JPS60258442A - Alloy for lead frame - Google Patents

Alloy for lead frame

Info

Publication number
JPS60258442A
JPS60258442A JP11315384A JP11315384A JPS60258442A JP S60258442 A JPS60258442 A JP S60258442A JP 11315384 A JP11315384 A JP 11315384A JP 11315384 A JP11315384 A JP 11315384A JP S60258442 A JPS60258442 A JP S60258442A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth element
strength
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11315384A
Other languages
Japanese (ja)
Other versions
JPS6315337B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Satoo Ishiyama
里丘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP11315384A priority Critical patent/JPS60258442A/en
Publication of JPS60258442A publication Critical patent/JPS60258442A/en
Publication of JPS6315337B2 publication Critical patent/JPS6315337B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the electric conductivity, heat conductivity and strength by adding prescribed percentages of Co and Y or a rare earth element, and the balance Cu. CONSTITUTION:This alloy for a lead frame consists of 0.1-9wt% Co, 0.01- 5wt% Y or rare earth element and the balance Cu. Sm, Pr or misch metal is used as the rare earth element. The alloy is used in the manufacture of IC, LSI or the like and has superior electric conductivity, heat conductivity and strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はIC及びL’S I等に使用されるリードフレ
ーム用合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy for lead frames used in ICs, L'SIs, etc.

〔従来の技術〕[Conventional technology]

近年、半導体技術は目覚しい発達をとげ、極近い将来に
は256にメモリのVLS Iも大量に製造されるよう
に成りつつある。
In recent years, semiconductor technology has made remarkable progress, and in the very near future, VLSI memory devices will be manufactured in large quantities.

IC及びLSI等に使用されるリードフレーム用合金と
しては、最初コバールが使用され、次いで42アロイ、
52アロイ等が使用されるようになった。そして、LS
I等の超集積回路が開発されるに到って、特に、電気伝
導度、熱伝導度及び強度等の優れた合金が要求されるよ
うに成り、現在では鉄合金及び銅合金が略同し比率で使
用されている。 □ リードフレーム用合金としての主要要素である電気伝導
度と強度との関係は、一般に電気伝導度を上げれば強度
が低下すると云う特性があり、今後、電気伝導度を上昇
させるに伴い低下する強度を如何にして低く押えるかが
研究の課題となっている。
Kovar was first used as an alloy for lead frames used in ICs, LSIs, etc., followed by 42 alloy,
52 alloy etc. came to be used. And L.S.
With the development of ultra-integrated circuits such as I, alloys with particularly excellent electrical conductivity, thermal conductivity, and strength have come to be required, and currently iron alloys and copper alloys are almost the same. used in proportions. □ The relationship between electrical conductivity, which is the main element for lead frame alloys, and strength is such that the strength generally decreases as the electrical conductivity increases.In the future, as the electrical conductivity increases, the strength will decrease. The subject of research is how to keep this low.

電気伝導度と婦度を共に高く保つ方法は種々研究されて
いるが、そのうちスピノーダル分解及びその他の機構と
の複合処理が最も良い方法であると考えられている。
Various methods for maintaining high electrical conductivity and high conductivity have been studied, among which a combination treatment with spinodal decomposition and other mechanisms is considered to be the best method.

例えば、従来Cυ−Nr合金は全率固溶型合金と考えら
れていたが、特殊な元素を添加することにより、又は処
理を施すことによってスピノーダル分解を起す。
For example, Cυ-Nr alloy was conventionally considered to be a solid solution type alloy, but spinodal decomposition occurs when special elements are added or when a treatment is performed.

一般に銅合金では他の元素を添加するとヤング率が低下
する性質があるにも拘わらず、Cu−Niスピノーダル
合金では上記元素を添加すると共に、ヤング率が向上し
且つ電気伝導度の低下を低(押えることができる。
Although copper alloys generally have the property that their Young's modulus decreases when other elements are added, in Cu-Ni spinodal alloys, the addition of the above elements improves the Young's modulus and reduces the decrease in electrical conductivity ( It can be held down.

而して、Cu−Ni合金にスピノーダル分解処理と強化
機構の複合処理を行なうと、例えば、強度60kg /
 m 2、電気伝導度80%とすることができ、これば
原時点に於けるLSIのリードフレーム用合金としては
極めて優秀な値であり、また、VLSIのり−1”フレ
ーム用合金としても適合する値である。
Therefore, when a Cu-Ni alloy is subjected to a combined treatment of spinodal decomposition treatment and a strengthening mechanism, for example, the strength is 60 kg /
m2, electrical conductivity of 80%, which is an extremely excellent value for an alloy for LSI lead frames at the time of its origin, and is also suitable as an alloy for VLSI glue-1” frames. It is a value.

更に、リードフレーム用合金の必要条件としては熱膨張
係数が小さいことが要求される。一般に鉄系の合金は熱
膨張係数が小さく、銅系の合金は大きい値を示す。然し
ながら、銅系の合金は熱伝導度が鉄系の合金の約10倍
と極めて良いためリードフレーム用合金に利用される。
Furthermore, the alloy for lead frames is required to have a small coefficient of thermal expansion. In general, iron-based alloys have a small coefficient of thermal expansion, while copper-based alloys have a large coefficient of expansion. However, copper-based alloys are used as alloys for lead frames because their thermal conductivity is approximately 10 times that of iron-based alloys.

従って、銅系の合金は今後如何にして熱膨張係数を下げ
るかが最大の課題となっている。
Therefore, the biggest challenge in the future is how to lower the coefficient of thermal expansion of copper-based alloys.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は叙上の観点にたってなされたものであって、そ
の目的とするところは、電気伝導度、熱伝導度及び強度
等に優れ、LSIは勿論のことVLSI等にも使用する
ことができるリードフレーム用合金を提供しようとする
ものである。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to have excellent electrical conductivity, thermal conductivity, strength, etc., and to be usable not only in LSI but also in VLSI, etc. The present invention aims to provide an alloy for lead frames.

〔問題点を解決するための手段〕[Means for solving problems]

而して、本発明の要旨とするところは、重量百分率(以
下同じ)で0.1〜9%のCoと、0.01〜5%のY
又は希土類元素、特にSm、 Pr、、 ミソシュメタ
ル等の内から選んだ少なくとも一種類以上のY又は希土
類元素と、残部が不純物を除きCuがら成 ゛る合金に
存するものである。
Therefore, the gist of the present invention is that Co of 0.1 to 9% by weight (the same applies hereinafter) and Y of 0.01 to 5%
Or it exists in an alloy consisting of at least one kind of Y or a rare earth element selected from rare earth elements, especially Sm, Pr, miso metal, etc., and the remainder is Cu excluding impurities.

〔作 用〕[For production]

上記の如く構成した合金を使用すれ、電気伝導度、熱伝
導度及び強度等を高く保つことができ、LSIは勿論の
ことVLS Iのリードフレーム用合金としても充分な
作用を果すことができるものである。
By using the alloy configured as above, it is possible to maintain high electrical conductivity, thermal conductivity, strength, etc., and it can function satisfactorily as an alloy for not only LSI but also VLSI lead frames. It is.

〔実 施 例〕〔Example〕

以下、図面第1図のグラフを参照しつつ本発明の詳細を
具体的に説明する。
Hereinafter, the details of the present invention will be specifically explained with reference to the graph shown in FIG. 1 of the drawings.

図面第1図は、本発明にかかるリードフレーム用合金の
特性を示すグラフである。
FIG. 1 is a graph showing the characteristics of the lead frame alloy according to the present invention.

本発明にかかるリードフレーム用合金の製造方法として
は、重量百分率(以下同じ)で0.1〜9%のCOと、
O,OI〜5%のSm、、Pr、ミソシュメタル等の内
から選んだ少なくとも一種類以上のY又は希土類元素と
、残部をCuとし、上記原料を大気中で高周波熔解後金
型に鋳造してインゴットとする。
The method for manufacturing the alloy for lead frames according to the present invention includes CO of 0.1 to 9% by weight percentage (the same applies hereinafter);
O, OI~5% of at least one Y or rare earth element selected from Sm, Pr, miso metal, etc., and the balance is Cu, and the above raw materials are melted at high frequency in the atmosphere and then cast into a mold. Make it into an ingot.

このインゴットを900℃〜1050℃で約3時聞落体
化処理し、熱間又は冷間で圧延する。
This ingot is subjected to a drop-off treatment at 900° C. to 1050° C. for about 3 hours, and then hot or cold rolled.

熱間圧延の場合には、次の工程に入る前に上記インゴッ
トの大きさ応じて約900 ’c〜1050°Cの温度
で10分〜1時間程度の溶体化処理を施してから、次の
時効工程に移行するようにし、200〜800°Cで時
効する。然る後、冷間圧延して最終的な厚さとし、最後
に打ち抜き等で成形する。
In the case of hot rolling, before proceeding to the next step, solution treatment is performed at a temperature of about 900'C to 1050C for about 10 minutes to 1 hour depending on the size of the ingot, and then the next step is carried out. The material is aged at 200 to 800°C so as to proceed to an aging process. Thereafter, it is cold rolled to the final thickness, and finally formed by punching or the like.

なお、上記各溶体化処理は夫々所定の温度に加熱保持し
後、水又は油冷却等により急冷焼入れるものである。
Note that each of the above solution treatment treatments involves heating and holding at a predetermined temperature, and then rapidly cooling and quenching by cooling with water or oil.

また、上記時効は、必要に応じて多段時効や連続降温時
効とするものである。
Moreover, the above-mentioned aging may be multi-stage aging or continuous temperature-lowering aging, if necessary.

図面第1図は、各時効温度に1時間保持した後望ましく
は通常焼入し、室温で測定したときの電気伝導度及び引
張り強さを示すものであり、白丸と黒丸は夫々5%C0
−1%Sm−残部Cu合金の引張り強さ及び電気伝導度
を示している。
Figure 1 shows the electrical conductivity and tensile strength when measured at room temperature after being held at each aging temperature for 1 hour, preferably by normal quenching, and the white and black circles indicate 5% CO, respectively.
-1%Sm-balance Cu alloy tensile strength and electrical conductivity are shown.

5%Co −1%Sm−残部Cu合金は、200℃〜5
00℃ではスピノーダル変態領域であり、500°C〜
800℃は析出領域である。
The 5%Co-1%Sm-balance Cu alloy was heated at 200℃~5
At 00°C, it is in the spinodal transformation region, and from 500°C
800°C is the precipitation region.

スピノーダル変態及び析出が現れるものは、C0−Y又
は希土類元素化合物であり、Co及びY又は希土類元素
の含有合金組成にもよるが、COの一部又は全部が析出
するもので、スピノーダル変態及び析出をさせることに
より電気伝導度及び強度を大幅に向上させることができ
る。また、10〜40%Zn、 1〜10%Ni又はS
n等を上記本発明合金に添加すると電気伝導度は低下す
るが、引張強さを著しく向上させることが可能となる。
Spinodal transformation and precipitation occur in CO-Y or rare earth element compounds, and depending on the alloy composition containing Co and Y or rare earth elements, some or all of CO precipitates, causing spinodal transformation and precipitation. By doing so, the electrical conductivity and strength can be significantly improved. Also, 10-40% Zn, 1-10% Ni or S
When n or the like is added to the above-mentioned alloy of the present invention, the electrical conductivity decreases, but it becomes possible to significantly improve the tensile strength.

Y又は希土類元素としてSm、 Pr等を添加した場合
に析出する相は強磁性体であるので、上記時効を磁場中
で行なえば、磁場の方向に細長い析出物を得ることがで
き、そして電気伝導度及び引張強さを共に向上させるこ
とができる。
The phase that precipitates when Y or rare earth elements such as Sm and Pr are added is ferromagnetic, so if the above aging is performed in a magnetic field, elongated precipitates can be obtained in the direction of the magnetic field, and electrical conductivity can be obtained. Both strength and tensile strength can be improved.

即ち、GoとY又は希土類元素との析出化合物は、Y又
は希土類元素として例えば、Smを例に採ると、Sm2
 Co17 、SmCo5.51112 CO7、Sm
Co3−、 SmCo2 %Sn+43 Co4 、S
m3 Co等、特にSm2 Co17やSmCo5等又
は之を含む混合物の強磁性体であって、従来のCoのみ
の析出では充分でなかった強度が、上記C。
That is, the precipitated compound of Go and Y or a rare earth element is, for example, if Sm is used as Y or a rare earth element, Sm2
Co17, SmCo5.51112 CO7, Sm
Co3-, SmCo2 %Sn+43 Co4, S
It is a ferromagnetic material such as m3 Co, especially Sm2 Co17, SmCo5, etc., or a mixture containing them, and the above-mentioned C has a strength that was not sufficient with the conventional precipitation of Co alone.

−Y又は希土類元素化合物の析出により強度が著゛シ<
増大するものである。
- The strength is significantly reduced due to the precipitation of Y or rare earth element compounds.
It is something that increases.

上記の磁場中時効として有効な条件としては、磁場の強
さを少なくとも1000e以上50000e以下、通常
1000〜30000eとし、合金組成によって決まる
300〜500℃の温度で約30分程度時効して後、次
に磁場無にして、通常磁場中時効の温度よりもや\低い
温度で時効するものである。
Effective conditions for aging in a magnetic field include a magnetic field strength of at least 1,000e to 50,000e, usually 1,000 to 30,000e, aging for about 30 minutes at a temperature of 300 to 500°C, which depends on the alloy composition, and then It is aged in the absence of a magnetic field at a temperature slightly lower than the temperature normally used for aging in a magnetic field.

このようにすると、合金は磁場処理の方向に強度が強(
なる。而して、本発明合金の特性上から来る有効組成範
囲としては、第2図の如くなる。
In this way, the alloy becomes stronger in the direction of the magnetic field treatment (
Become. Therefore, the effective composition range based on the characteristics of the alloy of the present invention is as shown in FIG.

即ち、第2図は、縦軸にY又は希土類元素(R[りの組
成(%)をとると共に、横軸にCOの組成(%)をとっ
たとき、合金の性能指数、即ち電気伝導度と引張強度の
点で共に優れている性能指数(例えば、■〔電気伝導度
〕+〔引張強度〕、又は通常は■〔電気伝導度〕×〔引
張強度〕の如き値のもの)の等値曲線を示したもので、
COの一部以上が、Y又は希土類元素と合金化して、前
記例えばSmの場合、5IIIC05又はこれに近いS
m2 Cot 7等の強磁性化合物が析出する近傍での
性能が高いものである。
That is, in Figure 2, when the vertical axis is the composition (%) of Y or rare earth element (R), and the horizontal axis is the composition (%) of CO, the figure shows the figure of merit of the alloy, that is, the electrical conductivity. and a figure of merit that is superior in terms of both electrical conductivity and tensile strength (e.g., ■ [electrical conductivity] + [tensile strength], or usually a value such as ■ [electrical conductivity] × [tensile strength]). It shows a curve,
If at least a part of the CO is alloyed with Y or a rare earth element, for example Sm, 5IIIC05 or S close to this is formed.
It has high performance in the vicinity where ferromagnetic compounds such as m2 Cot 7 are precipitated.

この第2図及び前記実験例から、Y又は希土類元素の好
ましい組成範囲は、0.3〜3.5%であり、又Coは
同じく1〜7%と云うことになる。そして本発明合金に
於て、0.1%Co及び0.O1%Y又は希土類元素を
下限としたのは、何れかがこれ以下では十分な強度が得
られず、その上限を9%Co及び5%Y又は希土類元素
としたのは、何れかがこれ以上となると電気伝導度が低
くなるからである。
From this FIG. 2 and the above experimental example, the preferred composition range for Y or rare earth elements is 0.3 to 3.5%, and the same for Co is 1 to 7%. In the alloy of the present invention, 0.1% Co and 0.1% Co and 0.1% Co and 0.1% Co and 0.1% The reason why we set the lower limit to O1% Y or rare earth elements is that sufficient strength cannot be obtained if either is lower than this, and the reason why we set the upper limit to 9% Co and 5% Y or rare earth elements is because either of them is higher than this. This is because the electrical conductivity becomes low.

なお、金属以外の不純物として、酸素や燐等が夫々10
0 ppm前後以下含まれることになるが、この程度迄
は格別の支障はない。
In addition, as impurities other than metals, oxygen, phosphorus, etc. each have a concentration of 10%.
Although it will be contained at around 0 ppm or less, there will be no particular problem up to this level.

〔発明の効果〕〔Effect of the invention〕

本発明は紙上の如く構成されるので、本発明によるとき
には、電気伝導度、熱伝導度及び強度等を共に高く保つ
ことができるので、LSIは勿論のことVLS Iのリ
ードフレーム用合金としても充分な作用を果すことがで
きるのである。
Since the present invention is constructed as shown on paper, it is possible to maintain high electrical conductivity, thermal conductivity, strength, etc., and is therefore sufficient as an alloy for lead frames of not only LSI but also VLSI. It can perform a number of functions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図は、本発明にかかるリードフレーム用合金の
特性を示すグラフ、第2図は他の特性と合金組成との関
係を示す図である。 第1図に於て、 白丸−・−、−−−−−−5%C0−1%Sm−残部C
u合金の引張り強電黒丸−−−−−−−5%C0−1%
釦−残部Cu合金の電気伝導度特許出願人 株式会社井
上ジャパ・ノクス研究所代理人(7524)最上正太部 ト
FIG. 1 is a graph showing the characteristics of the alloy for lead frames according to the present invention, and FIG. 2 is a graph showing the relationship between other characteristics and alloy composition. In Fig. 1, white circles ---, ---5%C0-1%Sm-remaining C
U alloy tensile strength black circle---5%C0-1%
Button - Residual Cu alloy electrical conductivity patent applicant Inoue Japan Nox Research Institute Agent (7524) Shotabe Mogami

Claims (1)

【特許請求の範囲】 1)重量百分率(以下間し)で0.1〜9%のCOと、
0.01〜5%のY又は希土類元素と、残部が不純物を
除きCuから成るリードフレーム用合金。 2)上記希土類元素がSmである特許請求の範囲第1項
記載のリードフレーム用合金。 3)上記希土類元素がPrである特許請求の範囲第1項
記載のリードフレーム用合金。 4)上記希土類元素がミソシュメタルである特許請求の
範囲第1項記載のリードフレーム用合金。
[Scope of Claims] 1) 0.1 to 9% CO by weight percentage (hereinafter referred to as the following);
An alloy for lead frames consisting of 0.01 to 5% Y or a rare earth element and the remainder Cu excluding impurities. 2) The alloy for lead frames according to claim 1, wherein the rare earth element is Sm. 3) The alloy for a lead frame according to claim 1, wherein the rare earth element is Pr. 4) The alloy for a lead frame according to claim 1, wherein the rare earth element is miso metal.
JP11315384A 1984-06-04 1984-06-04 Alloy for lead frame Granted JPS60258442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11315384A JPS60258442A (en) 1984-06-04 1984-06-04 Alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11315384A JPS60258442A (en) 1984-06-04 1984-06-04 Alloy for lead frame

Publications (2)

Publication Number Publication Date
JPS60258442A true JPS60258442A (en) 1985-12-20
JPS6315337B2 JPS6315337B2 (en) 1988-04-04

Family

ID=14604907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11315384A Granted JPS60258442A (en) 1984-06-04 1984-06-04 Alloy for lead frame

Country Status (1)

Country Link
JP (1) JPS60258442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017471A3 (en) * 2004-08-06 2007-04-19 Williams Advanced Materials In Copper based alloys and optical media containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017471A3 (en) * 2004-08-06 2007-04-19 Williams Advanced Materials In Copper based alloys and optical media containing same

Also Published As

Publication number Publication date
JPS6315337B2 (en) 1988-04-04

Similar Documents

Publication Publication Date Title
JPS5974251A (en) Copper alloy for electric and electronic parts and manufact-ure
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JP3896793B2 (en) Manufacturing method of high strength and high conductivity copper alloy material
JPS62180014A (en) Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture
JPS58123862A (en) Manufacture of copper alloy for lead material for semiconductor apparatus
JPS60258442A (en) Alloy for lead frame
JPH10324935A (en) Copper alloy for lead frame, and its production
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JPH1180862A (en) Copper-iron alloy material for lead frame, excellent in heat resistance
JPS60258441A (en) Alloy for lead frame
JP2000038647A (en) Method for working copper alloy
JPH09176808A (en) Production of precipitation hardening copper alloy
JPS63109134A (en) Copper alloy for lead frame and its production
JPS61266540A (en) Copper alloy
JPH0418016B2 (en)
JPS61127853A (en) Manufacture of high tension copper alloy
JPS6142772B2 (en)
JPS63293147A (en) Production of iron-copper-chromium alloy strip for high-strength lead frame
JPS61127852A (en) Manufacture of high tensile copper alloy
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JP2673967B2 (en) Cu alloy lead frame material for high strength semiconductor devices
JPS63312936A (en) Copper alloy material for semiconductor lead frame and its production
JPH0353036A (en) Copper-iron-cobalt-titanium alloy having high mechanical and electric characteristics and preparation thereof