JPS60258441A - Alloy for lead frame - Google Patents

Alloy for lead frame

Info

Publication number
JPS60258441A
JPS60258441A JP11315484A JP11315484A JPS60258441A JP S60258441 A JPS60258441 A JP S60258441A JP 11315484 A JP11315484 A JP 11315484A JP 11315484 A JP11315484 A JP 11315484A JP S60258441 A JPS60258441 A JP S60258441A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
strength
earth element
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11315484A
Other languages
Japanese (ja)
Other versions
JPS6315336B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Satoo Ishiyama
里丘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP11315484A priority Critical patent/JPS60258441A/en
Publication of JPS60258441A publication Critical patent/JPS60258441A/en
Publication of JPS6315336B2 publication Critical patent/JPS6315336B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the electric conductivity, heat conductivity and strength by adding prescribed percentages of Zn, Co and Y or a rare earth element to Cu. CONSTITUTION:This alloy for a lead frame consists of, 10-40wt% Zn, 0.1- 9wt% Co, 0.01-5wt% Y or rare earth element and the balance Cu. Sm, Pr or misch metal is used as the rare earth element. The alloy is used in the manufacture of IC, LSI or the like and has superior electric conductivity, heat conductivity and strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はIC及びLSI等に使用されるリードフレーム
用合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy for lead frames used in ICs, LSIs, etc.

〔従来の技術〕[Conventional technology]

近年、半導体技術は目覚しい発達をとげ、極近い将来に
は256にメモリのVLS Iも大量に製造されるよう
に成りつつある。
In recent years, semiconductor technology has made remarkable progress, and in the very near future, VLSI memory devices will be manufactured in large quantities.

IC及びLSI等に使用されるリードフレーム用合金と
しては、最初コバールが使用され、次いで42アロイ、
52アロイ等が使用されるようになった。そして、LS
I等の超集積回路が開発されるに到って、特に、電気伝
導度、熱伝導度及び強度等の優れた合金が要求されるよ
うに成り、現在では鉄合金及び銅合金が略同じ比率で使
用されている。
Kovar was first used as an alloy for lead frames used in ICs, LSIs, etc., followed by 42 alloy,
52 alloy etc. came to be used. And L.S.
With the development of ultra-integrated circuits such as I, alloys with excellent electrical conductivity, thermal conductivity, and strength have come to be required, and currently iron alloys and copper alloys have approximately the same ratio. used in

リードフレーム用合金としての主要要素である電気伝導
度と強度との関係は、一般に電気伝導度を上げれば強度
が低下すると云う特性があり、今後、電気伝導度を上昇
させるに伴い低下する強度を如何にして低く押えるかが
研究の課題となっている。
The relationship between electrical conductivity, which is a major element in alloys for lead frames, and strength is such that as electrical conductivity increases, strength generally decreases. The subject of research is how to keep it low.

電気伝導度と強度を共に高く保つ方法は種々研究されて
いるが、そのうちスピノーダル分解及びその他の機構と
の複合処理が最も良い方法であると考えられている。
Various methods have been studied to maintain high electrical conductivity and strength, among which a combination treatment with spinodal decomposition and other mechanisms is considered to be the best method.

例えば、従来Cu−Ni合金は全率固溶型合金と考えら
れていたが、特殊な元素を添加することにより、又は処
理を施すことによってスピノーダル分解を起す。
For example, Cu--Ni alloys were conventionally considered to be completely solid solution alloys, but spinodal decomposition occurs by adding special elements or by performing treatments.

一般に銅合金では他の元素を添加するとヤング率が低下
する性質があるにも拘わらず、Cu−Niスピノーダル
合金では上記元素を添加すると共に、ヤング率が向上し
且つ電気伝導度の低下を低く押えることができる。
Although copper alloys generally have the property that the Young's modulus decreases when other elements are added, in Cu-Ni spinodal alloys, the addition of the above elements improves the Young's modulus and suppresses the decrease in electrical conductivity. be able to.

而して、Cu−Ni合金にスピノーダル分解処理と強化
機構の複合処理を行なうと、例えば、強度60kg/x
*2、電気伝導度80%とすることができ、これは原時
点に於けるLSIのリードフレーム用合金としては極め
て優秀な値であり、また、VLSIのリードフレーム用
合金としても適合する値である。
Therefore, when a Cu-Ni alloy is subjected to a combined process of spinodal decomposition treatment and strengthening mechanism, for example, the strength can be increased to 60 kg/x.
*2. It can achieve an electrical conductivity of 80%, which is an extremely excellent value for an alloy for LSI lead frames at the time of its origin, and is also suitable for an alloy for VLSI lead frames. be.

更に、リードフレーム用合金の必要条件としては熱膨張
係数が小さいことが要求される。一般に鉄系の合金は熱
膨張係数が小さく、銅系の合金は大きい値を示す。然し
ながら、銅系の合金は熱伝導度が鉄系の合金の約10倍
と極めて良いためリードフレーム用合金に利用される。
Furthermore, the alloy for lead frames is required to have a small coefficient of thermal expansion. In general, iron-based alloys have a small coefficient of thermal expansion, while copper-based alloys have a large coefficient of expansion. However, copper-based alloys are used as alloys for lead frames because their thermal conductivity is approximately 10 times that of iron-based alloys.

従って、銅系の合金は今後如何にして熱膨張係数を下げ
るかが最大の課題となっている。
Therefore, the biggest challenge in the future is how to lower the coefficient of thermal expansion of copper-based alloys.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は叙上の観点にたってなされたものであって、そ
の目的とするところは、電気伝導度、熱伝導度及び強度
等に優れ、LSIは勿論のことVLSI等にも使用する
ことができるリードフレーム用合金を提供しようとする
ものである。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to have excellent electrical conductivity, thermal conductivity, strength, etc., and to be usable not only in LSI but also in VLSI, etc. The present invention aims to provide an alloy for lead frames.

〔問題点を解決するための手段〕[Means for solving problems]

而して、本発明の要旨とするところは、重量百分率(以
下同じ)で10〜40%のZnと、0.1〜9%のCo
と、0.01〜5%のY又は希土類元素、特にS m−
Therefore, the gist of the present invention is to contain 10 to 40% Zn and 0.1 to 9% Co by weight percentage (the same applies hereinafter).
and 0.01 to 5% Y or rare earth elements, especially S m-
.

Pr、ミノシュメタル等の内から選んだ少なくとも一種
類以上のY又は希土類元素と、残部が不純物を除きCu
から成る合金に存するものである。
At least one type of Y or rare earth element selected from Pr, minosu metal, etc., and the remainder is Cu excluding impurities.
It exists in an alloy consisting of.

〔作 用〕[For production]

上記の如く構成した合金を使用すれ、電気伝導度、熱伝
導度及び強度等を高く保つことができ、LSIは勿論の
ことVLS Iのリードフレーム用合金としても充分な
作用を果すことができるものである。
By using the alloy configured as above, it is possible to maintain high electrical conductivity, thermal conductivity, strength, etc., and it can function satisfactorily as an alloy for not only LSI but also VLSI lead frames. It is.

〔実 施 例〕〔Example〕

以下、図面第1図のグラフを参照しつつ本発明の詳細を
具体的に説明する。
Hereinafter, the details of the present invention will be specifically explained with reference to the graph shown in FIG. 1 of the drawings.

図面第1図は、本発明にかかるリードフレーム用合金の
特性を示すグラフである。
FIG. 1 is a graph showing the characteristics of the lead frame alloy according to the present invention.

本発明にかかるリードフレーム用合金の製造方法として
は、重量百分率(以下同し)で10〜40%のZnと、
0.1〜9%のCOと、0.1〜5%のSm、 Pr。
The method for manufacturing the alloy for lead frames according to the present invention includes Zn of 10 to 40% by weight percentage (hereinafter the same);
0.1-9% CO and 0.1-5% Sm, Pr.

ミソシュメタル等のうちから選んだ少なくとも一種類以
上のY又は希土類元素と、残部をCuとし、上記原料を
大気中で高周波熔解後金型に鋳造してインゴットとする
。このインゴットを900℃〜1050℃で約3時間体
化解処理し、熱間又は冷間で圧延する。
At least one kind of Y or a rare earth element selected from miso metal, etc., and the remainder is Cu, and the above raw materials are high-frequency melted in the atmosphere and then cast into a mold to form an ingot. This ingot is subjected to decomposition treatment at 900° C. to 1050° C. for about 3 hours, and then hot or cold rolled.

熱間圧延の場合には、次の工程に入る前に上記インゴッ
トの大きさ応じて約900℃〜1050℃の温度で10
分〜1時間程度の溶体化処理を施してから、次の時効工
程に移行するようにし、200〜800℃で時効する。
In the case of hot rolling, the ingot is rolled at a temperature of about 900°C to 1050°C for 10 minutes, depending on the size of the ingot, before entering the next step.
After the solution treatment is performed for about 1 minute to 1 hour, the next aging step is carried out, and the material is aged at 200 to 800°C.

然る後、冷間圧延して最終的な厚さとし、最後に打ち抜
き等で成形する。
Thereafter, it is cold rolled to the final thickness, and finally formed by punching or the like.

なお、上記各溶体処理は、夫々所定の温度に加熱保持し
て調質後、水又は油冷却等により惣冷焼入れるものであ
る。また、上記時効は、必要に応じて多段時効や連続降
温時効とするものである。
In addition, each of the above-mentioned solution treatments involve heating and holding at a predetermined temperature, refining, and then cooling and quenching by cooling with water or oil. Moreover, the above-mentioned aging may be multi-stage aging or continuous temperature-lowering aging, if necessary.

図面第1図は、各時効温度に1時間保持した後望ましく
は通常焼入し、室温で測定したときの電気伝導度及び引
張り強さを示すものであり、黒丸と白丸は夫々35%Z
n−5%Co −1%Sm−残部Cu合金の引張り強さ
及び電気伝導度を示している。
Figure 1 of the drawing shows the electrical conductivity and tensile strength when measured at room temperature after being held at each aging temperature for 1 hour, preferably by normal quenching, and the black and white circles indicate 35%Z, respectively.
Figure 2 shows the tensile strength and electrical conductivity of an n-5%Co-1%Sm-balance Cu alloy.

35%Zn−5%Co −1%Sm−残部Cu合金は、
200℃〜500℃ではスピノーダル変態領域であり、
500℃〜800℃は析出領域である。
The 35% Zn-5% Co-1% Sm-balance Cu alloy is
At 200°C to 500°C, it is a spinodal transformation region,
500°C to 800°C is the precipitation region.

スピノーダル変態及び析出が現れるものは、C。C shows spinodal transformation and precipitation.

−Y又は希土類元素化合物であり、Go及びY又は希土
類元素の含有合金組成にもよるが、COの一部又は全部
が析出するもので、スピノーダル変態及び析出をさせる
ことにより電気伝導度及び強度を大幅に向上させること
ができる。また、1〜10%のNi又はSn等を上記本
発明合金に、又は上記Znに代えて添加すると電気伝導
度は低下するが、引張強さを著しく向上させることが可
能となる。
-Y or a rare earth element compound, and depending on the alloy composition containing Go and Y or rare earth elements, some or all of CO precipitates, and electrical conductivity and strength are improved by spinodal transformation and precipitation. can be significantly improved. Further, when 1 to 10% of Ni or Sn is added to the above-mentioned alloy of the present invention or in place of the above-mentioned Zn, the electrical conductivity decreases, but the tensile strength can be significantly improved.

Y又は希土類元素としてSm、 Pr等を添加した場合
に析出する相は強磁性体であるので、上記時効を磁場中
で行なえば、磁場の方向に細長い析出物を得ることがで
き、そして電気伝導度及び引張強さを共に向上させるこ
とができる。
The phase that precipitates when Y or rare earth elements such as Sm and Pr are added is ferromagnetic, so if the above aging is performed in a magnetic field, elongated precipitates can be obtained in the direction of the magnetic field, and electrical conductivity can be obtained. Both strength and tensile strength can be improved.

即ち、GoとY又は希土類元素との析出化合物は、Y又
は希土類元素として例えば、Smを例に採ると、Sm2
 Co17 、SmCo5 、Sm2 Co7 、、 
SmCo3 、SmCo2.5l11!] Co4.5
1113 Go等、特にSm2 Co17やSmCo5
等又は之を含む混合物の強磁性体であって、従来のCo
のみの析出では充分でなかった強度が、上記G。
That is, the precipitated compound of Go and Y or a rare earth element is, for example, if Sm is used as Y or a rare earth element, Sm2
Co17, SmCo5, Sm2Co7,,
SmCo3, SmCo2.5l11! ] Co4.5
1113 Go etc., especially Sm2 Co17 and SmCo5
A ferromagnetic material of a mixture including or
The above-mentioned G has a strength that was not sufficient with only precipitation.

−Y又は希土類元素化合物の析出により強度が著しく増
大するものである。
-The strength is significantly increased by precipitation of Y or rare earth element compound.

上記の磁場中時効として有効な条件としては、磁場の強
さを少なくとも1000e以上50000e以下、通常
1000〜30000eとし、合金組成によって決まる
300〜500℃の温度で約30分程度時効して後、次
に磁場無にして、通常磁場中時効の温度よりもや−低い
温度で時効するものである。
Effective conditions for aging in a magnetic field include a magnetic field strength of at least 1,000e to 50,000e, usually 1,000 to 30,000e, aging for about 30 minutes at a temperature of 300 to 500°C, which depends on the alloy composition, and then The aging process is performed in the absence of a magnetic field at a temperature slightly lower than the temperature normally used for aging in a magnetic field.

このようにすると、合金は磁場処理の方向に強度が強く
なる。而して、本発明合金の基になるZnを含有しない
合金の特性上から来る有効組成範囲としては、第2図の
如くなる。
In this way, the alloy becomes stronger in the direction of the magnetic field treatment. FIG. 2 shows the effective composition range based on the characteristics of the Zn-free alloy that is the basis of the alloy of the present invention.

即ち、第2図は、縦軸にY又は希土類元素(RE)の組
成(%)をとると共に、横軸にCoの組成(%)をとっ
たとき、合金の性能指数、即ち電気伝導度と引張強度の
点で共に優れている性能指数(例えば、■〔電気伝導度
〕+〔引張強度〕、又は通常は■〔電気伝導度〕×〔引
張強度〕の如き値のもの)の等値曲線を示したもので、
COの一部以上が、Y又は希土類元素と合金化して、前
記例えばSmの場合、SmCo5又はこれに近いSm2
 Co17等の強磁性化合物が析出する近傍での性能が
高いものである。
That is, in Figure 2, when the vertical axis is the composition (%) of Y or rare earth element (RE), and the horizontal axis is the Co composition (%), the figure of merit of the alloy, that is, the electric conductivity, Isovalue curves of figures of merit that are both superior in terms of tensile strength (e.g., ■ [electrical conductivity] + [tensile strength], or usually ■ [electrical conductivity] × [tensile strength]) It shows
At least a part of CO is alloyed with Y or a rare earth element, and in the case of Sm, for example, SmCo5 or Sm2 close to this is formed.
It has high performance in the vicinity where ferromagnetic compounds such as Co17 are precipitated.

この第2図及び前記実験例から、Y又は希土類元素の好
ましい組成範囲は、0.3〜3.5%であり、又Coは
同じく1〜7%と云うことになる。そして本発明合金に
於て、0,1%Co、 0.01%Y又は希土類元素及
び10%Znを下限としたのは、何れかがこれ以下では
十分な強度が得られず、その上限を9%Co、5%Y又
は希土類元素及び40%Znとしたのは、何れかがこれ
以上となると電気伝導度が低くなるからである。
From FIG. 2 and the experimental example described above, the preferred composition range for Y or rare earth elements is 0.3 to 3.5%, and the same for Co is 1 to 7%. In the alloy of the present invention, 0.1% Co, 0.01% Y, or rare earth elements and 10% Zn are set as the lower limits because sufficient strength cannot be obtained if any of them is less than these. The reason why 9% Co, 5% Y or a rare earth element, and 40% Zn were used is because if any of them exceeds 9%, the electrical conductivity will decrease.

そして、本発明合金は、0.1〜9%Co50.01〜
5%Y又は希土類元素、残部が不純物を除きCuがら成
る合金のCuの一部をZnに置換してもので、この置換
によりCu合金よりもZn −Cu合金で強度が増すこ
とは、周知のZn−Cu合金特性から明らがである。
The alloy of the present invention has 0.1 to 9% Co50.01 to
This is an alloy consisting of 5% Y or rare earth elements, and the remainder is Cu excluding impurities, by substituting part of the Cu with Zn. It is well known that this substitution increases the strength of the Zn-Cu alloy compared to the Cu alloy. This is clear from the Zn-Cu alloy properties.

なお、金属以外の不純物として、酸素や燐等が夫々10
0 ppm前後以下含まれることになるが、この程度迄
は格別の支障はない。
In addition, as impurities other than metals, oxygen, phosphorus, etc. each have a concentration of 10%.
Although it will be contained at around 0 ppm or less, there will be no particular problem up to this level.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如く構成されるので、本発明によるとき
には、電気伝導度、熱伝導度及び強度等を共に高く保つ
ことができるので、LSIは勿論のことVLS Iのリ
ードフレーム用合金としても充分な作用を果すことがで
きるのである。
Since the present invention is constructed as described above, it is possible to maintain high electrical conductivity, thermal conductivity, strength, etc., and therefore it can be used as an alloy for lead frames of not only LSI but also VLSI. It can perform a sufficient function.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図は、本発明にかかるリードフレーム用合金の
特性を示すグラフ、第2図は他の特性と合金組成との関
係を示す図である。 第1図に於て 黒丸−−−−35%Zn −5%Go−1%5L11−
残部Cu合金の引張り強さ白丸−・−−−−35%Zn
−5%Co −1%Sm−残部Cu合金の電気伝導度特
許出願人 株式会社井上ジャパンクス研究所代理人(7
524)最上正太部
FIG. 1 is a graph showing the characteristics of the alloy for lead frames according to the present invention, and FIG. 2 is a graph showing the relationship between other characteristics and alloy composition. In Figure 1, black circles---35%Zn-5%Go-1%5L11-
Tensile strength of balance Cu alloy White circle---35%Zn
Electrical conductivity of -5%Co -1%Sm-balance Cu alloy Patent applicant Representative of Inoue Japan Co., Ltd. (7
524) Mogami Shotabe

Claims (1)

【特許請求の範囲】 1)重量百分率(以下同じ)で10〜40%のZnと、
0.1〜9%のCOと、0.01〜5%のY又は希土類
元素と、残部が不純物を除きCuとから成るリードフレ
ーム用合金。 2)上記希土類元素がSII+である特許請求の範囲第
1項記載のリードフレーム用合金。 3)上記希土類元素がPrである特許請求の範囲第1項
記載のリードフレーム用合金。 4)上記希土類元素がミツシュメタルである特許請求の
範囲第1項記載のリードフレーム用合金。
[Claims] 1) Zn of 10 to 40% by weight percentage (the same applies hereinafter);
An alloy for lead frames consisting of 0.1 to 9% CO, 0.01 to 5% Y or rare earth elements, and the remainder Cu excluding impurities. 2) The lead frame alloy according to claim 1, wherein the rare earth element is SII+. 3) The alloy for a lead frame according to claim 1, wherein the rare earth element is Pr. 4) The alloy for a lead frame according to claim 1, wherein the rare earth element is Mitsushi metal.
JP11315484A 1984-06-04 1984-06-04 Alloy for lead frame Granted JPS60258441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11315484A JPS60258441A (en) 1984-06-04 1984-06-04 Alloy for lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11315484A JPS60258441A (en) 1984-06-04 1984-06-04 Alloy for lead frame

Publications (2)

Publication Number Publication Date
JPS60258441A true JPS60258441A (en) 1985-12-20
JPS6315336B2 JPS6315336B2 (en) 1988-04-04

Family

ID=14604930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11315484A Granted JPS60258441A (en) 1984-06-04 1984-06-04 Alloy for lead frame

Country Status (1)

Country Link
JP (1) JPS60258441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017471A3 (en) * 2004-08-06 2007-04-19 Williams Advanced Materials In Copper based alloys and optical media containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017471A3 (en) * 2004-08-06 2007-04-19 Williams Advanced Materials In Copper based alloys and optical media containing same

Also Published As

Publication number Publication date
JPS6315336B2 (en) 1988-04-04

Similar Documents

Publication Publication Date Title
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
JPH0841612A (en) Copper alloy and its preparation
JPS5974251A (en) Copper alloy for electric and electronic parts and manufact-ure
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JPS58123862A (en) Manufacture of copper alloy for lead material for semiconductor apparatus
JPS60258441A (en) Alloy for lead frame
JPS60258442A (en) Alloy for lead frame
JPH1180862A (en) Copper-iron alloy material for lead frame, excellent in heat resistance
JPH10324935A (en) Copper alloy for lead frame, and its production
JPS6299430A (en) Copper alloy for terminal or connector and its manufacture
JPH09176808A (en) Production of precipitation hardening copper alloy
JP2000038647A (en) Method for working copper alloy
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPS61127853A (en) Manufacture of high tension copper alloy
JPS61127852A (en) Manufacture of high tensile copper alloy
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0353036A (en) Copper-iron-cobalt-titanium alloy having high mechanical and electric characteristics and preparation thereof
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JP3325640B2 (en) Method for producing high-strength high-conductivity copper alloy
JPH0314901B2 (en)
JP5619391B2 (en) Copper alloy material and method for producing the same
JPS63161134A (en) Copper alloy for electrical parts
US5149499A (en) Cooper-Fe-P-Nb alloys for electrical and electronic parts and its manufacturing process