date
JPS60259270A true JPS60259270A (en) 1985-12-21
JPS6312633B2 JPS6312633B2 (en) 1988-03-22

Family

ID=13075903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058148A Granted JPS60259270A (en) 1985-03-25 1985-03-25 Serum separation and replacement apparatus

Country Status (1)

Country Link
JP (1) JPS60259270A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040302A (en) * 1973-07-27 1975-04-14
JPS53100696A (en) * 1977-02-15 1978-09-02 Asahi Chemical Ind Method and device for controlling flow rate of body fluids circulating outside

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040302A (en) * 1973-07-27 1975-04-14
JPS53100696A (en) * 1977-02-15 1978-09-02 Asahi Chemical Ind Method and device for controlling flow rate of body fluids circulating outside

Also Published As

Publication number Publication date
JPS6312633B2 (en) 1988-03-22

Similar Documents

Publication Publication Date Title
CA2064712C (en) Method and apparatus for administration of anticoagulant to red cell suspension output of a blood separator
US4828543A (en) Extracorporeal circulation apparatus
JPS583705B2 (en) Double filtration plasma exchange device
US5423738A (en) Blood pumping and processing system
EP0156496B1 (en) Apparatus for the treatment of plasma
JPS61143074A (en) Blood dialyzer
EP0114698B1 (en) Process and apparatus for obtaining blood plasma
JPS6247366A (en) Blood dialyzing and filtering apparatus
JPH02501627A (en) plasma separation system
US4721564A (en) Apparatus for the filtration of plasma from blood
JPS60259270A (en) Serum separation and replacement apparatus
JPS62142567A (en) Double filtering type blood treatment apparatus
JPS6040303B2 (en) Double filtration plasma exchanger
JPH0651057B2 (en) Blood processing equipment
JPS6040302B2 (en) Double filtration plasma exchanger
JPH03215270A (en) Blood treatment apparatus
JPH06233813A (en) Hemocatharsis system
JPH01104272A (en) Blood treatment apparatus
JPH0117703B2 (en)
JPS6219177A (en) Blood treating apparatus
JPH0446756Y2 (en)
JPS6327023B2 (en)
JPS63292964A (en) Plasma treatment apparatus
JPS61193668A (en) Serum treatment apparatus
JPH0116179B2 (en)