JPS60258413A - Production of non-oriented electrical steel sheet having low iron loss - Google Patents

Production of non-oriented electrical steel sheet having low iron loss

Info

Publication number
JPS60258413A
JPS60258413A JP11441684A JP11441684A JPS60258413A JP S60258413 A JPS60258413 A JP S60258413A JP 11441684 A JP11441684 A JP 11441684A JP 11441684 A JP11441684 A JP 11441684A JP S60258413 A JPS60258413 A JP S60258413A
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
electrical steel
sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11441684A
Other languages
Japanese (ja)
Inventor
Fumihiko Takeuchi
竹内 文彦
Yoshiaki Iida
飯田 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11441684A priority Critical patent/JPS60258413A/en
Publication of JPS60258413A publication Critical patent/JPS60258413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce economically and stably a non-oriented electrical steel sheet having a less iron loss by subjecting the surface of the steel sheet to a treatment for applying fine traces of working during intermediate annealing in the stage of producing said sheet thereby forming coarse crystal grains. CONSTITUTION:The blank slab contg., by weight, <0.02% C, <3.5% Si, 0.1- 1.0% Mn, <1% Al and <0.02% S for the non-oriented electrical steel sheet is hot rolled and is worked to a hot rolled sheet. Such hot rolled sheet is subjected to >=2 passes of cold rolling including the intermediate annealing treatment to the steel sheet having the final sheet thickness and thereafter the steel sheet is subjected to the finish annealing, by which the non-oriented electrical steel sheet is manufactured. Surface indentations of 10<5>-10<7> pieces for each 1m<2> of the steel sheet surface having 2X10<-5>-2X10<-2>mm.<3> size or 0.5-40mum depth are formed on the surface thereof during the intermediate annealing treatment in the production process thereof. The crystal grains are grown to the coarse grains by such treatment. The non-oriented electrical steel sheet having low iron loss is thus produced at a low cost.

Description

【発明の詳細な説明】 (技術分野) 無方向性電磁鋼板の製造に関してこの明細書で述べる技
術内容は、いわゆる2回冷延法の中間鏡なまし過程にお
ける特別な加工処理によって、鉄損の著しい改善を目指
した開発成果を提案するところにある。
[Detailed Description of the Invention] (Technical Field) The technical content described in this specification regarding the production of non-oriented electrical steel sheets is to reduce iron loss by special processing in the intermediate mirror annealing process of the so-called two-time cold rolling process. The aim is to propose development results aimed at significant improvements.

(技術背景) 無方向性電磁鋼板は、発電機、電動機、小型変圧器など
の電機機器の鉄芯として一般に使用され、日本工業規格
(JIS C2552,2554) によれば鉄損値に
よって89からS60 まで分級されている。
(Technical background) Non-oriented electrical steel sheets are generally used as iron cores for electrical equipment such as generators, motors, and small transformers, and according to Japanese Industrial Standards (JIS C2552, 2554), the iron loss value ranges from 89 to S60. It has been classified up to.

電磁鋼板の鉄損値は、消費電力量に関係することから低
い鉄損値のものが要求される。とくに、近年省エネルギ
ーの会社的要請が一段と強まり、同一グレードの電磁鋼
板においても、より低い鉄損値のものが必要とされてい
る。
Since the iron loss value of electrical steel sheets is related to the amount of power consumed, a low iron loss value is required. In particular, in recent years, corporate demands for energy conservation have become even stronger, and electrical steel sheets of the same grade are required to have lower iron loss values.

ところで、無方向性電磁鋼板の鉄損は、成品の再結晶粒
径に依存し、通常粒径が大きくなるぼど鉄損が少なくな
ることが知られている。
By the way, it is known that the iron loss of a non-oriented electrical steel sheet depends on the recrystallized grain size of the finished product, and that the iron loss generally decreases as the grain size increases.

したがって、成品段階の結晶粒を十分に太き(するため
に、結晶粒成長を抑制する介在物を極度に少なくするこ
と、高温あるいは長時間焼なましを行うことなどの方策
がとられてきた。
Therefore, in order to make the crystal grains sufficiently thick in the finished product, measures have been taken such as extremely minimizing inclusions that inhibit crystal grain growth, and annealing at high temperatures or for long periods of time. .

(従来技術と問題点) 酸化物については脱酸剤を添加し、八β203 やSi
O□として凝集浮上させて除去し、また、硫化物は希土
類元素、Ca合金などを添加して、MnSをRBM−3
,CaSなどに置換して無害化し、後工程での微細析出
を防止する(特開昭51−62115号(RBM)、特
開昭52−2824号(Ce)および特開昭53−96
796号(Ca)各公報参照)さらに窒化物(AIIN
>の場合は、AIlを添加することによって^IlN析
出粒子の粗大化を図り、結晶粒成長の阻害要因を弱め(
特公昭39−9668 号、特開昭55−97426号
ふよび特開昭50−98423号各公報参照)ることが
すでに知られている。
(Prior art and problems) For oxides, a deoxidizing agent is added, and 8β203 and Si
MnS is removed by agglomeration and floating as O□, and sulfides are removed by adding rare earth elements, Ca alloy, etc.
, CaS etc. to make it harmless and prevent fine precipitation in the subsequent process (JP-A-51-62115 (RBM), JP-A-52-2824 (Ce) and JP-A-53-96).
No. 796 (Ca) refer to each publication) and nitrides (AIIN
In the case of
(See Japanese Patent Publication Nos. 39-9668, 55-97426, and 50-98423).

しかし、これらはいずれも十分な効果を発現させるには
、所要の高価な処理設備の設置あるいは添加剤を使用す
る必要があり、コストが上昇することが避けられなかっ
た。
However, all of these require the installation of expensive processing equipment or the use of additives in order to exhibit sufficient effects, which inevitably increases costs.

一方において無方向性電磁鋼板の連続焼なましに関し、
特公昭5B−1173号公報によれば、連続最終焼なま
し中の銅帯の伸びを焼なまし温度との関係において適切
な範囲内に調整することにより磁気特性を改善すること
が開示されている。
On the other hand, regarding continuous annealing of non-oriented electrical steel sheets,
According to Japanese Patent Publication No. 5B-1173, it is disclosed that the magnetic properties are improved by adjusting the elongation of the copper strip during continuous final annealing to within an appropriate range in relation to the annealing temperature. There is.

この方法で好適な伸び率Rの付与は、板厚および板幅方
向に均等にひずみがおよんでいることを意味し、従って
上記両方向いずれの結晶粒にも影響を与えている。
Providing a suitable elongation R using this method means that strain is spread evenly in the plate thickness and plate width directions, and therefore affects the crystal grains in both directions.

ところが無方向性電磁鋼板の素材である熱延板は、比較
的ランダムな方位を持つ再結晶粒の表層部と再結晶粒、
変形粒が混在したく011〉軸方位の強い中心層とから
成りしたがって、焼なましにおいては再結晶しにくい<
011>軸方位結晶粒の多い中心層の結晶粒を粗大化さ
せるよりも表層部の結晶粒を成長させたほうが有利であ
るにもかかわらず−たん再結晶した後では、上記のよう
に均一に内部までひずみが加えられていると内部からの
結晶粒成長も助長されて表層部からの成長と競い合うこ
とになり、結果として十分な結晶粒の粗大化が図れず、
期待したほどの磁気特性が得られないところに欠点を残
している。
However, hot-rolled sheets, which are the raw materials for non-oriented electrical steel sheets, have relatively randomly oriented recrystallized grains in the surface layer, recrystallized grains,
It consists of a central layer with a strong 011〉 axis orientation in which deformed grains are mixed, so it is difficult to recrystallize during annealing.
011> Although it is more advantageous to grow grains in the surface layer than to coarsen grains in the center layer, which has many axially oriented crystal grains, after recrystallization, the grains do not grow uniformly as described above. If strain is applied to the inside, crystal grain growth from the inside will be encouraged and compete with growth from the surface layer, resulting in insufficient coarsening of the crystal grains.
The drawback remains that the magnetic properties as expected cannot be obtained.

(発明の端緒) 発明者らは結晶粒の粗大化を経済的に行わせるための研
究を重ねた結果、中間焼なまし中に、微小な圧痕の加工
痕跡付与処理を適切に加えることによって、結晶粒を顕
著に成長させることができ、磁気特性の改善に利用し得
ることを究明した。
(Start of the Invention) As a result of repeated research on how to economically coarsen crystal grains, the inventors found that by appropriately adding processing traces of minute indentations during intermediate annealing, It was discovered that crystal grains can be grown significantly and can be used to improve magnetic properties.

(a明の目的) 上記の知見に基づき、従来成品に比べて格段に低い鉄損
値を有する無方向性電磁鋼帯を経済的に安定して生産す
る方法を提供することが、この発明の目的である。
(Purpose of A) Based on the above knowledge, it is an object of the present invention to provide a method for economically and stably producing a non-oriented electrical steel strip having a much lower core loss value than conventional products. It is a purpose.

(発明の構成〉 この目的は、次に述べる事項を骨子とする手順により有
利に成就できる。
(Structure of the Invention) This object can be advantageously achieved by a procedure based on the following matters.

鋼中成分の重量百分率を単に%であられし、C:0.0
2%以下、Si:3.5%以下、Mn0.1〜1.0%
、へ!:1%以下、S:0.02%以下を含有する組成
になる無方向性電磁鋼板用素材を熱間圧延により熱延板
とした後中間焼なましを挟む2回以上の冷間圧延を施し
て最終板厚に仕上げ、ついで仕上焼なましを行う一連の
工程において、 前記中間焼なまし処理中に、 該鋼板の表面に微細な表皮圧痕を形成する、加工痕跡付
与処理 を施すことから成る無方向性電磁鋼板の製造方法である
The weight percentage of the components in steel is simply expressed as %, C: 0.0
2% or less, Si: 3.5% or less, Mn 0.1-1.0%
,fart! : 1% or less, S: 0.02% or less is made into a hot-rolled sheet by hot rolling, and then cold-rolled two or more times with intermediate annealing in between. During the intermediate annealing process, in a series of steps in which the steel plate is finished to the final thickness, and then final annealing is performed, processing traces are applied to form fine skin indentations on the surface of the steel plate. This is a method for manufacturing a non-oriented electrical steel sheet.

この表皮圧痕は、板面の単位面積1m2当り105〜T
h個の範囲内に分散し、またこの微小な圧痕の大きさに
ついてはその凹面とこれをおおって仮想した原板面とで
囲われる空間1個当りの体積で2X10−’〜2X10
−’mm3、また圧痕の該原板面からの最大深さは0.
5〜40μmとすることによって、上記の結晶粒成長促
進に有効であるが、中間焼なまし処理中にて上記加工圧
痕跡付与処理を施す場合にかぎって結晶粒を著しく発達
させることにおいてこの発明の最大の特徴を呈する。
This skin indentation is 105 to T per unit area of the plate surface.
h, and the size of these minute indentations is 2X10-' to 2X10 in terms of the volume per space surrounded by the concave surface and the virtual original plate surface covering it.
-'mm3, and the maximum depth of the indentation from the surface of the original plate is 0.
By adjusting the diameter to 5 to 40 μm, it is effective to promote the growth of the crystal grains, but this invention does not allow the crystal grains to develop significantly only when the processing pressure trace imparting treatment is performed during the intermediate annealing treatment. exhibits its greatest characteristics.

一般に中間焼なまし処理は、冷間加工組織の再結晶と結
晶粒成長を進行させるためにおこなわれ、その保定温度
は通常700〜1050℃の範囲である。
Generally, intermediate annealing treatment is performed to promote recrystallization of the cold-worked structure and grain growth, and the holding temperature thereof is usually in the range of 700 to 1050°C.

中間焼なまし処理中において、結晶粒の顕著な発達を見
越して施すこの発明の加工痕跡付与処理は、該焼なまし
の効果を生じる再結晶温度以上であれば、その昇温中は
もちろん、保定中や降温中またはその後のいずれの時期
であってもかまわない。
The processing trace imparting treatment of the present invention, which is performed in anticipation of remarkable development of crystal grains during the intermediate annealing treatment, can be performed during the temperature increase as long as the recrystallization temperature is higher than the recrystallization temperature that produces the effect of the annealing. It does not matter whether it is during retention, during temperature drop, or afterward.

ここに通常再結晶温度はおおむね500℃以上である。Here, the recrystallization temperature is usually about 500°C or higher.

このように、加工痕跡付与処理は、中間焼なまし過程中
に施すことが必要であり、中間焼なまし過程にふける再
結晶温度以上の温度において、そのひずみで鋼板表層部
から顕著な結晶粒成長が誘起され、成品の結晶粒にまで
好影響をおよぼし、磁気特性が改善されるのである。
In this way, it is necessary to perform processing trace imparting treatment during the intermediate annealing process, and at a temperature higher than the recrystallization temperature during the intermediate annealing process, the strain causes noticeable crystal grains from the surface layer of the steel sheet. Growth is induced, which has a positive effect on the crystal grains of the finished product, improving its magnetic properties.

さて、中間焼なましには、通常連続焼なまし炉が用いら
れるが、ここで、加工痕跡付与処理は炉中を通過する鋼
板の温度が再結晶温度に達した後のなるべく早期に好ま
しくはハースロールなどを介して施すことが望ましい。
Now, a continuous annealing furnace is usually used for intermediate annealing, but here, processing marks are preferably applied as soon as possible after the temperature of the steel sheet passing through the furnace reaches the recrystallization temperature. It is desirable to apply it using a hearth roll or the like.

このようにするとひずみが加わった後、上記の顕著な結
晶粒成長のための時間を十分にとることが、実操業にお
いてラインスピードを落とすなどの特別の措置を採らす
とも容易に可能である。
In this way, after the strain is applied, sufficient time for the above-mentioned remarkable grain growth can be easily obtained by taking special measures such as reducing the line speed in actual operation.

これに対しかりに中間焼なまし前に、この種の微小な加
工痕跡付与処理がたとえ加えられたとしても、先行する
冷間圧延による大きなひずみ応力がそこに残存している
ことからその微小なひずみの効果は実質上あられれない
On the other hand, even if this type of treatment to impart minute processing marks is applied before intermediate annealing, the large strain stress from the preceding cold rolling remains, so the minute The effect of strain is virtually absent.

この微小な加工痕跡付与処理が、大きな変形加工に比べ
て結晶粒の粗大化にとくに著しい寄与を呈する理由は、
次のような電磁鋼の再結晶挙動にもとずく。
The reason why this process of creating minute machining marks makes a particularly significant contribution to coarsening of crystal grains compared to large deformation process is as follows.
It is based on the recrystallization behavior of electrical steel as follows.

すなわち、−たん、再結晶した鋼板の表面直下のごく限
られた局部にひずみ応力を加えておくと、表面から結晶
粒が効率的に成長し、効果を発揮する。これに対し、均
一に内部までひずみ応力が加えられていると、板中心層
からも結晶粒が成長するため、表層部からの結晶粒成長
と競い合うこととなり、結果として十分な粒径に改善が
なされないことになる。
That is, if strain stress is applied to a very limited area just below the surface of a recrystallized steel sheet, crystal grains will grow efficiently from the surface and will be effective. On the other hand, if strain stress is uniformly applied to the inside, crystal grains will grow from the center layer of the plate, competing with the growth of crystal grains from the surface layer, and as a result, the grain size will not be improved to a sufficient level. It will not be done.

ところで、この発明の実施に当り、上記電磁鋼板の出発
材は公知の製鋼方法にて溶製し、ついで鋳造された鋼塊
又は連鋳鋳片の何ずれであっても良いが、次の成分規制
を満すものとする。
By the way, in carrying out this invention, the starting material for the above-mentioned electrical steel sheet may be either a steel ingot or a continuously cast slab produced by melting by a known steel-making method and then cast, but the following ingredients may be used: Regulations shall be met.

すなわち、C:0.02%以下、Sl:3%以下、Aβ
:1%以下、Mn:0.1〜1.0%、S:0.02%
以下を含有することが必要である。
That is, C: 0.02% or less, Sl: 3% or less, Aβ
: 1% or less, Mn: 0.1 to 1.0%, S: 0.02%
It is necessary to contain the following:

上記成分を規定する理由は次のとおりである。The reason for specifying the above components is as follows.

Cは0.02%より多いと磁気特性が劣化するので、C
は0.02%以下にする必要がある。slは比抵抗を高
め鉄損を低くする効果があるので、目標とする鉄損値に
応じて添加すればよいが、添加量が増えると脆くなり冷
間圧延ができなくなるので、Siは3.5%以下にする
必要がある。
If C exceeds 0.02%, the magnetic properties will deteriorate, so C
must be 0.02% or less. sl has the effect of increasing resistivity and lowering iron loss, so it can be added according to the target iron loss value, but if the amount added increases, it becomes brittle and cold rolling becomes impossible, so Si is 3. It is necessary to keep it below 5%.

Mnは熱間圧延時の割れを防止するのに寄与する元素で
あるが、0.1%より少ないと前記割れ防止の効果がな
く、一方1.0%より多いと磁気特性が劣化するので、
Mnは0.1〜1.0%の範囲にする必要がある。
Mn is an element that contributes to preventing cracking during hot rolling, but if it is less than 0.1%, it will not have the effect of preventing cracking, while if it is more than 1.0%, the magnetic properties will deteriorate.
Mn needs to be in the range of 0.1 to 1.0%.

Aβは磁気特性の向上に寄与する元素であるが、1%よ
りおおいと割れ易(なるので^pは1%以下にする必要
がある。
Aβ is an element that contributes to the improvement of magnetic properties, but if it exceeds 1%, it tends to break (so it is necessary to keep ^p below 1%).

Sは結晶粒の成長を阻害して磁気特性を劣化させるので
低いほうがよ<、0.02%以下にする必要がある。
Since S inhibits the growth of crystal grains and deteriorates magnetic properties, it is necessary to keep the content as low as 0.02% or less.

上記成分条件を満す鋼塊または連鋳鋳片を通例の熱間圧
延で1.2〜4.0mm厚の熱延板とする。
A steel ingot or continuously cast slab satisfying the above-mentioned compositional conditions is made into a hot-rolled plate having a thickness of 1.2 to 4.0 mm by conventional hot rolling.

この熱延板は酸洗後、中間焼なましを挟んで2回以上の
冷間圧延工程に供することも通例通りでよい。
After pickling, this hot-rolled sheet may be subjected to two or more cold rolling steps with intermediate annealing in between.

中間焼なまし処理の目的は、一般に再結晶と結晶粒を成
長させるために行われる。したがって、保定温度は70
0℃以上で、かつSi量などで変わる変態点を越えない
ように、適切な温度を選ぶ必要がなる。一方、Si量が
2.5%以上では変態はなくなるにしても1050℃を
越えると結晶粒が大きくなりずぎて最終冷間圧延におい
てリジングが発生するので、中間鏡なましは700〜1
050℃の範囲が望ましい。
The purpose of intermediate annealing is generally for recrystallization and grain growth. Therefore, the holding temperature is 70
It is necessary to select an appropriate temperature so that it is 0° C. or higher and does not exceed the transformation point, which varies depending on the amount of Si, etc. On the other hand, if the Si content is 2.5% or more, no transformation will occur, but if the temperature exceeds 1050°C, the crystal grains will become too large and ridging will occur in the final cold rolling, so the intermediate mirror annealing is 700 to 1
A range of 0.050°C is desirable.

さて、この発明において最重要な要件として中間鏡なま
し処理中に行う加工痕跡付与処理(二つl、Nて述べる
Now, the most important requirement in this invention is the machining trace imparting process performed during the intermediate mirror annealing process.

上記のように熱延板は中間鏡なましを挟む2回以上の冷
間圧延工程によって最終板厚とされる力く、このとき焼
なまし処理再結晶温度(500℃以上)1こおいて、鋼
板表面に微細な表皮圧痕を形成させる加工痕跡付与処理
を施す。 その結果につき第1図に1例を断面顕微鏡写
真をもって示しプこようにして鋼板の結晶粒が著しく粗
大化するのである。
As mentioned above, hot-rolled sheets are subjected to two or more cold rolling processes with intermediate annealing in between to achieve the final thickness. , a processing trace imparting treatment is performed to form fine skin indentations on the surface of the steel plate. An example of the results is shown in FIG. 1 with a cross-sectional micrograph.As a result, the crystal grains of the steel sheet become significantly coarsened.

なお、−たん通常の中間鏡なましにて再結晶温度以上に
昇温した鋼板にオフラインでもって上記の加工痕跡付与
処理を施し、再び中間鏡なましを続行した場合も同様の
効果が得られた。
In addition, the same effect can be obtained if the above-mentioned machining mark imparting treatment is applied off-line to a steel sheet that has been heated above the recrystallization temperature during normal intermediate mirror annealing, and then intermediate mirror annealing is continued again. Ta.

要するに、このような加工痕跡付与処理を含む中間鏡な
ましを経た後に、最終冷間圧延、最終焼なましを施した
とき、該鋼板には大きな結晶組織が得られるのである。
In short, when the steel sheet is subjected to final cold rolling and final annealing after undergoing intermediate mirror annealing that includes such treatment to impart processing marks, a large crystal structure is obtained in the steel sheet.

次に、中間鏡なまし処理中における加工痕跡付与処理の
条件が最終製品の鉄損におよぼす影響について調べた結
果を示す。
Next, we will show the results of an investigation into the influence of the conditions of the machining trace imparting process during the intermediate mirror annealing process on the iron loss of the final product.

まず、第2図はSi3.1%を含有する無方向性電磁鋼
板用の熱延板を、2回冷間圧延法にて中間鏡なまし処理
中の加工痕跡付与処理の度合が最終板厚0.50mmの
製品によぼす影響を示している。
First, Figure 2 shows that a hot-rolled non-oriented electrical steel sheet containing 3.1% Si is subjected to two-time cold rolling to determine the degree of machining traces imparted during the intermediate mirror annealing process to the final plate thickness. The effect on a 0.50mm product is shown.

ここに、中間鏡なましは1.0+ua+の中間板厚(ご
て980℃3分の保定を行い、その保定中に第2図の横
軸に示した表皮圧痕の大きさのみ種々に異なり、その深
さは10μm1また板面上の分散度合いは2.5XlO
5個/ m 2 にてほぼ一定に揃えた加工痕跡付与処
理を施した。
Here, intermediate mirror annealing is performed with an intermediate plate thickness of 1.0+ua+ (holding with a trowel at 980°C for 3 minutes, and during holding, only the size of the epidermal indentation shown on the horizontal axis in Figure 2 varies, The depth is 10μm1 and the degree of dispersion on the plate surface is 2.5XlO
Processing traces were applied at a rate of 5 pieces/m 2 at a substantially constant rate.

なお、この加工痕跡付与処理は連続焼鈍炉に設置したハ
ースロールの外周面に、円周上および幅方向にそれぞれ
2 mm間隔にて超硬粒子をたとえば粒度を揃えたシリ
カを埋設することにより銅帯に、それぞれ中心間隔が2
111mの表皮圧痕を転写形成するようにセットし、そ
の後最終冷間圧延にて0.50關に仕上げ、ついで常法
の工程を経て製品段階に至る処理を行った。
Note that this machining trace imparting treatment is performed by embedding carbide particles, such as silica with uniform grain size, on the outer peripheral surface of a hearth roll installed in a continuous annealing furnace at intervals of 2 mm on the circumference and in the width direction. Each band has a center spacing of 2
It was set so that a 111 m long skin indentation was transferred, and then finished by final cold rolling to a size of 0.50 mm, and then processed through conventional processes to reach the product stage.

第2図から明らかなように、低損の減少はとくに表皮圧
痕の大きさが2X10−6mm3 以上の場合にあられ
れ、2XlO−3111113をこえると再び効果が失
われる。
As is clear from FIG. 2, the reduction in loss occurs particularly when the size of the epidermal indentation is 2X10-6 mm3 or more, and the effect is lost again when the size exceeds 2X10-3111113.

なお、必要以上に過大な表皮圧痕は、続く最終冷間圧延
での平滑性を害するので、工業的には深さ0,5〜40
μIにおいて2 xto−’ 〜2 Xl0−3mm3
が望ましい。
In addition, since an unnecessarily large skin indentation will impair the smoothness in the subsequent final cold rolling, it is recommended that the depth be 0.5 to 40.
2 xto-' ~ 2 Xl0-3 mm3 in μI
is desirable.

上記の超硬粒子としてはSiO□、A l120.、 
SiC。
The above cemented carbide particles include SiO□, Al120. ,
SiC.

11c、八1N、 BN、 −、Moなどが利用され得
る。
11c, 81N, BN, -, Mo, etc. may be used.

上記ハースロールの胴周表面における超硬粒子の埋設の
ほか、オフラインにてピーニング機でのショット打ちを
行い、再び中間鏡なましを続行することなどによっても
工業的に達成できるが、もとよりオフラインで実施する
のは、製造コストの増大のため経済性の点から好ましく
ない。
In addition to embedding cemented carbide particles on the circumferential surface of the hearth roll, it can also be achieved industrially by performing shot hitting with a peening machine off-line and continuing intermediate mirror annealing, but of course it can also be achieved off-line. Carrying this out is not preferable from an economic point of view due to increased manufacturing costs.

次に第3図は同じ< Si 3.20%を含有する無方
向性電磁鋼板用の熱延板を2回冷間圧延法にて、中間鏡
なまし中の加工痕跡付与処理を、表皮圧痕の大きさを7
X10−5mn+’ 、深さ20μmに定めてその板面
分布密度が磁気特性におよぼす影響を、鋼板片面にて鋼
板の圧延方向とほぼ平行に、また圧延方向に対してほぼ
直交する向きで、それぞれ表皮圧痕の中心距離がおおむ
ね同一になるように行列状に配列した場合について示す
Next, Fig. 3 shows a hot-rolled sheet for non-oriented electrical steel sheet containing the same < 3.20% Si, which is subjected to the process mark imparting treatment during intermediate mirror annealing using the two-time cold rolling method, to create a surface indentation. the size of 7
X10-5mn+', depth 20μm, and the influence of the sheet surface distribution density on the magnetic properties was measured on one side of the steel sheet, approximately parallel to the rolling direction of the steel sheet, and approximately perpendicular to the rolling direction, respectively. A case is shown in which the epidermal indentations are arranged in a matrix so that the center distances are approximately the same.

第3図から明らかなように、表皮圧痕の中心距離が3 
mm以下の範囲で鉄損の減少が顕著であって、咳距離は
、表皮圧痕が重なり合わないかぎりよりせまくてもさし
つかえない。
As is clear from Figure 3, the center distance of the epidermal indentation is 3
The reduction in iron loss is remarkable in the range of mm or less, and the coughing distance can be made narrower as long as the epidermal impressions do not overlap.

ここで、加工痕跡付与処理は鋼板片面に施した場合であ
るが、両面に行う場合にあっては該中心距離を6印まで
拡張してもよい。
Here, the machining mark imparting treatment is applied to one side of the steel plate, but if it is applied to both sides, the center distance may be extended to 6 marks.

その後中間板厚の鋼板に最終の冷間圧延を施し、次いで
最終冷間圧延工程によって製品板厚とした鋼板は、常法
に従って最終焼なましを行い、脱炭、再結晶および結晶
粒成長が進行する。ここで、最終焼なましは700〜1
050℃の温度範囲で行われ、鋼板のC量が高い場合に
は脱炭性雰囲気を使用し、C量が低い場合には非脱炭性
雰囲気を使用することでは従来と同様の手段が踏襲され
得る。
After that, the steel plate of intermediate thickness is subjected to final cold rolling, and then the steel plate that has reached the product thickness through the final cold rolling process is subjected to final annealing according to a conventional method to prevent decarburization, recrystallization, and grain growth. proceed. Here, the final annealing is 700 to 1
It is carried out in a temperature range of 050℃, and the same method as before is followed by using a decarburizing atmosphere when the C content of the steel plate is high, and using a non-decarburizing atmosphere when the C content is low. can be done.

以上述べたところにおいてこの発明の最も好ましい実施
態様は次のように要約される。
Based on the above description, the most preferred embodiment of the present invention can be summarized as follows.

素材は必須成分としてC0,02%以下、Si3.5%
以下、^11%以下、Mn 0.1〜1.0%、30.
02%以下を含有する組成の無方向性用電磁鋼鋼塊ある
いは連鋳鋳片を用い、これを熱間圧延した後、中間焼な
ましを挟む2回以上の冷間圧延工程により製品板厚とす
る際、中間焼なましを、700〜1050℃の範囲で2
0秒〜20分間保持する間、とくに通常500℃以上の
再結晶温度領域にて、該鋼板の板面に分散する極微細な
表皮圧痕を板面の単位面積1m2当り105〜107個
の範囲内にてかつ各表皮圧痕の大きさが2 X 10−
’ 〜2 X 10−3mm3 また深さは0.5〜4
0μmの範囲を好適とする条件にて形成させる加工痕跡
付与処理に供するのである。各表皮圧痕の離間距離は片
面施工の場合3 +nn+以下、両面施工では5 mm
以下であればよい。
The material contains less than 0.02% C and 3.5% Si as essential components.
Below, ^11% or less, Mn 0.1-1.0%, 30.
A non-oriented electrical steel ingot or continuous cast slab with a composition containing 0.02% or less is used, and after hot rolling, the product thickness is reduced by two or more cold rolling processes with intermediate annealing in between. When performing intermediate annealing at 700 to 1050°C,
During holding for 0 seconds to 20 minutes, especially in the recrystallization temperature range of usually 500°C or higher, extremely fine skin indentations are dispersed on the surface of the steel sheet within a range of 105 to 107 per unit area of the sheet surface. and the size of each epidermal indentation is 2 × 10−
'~2 x 10-3mm3 and depth 0.5~4
It is subjected to a treatment for forming processing traces under conditions that favor a range of 0 μm. The distance between each skin indentation is 3 +nn+ or less for single-sided construction, and 5 mm for double-sided construction.
The following is sufficient.

ついで製品板厚に最終の冷間圧延を行い、通常の仕上焼
なましを順次行う。
Then, final cold rolling is performed to the product thickness, followed by normal final annealing.

かくして鉄損の低い無方向性電磁鋼板が製造され得るの
である。
In this way, a non-oriented electrical steel sheet with low iron loss can be manufactured.

実施例 I C: 0.004%、si: 3.2%、Mn:0.2
0%、 l: 0.61%。
Example IC: 0.004%, si: 3.2%, Mn: 0.2
0%, l: 0.61%.

S: 0.002%を含み、残余は実質的にFeの組成
よりなるスラブを1200℃で1時間加熱して熱間圧延
をし、2.3mmの熱延板とした。
A slab containing 0.002% S and the remainder substantially Fe was heated at 1200° C. for 1 hour and hot rolled to obtain a 2.3 mm hot rolled plate.

この熱延板に酸洗を施し、次いで1次の冷間圧延にて1
.(1+++m厚の中間板厚とした後、8265%。
This hot-rolled sheet is pickled and then subjected to a first cold rolling process.
.. (8265% after setting the intermediate plate thickness to 1+++m thickness.

N235%の乾燥雰囲気中で930℃3分間の中間焼な
ましを施した。
Intermediate annealing was performed at 930° C. for 3 minutes in a dry atmosphere of 35% N2.

このとき中間焼なまし炉中にて、粒子径60μmのシリ
カ製球形状チップを埋設固着させた耐熱性ハースロール
を5組セットして、焼なまし保定中の鋼板両面に極微細
な表皮圧痕を、それらの平均的な相互間隔が1ml11
となる不規則分布にて、各表皮圧痕の大きさが5.7X
10−’mm’ 、深さ30μmとなる加工痕跡付与処
理を施した。
At this time, in the intermediate annealing furnace, 5 sets of heat-resistant hearth rolls in which spherical silica chips with a particle size of 60 μm were embedded and fixed were set, and ultrafine skin indentations were created on both sides of the steel plate while it was being annealed. , their average mutual spacing is 1ml11
With the irregular distribution, the size of each epidermal indentation is 5.7X
Processing traces were applied to give a width of 10 mm and a depth of 30 μm.

次にこの中間焼なましを終えた鋼板に最終の冷間圧延を
加えて0.50111111の最終板厚とし、引続き■
265%、 N235%の雰囲気中にて950t3分間
の仕上焼なましを施して製品とした。製品の磁気特性を
表1にて従来法(中間焼なまし中の加工処理なし)と比
較して示しである。
Next, the steel plate that has undergone this intermediate annealing is subjected to a final cold rolling to obtain a final thickness of 0.50111111, and then
Finish annealing was performed for 950 tons for 3 minutes in an atmosphere of 265% N2 and 35% N2 to produce a product. The magnetic properties of the product are shown in Table 1 in comparison with the conventional method (no processing during intermediate annealing).

表 1 表1からこの発明の方法による製品は、従来法と比べて
著しいW15150値の低下が明らかである。
Table 1 From Table 1, it is clear that the products produced by the method of the present invention have significantly lower W15150 values than those produced by the conventional method.

実施例 2 C: 0.012%、 Si: 1.85%、 Mn:
 0.15%、 AI: 0.35%、 S : 0.
007%を含み、残余は実質的にFeの組成よりなるス
ラブを1200℃で1時間加熱し熱間圧延にて2.0m
+n厚の熱延板とした。
Example 2 C: 0.012%, Si: 1.85%, Mn:
0.15%, AI: 0.35%, S: 0.
A slab containing 0.007% and the remainder being essentially Fe was heated at 1200°C for 1 hour and hot rolled to 2.0m.
A hot-rolled sheet with +n thickness was obtained.

この熱延板を酸洗し、1次の冷間圧延にて1.0關厚と
した後、■265%、 N、 35%の乾燥雰囲気中で
880℃3分間の中間焼なましを施した。
This hot-rolled sheet was pickled and first cold-rolled to a thickness of 1.0 mm, and then intermediately annealed at 880°C for 3 minutes in a dry atmosphere of 265%, N, and 35%. did.

このとき、中間焼なまし炉中にて、粒子径60μmのシ
リカ製球形状チップを埋設固着させたハースロール10
本をセットして焼なまし保定中の鋼板片面に極微細な表
皮圧痕を、それらの平均的な相互間隔が0.5aunと
なる不規則分布にて、各表皮圧痕の大きサカ5.7x1
0′−4mIno、深すバ30μmトナル加工痕跡付与
処理を施した。
At this time, in an intermediate annealing furnace, a hearth roll 10 in which spherical silica chips with a particle size of 60 μm were embedded and fixed.
The size of each skin indentation was 5.7
0'-4 mIno, 30 μm deep toner processing trace imparting treatment was performed.

次に中間焼なましを終えた鋼板に最終の冷間圧延を加え
て0.50+amの最終板厚とした後、i点30tH2
75%、 N225%の雰囲気中にて880t3分間の
仕上焼なましを施して製品とした。この結果の製品磁気
特性を第2表にて従来法と比較して示しである。
Next, the steel plate that has undergone intermediate annealing is subjected to a final cold rolling to obtain a final thickness of 0.50+am, and then the i point is 30tH2.
Finish annealing was performed at 880 tons for 3 minutes in an atmosphere of 75% N2 and 25% N2 to produce a product. The resulting product magnetic properties are shown in Table 2 in comparison with those of the conventional method.

表 2 表2から明らかなように、鋼板の片面加工処理において
も鉄損W15150が著しく低下することがわかる。
Table 2 As is clear from Table 2, it can be seen that the iron loss W15150 is significantly reduced even in single-sided processing of the steel plate.

(発明の効果) 上述のようにして、この発明によれば無方向性電磁鋼板
の2回以上にわたる冷間圧延のうち、最終冷間圧延に先
立つ中間焼なまし処理中に、板面表層に対する微細な表
皮圧痕を形成する加工痕跡付与処理を加えることにより
、最終製品特性の目ざましい改善を遂げることができ、
これによって至極有利に、電機機器の高性能化、小型化
、省エネルギー化に寄与することができる。
(Effects of the Invention) As described above, according to the present invention, during the intermediate annealing treatment prior to the final cold rolling of the non-oriented electrical steel sheet during two or more cold rollings, the surface layer of the sheet surface is By adding processing traces that create fine skin indentations, it is possible to achieve remarkable improvements in the properties of the final product.
This can extremely advantageously contribute to higher performance, smaller size, and energy saving of electrical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う中間焼なましによる鋼板表層
の結晶粒粗大化挙動をあられした鋼板断面の金属顕微鏡
写真であり、 第2図は該中間焼なまし処理中の加工痕跡付与処理によ
る表皮圧痕の大きさが鉄損の改善におよぼす影響を示す
グラフ、 第3図は同じく表皮圧痕の相互間の平均距離が鉄損の改
善におよぼす影響を示すグラフである。 特許出願人 川崎製鉄株式会社
Fig. 1 is a metallurgical micrograph of a cross section of a steel plate showing the coarsening behavior of grains in the surface layer of a steel plate due to intermediate annealing according to the present invention, and Fig. 2 is a metallurgical micrograph showing the coarsening behavior of grains in the surface layer of a steel plate due to intermediate annealing according to the present invention. FIG. 3 is a graph showing the effect of the size of skin indentations on iron loss improvement. FIG. 3 is a graph showing the effect of the average distance between skin indentations on iron loss improvement. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、 [:: 0.02wt%以下、 si: 3,5wt%以下、 Mn: 0.1〜1.Owt% ^j!:1wt%以下 S: 0.02wt%以下 を含有する組成になる無方向性電磁鋼板用素材を、熱間
圧延により熱延板とした後、中間鏡なましを挾む2回以
上の冷間圧延を施して最終板厚に仕上げ、ついで仕上げ
焼なましを行う一連の工程において、 前記の中間鏡なまし処理中に、 鉄鋼板の表面に微細な表皮圧痕を形成する、加工痕跡付
与処理 。 を施すことを特徴とする無方向性電磁鋼板の製造方法。
[Claims] 1. [:: 0.02 wt% or less, si: 3.5 wt% or less, Mn: 0.1 to 1. Owt% ^^! : 1 wt% or less S: A material for a non-oriented electrical steel sheet having a composition containing 0.02 wt% or less is hot-rolled into a hot-rolled sheet, and then cold-rolled twice or more with intermediate mirror annealing. In a series of steps in which the steel sheet is rolled to a final thickness and then finished annealed, during the intermediate mirror annealing treatment, a processing trace imparting treatment is performed in which fine skin indentations are formed on the surface of the steel sheet. A method for manufacturing a non-oriented electrical steel sheet, characterized by subjecting it to.
JP11441684A 1984-06-06 1984-06-06 Production of non-oriented electrical steel sheet having low iron loss Pending JPS60258413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11441684A JPS60258413A (en) 1984-06-06 1984-06-06 Production of non-oriented electrical steel sheet having low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11441684A JPS60258413A (en) 1984-06-06 1984-06-06 Production of non-oriented electrical steel sheet having low iron loss

Publications (1)

Publication Number Publication Date
JPS60258413A true JPS60258413A (en) 1985-12-20

Family

ID=14637147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11441684A Pending JPS60258413A (en) 1984-06-06 1984-06-06 Production of non-oriented electrical steel sheet having low iron loss

Country Status (1)

Country Link
JP (1) JPS60258413A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110249B1 (en) 2004-10-19 2012-03-13 주식회사 포스코 Method for manufacturing non-oriented electric steel sheet with the iron loss property
KR20180119622A (en) * 2016-03-25 2018-11-02 아르셀러미탈 A method of manufacturing a cold rolled, welded steel sheet,
US11959150B2 (en) 2016-03-25 2024-04-16 Arcelormittal Welded steel sheets, and sheets thus produced

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110249B1 (en) 2004-10-19 2012-03-13 주식회사 포스코 Method for manufacturing non-oriented electric steel sheet with the iron loss property
KR20180119622A (en) * 2016-03-25 2018-11-02 아르셀러미탈 A method of manufacturing a cold rolled, welded steel sheet,
JP2019515796A (en) * 2016-03-25 2019-06-13 アルセロールミタル Method of manufacturing cold rolled and welded steel sheet and sheet so manufactured
US11220723B2 (en) 2016-03-25 2022-01-11 Arcelormittal Method for manufacturing cold-rolled, welded steel sheets, and sheets thus produced
US11959150B2 (en) 2016-03-25 2024-04-16 Arcelormittal Welded steel sheets, and sheets thus produced

Similar Documents

Publication Publication Date Title
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
US4439252A (en) Method of producing grain-oriented silicon steel sheets having excellent magnetic properties
JP2011208188A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH11302730A (en) Production of grain-oriented silicon steel sheet excellent in coating characteristic and low magnetic field characteristic
JPS60258413A (en) Production of non-oriented electrical steel sheet having low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH09268322A (en) Production of grain oriented silicon steel sheet with ultralow iron loss
JPS61127818A (en) Manufacture of grain nonoriented electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPS62130217A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2579863B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JP3697767B2 (en) Method for producing grain-oriented silicon steel sheets with extremely stable magnetic properties in the plate width direction
CN117203355A (en) Method for producing oriented electrical steel sheet
CN117062921A (en) Method for producing oriented electrical steel sheet