JPS60255199A - Biological treating device for organic waste water - Google Patents

Biological treating device for organic waste water

Info

Publication number
JPS60255199A
JPS60255199A JP59112322A JP11232284A JPS60255199A JP S60255199 A JPS60255199 A JP S60255199A JP 59112322 A JP59112322 A JP 59112322A JP 11232284 A JP11232284 A JP 11232284A JP S60255199 A JPS60255199 A JP S60255199A
Authority
JP
Japan
Prior art keywords
tank
aeration
sludge
wastewater
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59112322A
Other languages
Japanese (ja)
Other versions
JPH0421558B2 (en
Inventor
Koji Ishizaki
石崎 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59112322A priority Critical patent/JPS60255199A/en
Publication of JPS60255199A publication Critical patent/JPS60255199A/en
Publication of JPH0421558B2 publication Critical patent/JPH0421558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To remove simultaneously, efficiently and biologically nitrogen and phosphorus in org. waste water to be admitted into aeration tanks by communicating and disposing the plural aeration tanks in such a way that the org. waste water therein moves in the state of plug flow. CONSTITUTION:The aeration tank 9 is segmented by a partition wall 10 having a notched bottom to the 1st layer 9a and the 2nd layer 9b. Both layers are communicated in the bottom. An air diffusing pipe 12 connected to a blower 5 is disposed in the bottom of the tank 9 and a settling and separating tank 6 is provided on the down stream side of the tank 9 to return part of the separated sludge to the waste water inlet of the tank 9. Simultaneous removal of nitrogen and phosphorus is efficiently executed by such compact device.

Description

【発明の詳細な説明】 本発明は有機性廃水中の窒素並びに燐を生物学的に同時
に且つ効率良く除去することのでき名有機性廃水の処理
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an organic wastewater treatment apparatus capable of biologically simultaneously and efficiently removing nitrogen and phosphorus from organic wastewater.

有機性廃水(以下単に廃水という)中に含まれ暮アンモ
=ア性窒素(NH,−N)の除去方式として従来から硝
化液循環方式が実用化されている。
A nitrifying solution circulation system has been put to practical use as a method for removing ammonia nitrogen (NH, -N) contained in organic wastewater (hereinafter simply referred to as wastewater).

該方式は第1図に示す様に脱窒槽1へ還流させるもので
、脱窒iiを通過して硝化槽2に流入した廃水中のNH
4−Nは、ブロワ5からの曝気によってN0x−Nに硝
化され、生成した硝化液3が脱窒槽1へ返送されて廃水
4中のB 01)成分を水素供与体として窒素に分解さ
れ除去される。
In this method, as shown in Figure 1, the NH in the wastewater that has passed through the denitrification tank 2 and flowed into the nitrification tank 2 is returned to the denitrification tank 1.
4-N is nitrified to NOx-N by aeration from the blower 5, and the generated nitrified liquid 3 is returned to the denitrification tank 1 where it is decomposed into nitrogen and removed using the B01) component in the wastewater 4 as a hydrogen donor. Ru.

この様な硝化液循環方式においては水素供与体として廃
水4中のBOD成分を利用するのでわざわざメタノール
等の水素供与体を購入して投入する必要がなく薬剤コス
トが不要であるという長所がある。しかるに硝化液循環
方式では硝化槽2においてNH4−Hの硝化反応の進行
のためには槽内の溶存酸素(’D O)を2my/1l
F−保持する必要があるため、循環硝化液3中にも必然
的にDOが存在することになる。したがって、循環比を
多くして窒素除去率を向上させようとすると、脱窒槽内
にi量のDOが流入することに々す、とのDOが水素供
4体として利用されるべき有機物の一部を消費してしま
う結果となシ、その分だけ脱窒槽内での反応速度を低下
せしめ、更には嫌気槽中のDOの存在によって嫌気性の
機能そのものが損なわれることにもなる。従って硝化液
循環量をむやみに増大させることはできず、前述の範囲
3〜6倍が好適指標とされてはいても一般には硝化液3
の循環量を廃水4導入量の3倍程度に抑えているのが実
状であり、このときの窒素除去率は75〜80チと低い
ものでしかない。その為従来の硝化液循環方式において
は、硝化槽2の後にメタノール等を使用する第2脱窒槽
およびこれに次ぐ再曝気槽を追設して窒素除去率の向上
を画るのが一般的である。即ち硝化液循環方式において
は(1)窒素除去率が低い、あるいは(2)第2脱窒槽
の設置コストやメタノール等の薬剤コストを要するとい
う欠点がある、一方有機性廃水の直接放流による湖沼や
河川の富栄養化が問題となっているが、富栄養化の防止
には窒素成分の除去と共に廃水中から燐成分(PO,−
P等)を除去する必要があシ、燐成分の除去については
石灰や硫酸バンド投入による酸化・凝集沈殿方式が採用
されている。
In such a nitrification liquid circulation system, since the BOD component in the waste water 4 is used as a hydrogen donor, there is no need to purchase and input a hydrogen donor such as methanol, and there is an advantage that there is no need for chemical costs. However, in the nitrification liquid circulation system, in order for the nitrification reaction of NH4-H to proceed in nitrification tank 2, the dissolved oxygen ('D O) in the tank must be reduced to 2 my/1l.
Since it is necessary to retain F, DO is inevitably present in the circulating nitrification liquid 3 as well. Therefore, if an attempt is made to increase the circulation ratio to improve the nitrogen removal rate, i amount of DO will flow into the denitrification tank. As a result, the reaction rate in the denitrification tank is reduced accordingly, and furthermore, the presence of DO in the anaerobic tank impairs the anaerobic function itself. Therefore, it is not possible to unnecessarily increase the amount of nitrifying fluid circulated, and although the aforementioned range of 3 to 6 times is considered a suitable index, in general, nitrifying fluid 3
The actual situation is that the amount of circulating water is kept to about three times the amount of wastewater 4 introduced, and the nitrogen removal rate at this time is only as low as 75 to 80 inches. Therefore, in the conventional nitrification liquid circulation system, it is common to add a second denitrification tank that uses methanol, etc. after the nitrification tank 2, and a re-aeration tank following this to improve the nitrogen removal rate. be. In other words, the nitrification liquid circulation method has the disadvantages of (1) low nitrogen removal rate, or (2) the cost of installing a second denitrification tank and the cost of chemicals such as methanol. Eutrophication of rivers has become a problem, and in order to prevent eutrophication, in addition to removing nitrogen components, phosphorus components (PO, -
It is necessary to remove P, etc.), and an oxidation/coagulation-sedimentation method by adding lime or sulfuric acid is used to remove the phosphorus component.

しかるに前記硝化液循環方式であっても時として燐成分
の除去が同時的によく進行していることが、1975年
南ア連邦のBarnardによって報告され、こうした
知見をもとに窒素と燐の同時除去方式が種々提案されて
いる(例えば土木学会論文報告集、第324号、198
2年8月)。尚硝化液循環方式における脱燐機構は下記
の様に考えられている。即ち第1図において脱翅槽1は
嫌気性状態にあるが、この条件下では微生物体内の燐酸
ポリマーが分解されてPO,−Pとなシ微生物体外に放
出される。その為脱窒槽1に導入された廃水中のPO,
−P濃度は導入前より高められた状態となり、そのまま
硝化槽へ移送される。硝化槽2は前述の如く好気性状態
にあシ、ここでは廃水中のPO4−PfrE微生物に摂
取されて体内で燐酸ポリマーに変化する。そしてこの摂
取量は嫌気性状態下における前記放出量を超えるもので
あり、微生物としては燐を過剰摂取した状態になり、廃
水側からみればpo、−p濃度は低下する。そして処理
廃水はPO4−Pを過剰摂取した活性汚泥と共に沈降分
離槽6に導入されて処理水7と沈降汚泥8に分離され、
処理水7は系外へ放流されると共に沈降汚泥8の一部は
脱窒槽1に返送され残りは余剰汚泥として系外に排出さ
れる。この様にして廃水4に含まれる燐成分(PO,−
P)の除去が硝化脱窒と並行して行なわれる。
However, in 1975, Barnard of the Federation of South Africa reported that even with the above-mentioned nitrifying solution circulation method, the removal of phosphorus components sometimes progressed well at the same time, and based on this knowledge, simultaneous removal of nitrogen and phosphorus was reported. Various methods have been proposed (for example, Proceedings of the Japan Society of Civil Engineers, No. 324, 198
(August 2016). The dephosphorization mechanism in the nitrification liquid circulation system is considered as follows. That is, in FIG. 1, the dewinging tank 1 is in an anaerobic state, but under this condition, the phosphoric acid polymer inside the microorganism is decomposed and released as PO and -P outside the microorganism. Therefore, PO in the wastewater introduced into denitrification tank 1,
-P concentration becomes higher than before introduction, and is transferred to the nitrification tank as it is. As described above, the nitrification tank 2 is kept in an aerobic state, where the PO4-PfrE microorganisms in the wastewater ingest it and convert it into phosphoric acid polymer in the body. This amount of intake exceeds the amount released under anaerobic conditions, and the microorganisms are in a state where they have taken in too much phosphorus, and from the perspective of the wastewater, the po and -p concentrations decrease. The treated wastewater is then introduced into a sedimentation separation tank 6 together with activated sludge containing an excess of PO4-P, where it is separated into treated water 7 and settled sludge 8.
The treated water 7 is discharged to the outside of the system, a part of the settled sludge 8 is returned to the denitrification tank 1, and the rest is discharged to the outside of the system as surplus sludge. In this way, the phosphorus component (PO, -
Removal of P) is carried out in parallel with nitrification and denitrification.

しかるに更に検討したところによると上記の窒素・燐量
時除去方式の装置において脱燐を十分に行なわせようと
すると窒素除去の方が不十分になるという欠点があるこ
とを見出した。これは脱燐反応が円滑に進行するときの
BOD負荷が0.3〜0、4 kg B OD/l<g
 ML S S・ 日と高めであるのに対し、脱窒反応
が円滑に進行するときのBOD負荷は0、16 kg 
BOD/kg ML S S・日(窒素負荷:0.02
4kg N7kg ML S S・日)と低い為でちシ
、適正脱燐条件のBOD負荷は脱窒反応にとって過大で
ある。
However, upon further investigation, it was found that the above-mentioned nitrogen/phosphorous removal type apparatus has a drawback in that if it is attempted to perform sufficient dephosphorization, nitrogen removal becomes insufficient. This means that the BOD load when the dephosphorization reaction progresses smoothly is 0.3 to 0.4 kg B OD/l<g
The BOD load when the denitrification reaction progresses smoothly is 0.16 kg, whereas the BOD load is 0.16 kg when the denitrification reaction progresses smoothly.
BOD/kg ML S S・day (Nitrogen load: 0.02
The BOD load under proper dephosphorization conditions is excessive for the denitrification reaction because it is as low as 4 kg N7 kg ML SS day).

したがって適正脱燐条件のBOD負荷とすると窒素外が
脱窒されないままで脱窒槽1から排出され、ひいては系
外へ排出される処理水中のNH4−N濃度を高めること
になる。逆にBOD負荷を脱窒処理に合わせて設定する
と脱燐処理効率が大幅に低下する。尚実用的にはBOD
負荷を脱燐処理条件に設定し、除去し切れなかった窒素
外を後工程として設置した第2脱窒槽において除去する
手法を採用するととが多いが、この場合には第2脱窒槽
の設置コストや薬剤コストが更に高騰する。
Therefore, if the BOD load is set under appropriate dephosphorization conditions, non-nitrogen will be discharged from the denitrification tank 1 without being denitrified, which will eventually increase the NH4-N concentration in the treated water discharged to the outside of the system. On the other hand, if the BOD load is set according to the denitrification treatment, the dephosphorization treatment efficiency will be significantly reduced. In addition, practically BOD
In many cases, a method is adopted in which the load is set to the dephosphorization processing conditions and the unremoved nitrogen is removed in a second denitrification tank installed as a post-process, but in this case, the installation cost of the second denitrification tank is and drug costs will rise further.

本発明はとうした事情に着目してなされたものであって
、有機性廃水の窒素外及び燐分を同時的に且つどちらも
効率よく除去すると共に設備コスト等の処理コストも少
なくて済む様な有機性廃水の処理装置を提供しようとす
るものである。
The present invention has been made with attention to this situation, and is a method that simultaneously and efficiently removes both nitrogen and phosphorus from organic wastewater and reduces processing costs such as equipment costs. The present invention aims to provide a treatment device for organic wastewater.

しかして上記目的を達成した本発明の処理装置は微生物
付着担体を槽内に配した複数の曝気槽を、該曝気槽に流
入する有機性廃水が栓流(プラグフロー)状態で移動す
るよう互いに連通配置し、各曝気槽の底部に間欠曝気手
段を設け、該曝気槽の下流側に曝気処理水中の汚泥の沈
降分離槽を設けるとともに、分離汚泥を前記曝気槽に戻
す汚泥返送手段を備えて々る点に要旨を有するものであ
る。
The treatment apparatus of the present invention, which has achieved the above object, connects a plurality of aeration tanks in which microorganism-attached carriers are arranged so that the organic wastewater flowing into the aeration tanks moves in a plug flow state. An intermittent aeration means is provided at the bottom of each aeration tank, a sedimentation separation tank for sludge in the aerated water is provided downstream of the aeration tank, and a sludge return means is provided for returning the separated sludge to the aeration tank. The main point lies in the following points.

即ち本発明に係る処理装置の曝気槽は、公知装置におけ
る好気槽(硝化槽)と嫌気槽(脱窒槽)というが如き機
能の異なる2種類の槽を設けるのではなく、曝気槽内の
底部に間欠曝気手段を設けることによって同一槽を曝気
時には好気槽に、曝気釘止時には嫌気槽として機能させ
る様に構成してお勺、間欠曝気手段としては例えば曝気
槽底部にプロワに連結した散気管を配置し、プロワをタ
イマーによって間欠的に作動させる様な手段が挙げられ
る。又本発明に係る曝気槽は、曝気槽内に微生物付着担
体を配置したものであって例えば曝気槽内の中間部に多
孔棚段で仕切った画室を設け、ここにラシヒリング等の
微生物付着担体を配した曝気槽あるいは単に多数の棚段
を邪魔板状に設けたものやハニカム体を設置した曝気槽
等が挙げられる。又ラシヒリングの場合には水よ如比重
の小さい材質例えばポリプロピレン製のものを使用する
ことによシ微生物付着担体の下方支持を省いて浮かせる
こともできる。尚担体としてラシヒリングやハニカム体
を使用した場合は反応槽内を移動する廃水を栓流状態で
通過させる役割をも発揮し、又曝気時には曝気槽内の廃
水が撹乱されない様な撹乱防止機能も発揮する。尚栓流
状態を得る手段はラシヒリングやハニカムの使用に限定
されず、廃水の導入及び排出を徐々に行なうだけでも十
分である。
That is, the aeration tank of the treatment device according to the present invention does not have two types of tanks with different functions, such as an aerobic tank (nitrification tank) and an anaerobic tank (denitrification tank) in known devices, but rather By providing an intermittent aeration means in the tank, the same tank can be configured to function as an aerobic tank during aeration and as an anaerobic tank when aeration is fixed. Examples include placing the trachea and operating the blower intermittently using a timer. In addition, the aeration tank according to the present invention is one in which a microorganism-adhering carrier is arranged in the aeration tank, and for example, a compartment partitioned by a porous shelf is provided in the middle part of the aeration tank, and the microorganism-adhering carrier such as Raschig ring is placed in the aeration tank. For example, an aeration tank may be used, such as an aeration tank in which a large number of shelves are arranged in the form of a baffle plate, or an aeration tank in which a honeycomb body is installed. In addition, in the case of Raschig rings, by using a material with a lower specific gravity than water, such as polypropylene, the microorganism-attached carrier can be floated without requiring downward support. In addition, when Raschig rings or honeycomb bodies are used as carriers, they also play a role in allowing the wastewater moving in the reaction tank to pass through in a plug flow state, and also have a disturbance prevention function so that the wastewater in the aeration tank is not disturbed during aeration. do. Note that the means for obtaining a plug flow state is not limited to the use of Raschig rings or honeycombs, and it is sufficient to gradually introduce and discharge wastewater.

更に該曝気槽の下流側には汚泥沈降槽を設け、曝気槽か
ら排出される処理水及び汚泥が汚泥沈降槽に流入する様
に両者を接続すると共に、汚泥沈降槽において沈降分離
された汚泥が反応槽へ返送される様に汚泥返送手段例え
ば汚泥送給ポンプを介設したラインを設け、汚泥沈降槽
の底部と曝気槽の廃水導入口を接続している。
Further, a sludge settling tank is provided downstream of the aeration tank, and the two are connected so that the treated water and sludge discharged from the aeration tank flow into the sludge settling tank, and the sludge separated by sedimentation in the sludge settling tank is A line with a sludge return means, such as a sludge feed pump, is provided so that the sludge is returned to the reaction tank, and the bottom of the sludge settling tank is connected to the wastewater inlet of the aeration tank.

第2図は上記要件を満足する廃水処理装置の一例を示す
模式図で、曝気槽9は底部が切欠かれた仕切壁10によ
って第1層9aと第2層9bに区画されると共に両層は
底部で連通させ、6槽の高さ方向中間位置には両端を多
孔棚段11によって仕切って内部にラシヒリング16を
充填した微生物担持部を形成している。又曝気槽9の底
部にはプロワ5に連結した散気管12を配置すると共に
プロワ5にはタイマ13を接続している。更に曝気槽9
の下流側に沈降分離槽6を設け、曝気槽9からの排出処
理水を導入すると共に沈降分離槽6において分離された
汚泥は抜出し管14から排出され、且つ一部の分離汚泥
は汚泥送給ポンプ15によって曝気槽9の廃水入口部へ
返送される。又沈降分離槽6の上澄液は処理水7として
系外へ排出される。
FIG. 2 is a schematic diagram showing an example of a wastewater treatment device that satisfies the above requirements. The aeration tank 9 is divided into a first layer 9a and a second layer 9b by a partition wall 10 with a cutout at the bottom, and both layers are divided into a first layer 9a and a second layer 9b. The six tanks are connected to each other at the bottom, and at an intermediate position in the height direction of the six tanks, both ends are partitioned by a porous shelf 11 to form a microorganism support section filled with Raschig rings 16. Further, an aeration pipe 12 connected to the blower 5 is arranged at the bottom of the aeration tank 9, and a timer 13 is connected to the blower 5. Furthermore, aeration tank 9
A sedimentation separation tank 6 is provided on the downstream side of the sedimentation separation tank 6, and the discharged treated water from the aeration tank 9 is introduced, and the sludge separated in the sedimentation separation tank 6 is discharged from the extraction pipe 14, and some of the separated sludge is transferred to the sludge feeder. The wastewater is returned to the wastewater inlet of the aeration tank 9 by the pump 15 . Further, the supernatant liquid in the sedimentation separation tank 6 is discharged to the outside of the system as treated water 7.

上記構成の本発明処理装置において曝気槽入口部に導入
されたNH4−N、PO,−Pを含む有機廃水は栓流状
態を形成しながら第1層9aを降下し底部連通部をくぐ
シ抜けて第2層9bに入シ、とこを同じく栓流状態で上
昇して沈降分離槽6へ排出される。この間タイマ13に
よシブロワ5を間欠的に作動させて曝気槽9内に好気性
状態と嫌気性状態を交互に作り出す。その結果好気性雰
囲気となったときに硝化反応並びにPO4−Pの過剰摂
取反応が進行し、一方嫌気性状態となったときに脱窒反
応並びにpo4−pの放出反応が進行して。
In the treatment apparatus of the present invention having the above configuration, the organic wastewater containing NH4-N, PO, and -P introduced into the inlet of the aeration tank descends through the first layer 9a while forming a plug flow state, and passes through the bottom communication section. The liquid then enters the second layer 9b, where it also rises in a plug flow state and is discharged to the sedimentation separation tank 6. During this time, the timer 13 operates the sieve blower 5 intermittently to create an aerobic state and an anaerobic state in the aeration tank 9 alternately. As a result, when the atmosphere becomes aerobic, the nitrification reaction and the excessive intake reaction of PO4-P proceed, while when the atmosphere becomes anaerobic, the denitrification reaction and the release reaction of PO4-P proceed.

窒素分並びに燐分が十分に除去された処理水を得ること
ができる。
Treated water from which nitrogen and phosphorus have been sufficiently removed can be obtained.

次に上記間欠曝気状況を第3〜9図(模式図)を用いて
図式的に説明する。仮に曝気槽9内の廃水が曝気・非曝
気のサイクルを6回繰返すと全て入替わるとして第1層
9aと第2層9b内の廃水を3層ずつA−Fに均等に区
分けする。但し理解し易くする為廃水の導入及び処理水
の排出も間欠的に行なわせることとして説明する。まず
始めに第3図に示す水位の曝気槽9において処理水の排
出は行なわず廃水の導入のみを行ないながら非曝気状態
を一定時間保持すると第4図に示す如く廃水量がP分だ
け増加した状態が得られる。次いで廃水の導入は停止し
て処理水の排出のみを行ないながら一定時間曝気を行な
うと第5図に示す如くF分の処理水が排出されて水位が
低下する(但し実際は廃水の導入と処理水の排出を同時
に且つ連続して行なう場合もあるのでこのときは水位が
一定に保たれた状態で第3〜5図の変化が連続的に進行
する。)以下同様の操作を繰り返しながら非曝気・曝気
を検返すとE〜A分の処理水が順次排出され第6,7図
の状態を経て第8図の状態が得られる。そして曝気槽内
の廃水は上記の様に栓流状態で移動し々から非曝気・曝
気状態を繰返すのでその間に脱窒及び脱燐処理が高度に
施される。
Next, the above intermittent aeration situation will be schematically explained using FIGS. 3 to 9 (schematic diagrams). Assuming that the wastewater in the aeration tank 9 is completely replaced by repeating the aeration/non-aeration cycle six times, the wastewater in the first layer 9a and the second layer 9b is equally divided into three layers A to F. However, for ease of understanding, the introduction of waste water and the discharge of treated water will be explained intermittently. First, when the aeration tank 9 at the water level shown in Figure 3 is maintained in a non-aerated state for a certain period of time while only introducing waste water without discharging treated water, the amount of waste water increases by P as shown in Figure 4. The state is obtained. Next, the introduction of wastewater is stopped and aeration is carried out for a certain period of time while only discharging the treated water. As shown in Figure 5, F of the treated water is discharged and the water level decreases (however, in reality, the introduction of wastewater and the treated water In some cases, the water level is kept constant and the changes shown in Figs. When the aeration is repeated, treated water from E to A is sequentially discharged, and the state shown in FIG. 8 is obtained after passing through the states shown in FIGS. 6 and 7. As described above, the wastewater in the aeration tank moves in a plug flow state and then repeats the non-aerated and aerated states, so that denitrification and dephosphorization treatments are performed to a high degree during that time.

尚上記の様な曝気・非曝気サイクルは例えば曝気状態を
5〜60分間続けた後非曝気状態を10〜120分間続
けるという様にして実施され、1サイクルに要する時間
を最短の15分間に設定すると1日に行なわれるサイク
ル数は96回/日とすることができる。このサイクル数
は硝化液循環方式における循環比に相当し、前述の循環
比3〜6倍を大幅に上回る数であるので窒素除去率を9
5φ以上まで高めることができる。尚(曝気時間/曝気
停止時間)で示される比は1〜5とすることが好ましく
、特に1〜3とすることがよシ良好な結果を与える。又
曝気に当たってはDoを2my/l以下となる様に曝気
量を設定することが好ましく、曝気時のDOが2 my
/ lを超えると曝気停止時にDOを速やかに低下させ
ることが困難になる。
The aeration/non-aeration cycle described above is carried out by, for example, continuing the aeration state for 5 to 60 minutes and then continuing the non-aeration state for 10 to 120 minutes, and the time required for one cycle is set to the shortest 15 minutes. Then, the number of cycles performed per day can be 96 times/day. This number of cycles corresponds to the circulation ratio in the nitrification liquid circulation system, and is significantly higher than the circulation ratio of 3 to 6 times, so the nitrogen removal rate can be reduced to 9 times.
It can be increased to 5φ or more. The ratio (aeration time/aeration stop time) is preferably 1 to 5, and particularly 1 to 3 to give better results. Also, during aeration, it is preferable to set the aeration amount so that Do is 2 my/l or less, and the DO during aeration is 2 my/l or less.
/l, it becomes difficult to quickly reduce DO when aeration is stopped.

その他第2図例では曝気槽9内を2槽に区画したものを
示したが、第9図に示す様に3槽に区画して排出処理水
を図中右端槽の底部から抜き出す様にしたシ、第10図
に示す様に4@に区画してもよく勿論5槽以上に区画す
ることも可能である。
Other examples in Figure 2 show the aeration tank 9 divided into two tanks, but as shown in Figure 9, it is divided into three tanks and the discharged treated water is extracted from the bottom of the rightmost tank in the figure. As shown in FIG. 10, it may be divided into 4 tanks, and of course it is also possible to partition into 5 or more tanks.

その場合処理工程の最終段階を好気性に保持し、汚泥か
らの燐放出を防止するため最終段の槽内に汚泥担持部材
を配置せず底部に連続的曝気手段を設けることもできる
。又第11図に示す如く独立する反応槽9の下部を連通
管17によって接続するものであってもよい。
In that case, in order to keep the final stage of the treatment process aerobic and prevent the release of phosphorus from the sludge, a continuous aeration means may be provided at the bottom without disposing a sludge supporting member in the final stage tank. Alternatively, as shown in FIG. 11, the lower portions of independent reaction vessels 9 may be connected through a communication pipe 17.

尚本発明において適正BOD負荷の小さい脱窒反応を適
正BOD負荷の高い脱燐反応と同時に進行させ得たのは
曝気槽内に微生物担持部材を配置するとともに廃水を栓
流(プラグフロー)状態で移動させるようにしたからで
あり、かかる効果が得られた理由は明らかではないが、
例えば廃水と汚泥との接触効率を向上させるため各欄に
攪拌機を設けて槽内を完全混合状態としても所望の脱燐
効果は得られない。又微生物付着和2体の配置によシ汚
泥は沈降しないので汚泥と廃水の接触面積が広く且つ接
触状態も極めて良好で常に新しい水と汚泥が接触し合う
様になった。従って接触状態を向上させる為の機械的攪
拌操作を行なう必要もなく硝化脱窒能力が向上し、←れ
動力原単位の低減に寄与できた。
In the present invention, the denitrification reaction with a low appropriate BOD load can proceed simultaneously with the dephosphorization reaction with a high appropriate BOD load by arranging a microorganism support member in the aeration tank and by controlling the wastewater in a plug flow state. The reason for this effect is not clear, but
For example, in order to improve the contact efficiency between wastewater and sludge, a stirrer is provided in each column to completely mix the inside of the tank, but the desired dephosphorization effect cannot be obtained. In addition, due to the arrangement of the two microorganisms, the sludge does not settle, so the contact area between the sludge and wastewater is wide, and the contact condition is also very good, so that new water and sludge are always in contact with each other. Therefore, there was no need to perform mechanical stirring to improve the contact state, and the nitrification and denitrification ability was improved, contributing to a reduction in the unit power consumption.

、本発明は以上の様に構成されておシ、コンパクトな装
置で窒素及び燐の同時除去を効率良く行々うことができ
る。殊に脱燐反応を十分に行ないながら2次脱窒装置を
用いることなしに高い窒素除去率を得ることができる。
The present invention is constructed as described above, and can efficiently remove nitrogen and phosphorus simultaneously with a compact device. In particular, it is possible to obtain a high nitrogen removal rate without using a secondary denitrification device while sufficiently carrying out the dephosphorization reaction.

又硝化液を循環させる必要も々いのでポンプの設置費や
運転費も不要で特にランニングコストが小さくて済むと
いう経済的々効果は太きい。
Furthermore, since it is necessary to circulate the nitrifying solution, there is no need to install or operate a pump, and the running cost is particularly low, which is a significant economic effect.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

第12図に示す様な処理装置において、下記第1表に示
す水質の廃水を601/日で処理した。
In the treatment apparatus shown in FIG. 12, wastewater having the quality shown in Table 1 below was treated at a rate of 601 days.

尚反応槽9は合計容積が14/の9A、9B。The reaction tanks 9 have a total volume of 14/9A and 9B.

9Cと容積が41の9Dに区画され、9A、9B。It is divided into 9C and 9D with a volume of 41, 9A and 9B.

9C,9Dにはポリプロピレン製の汚泥担持部材(ラシ
ヒリング)を見掛容積で31ずつ配置すると共に底部に
は間欠的曝気手段12を設置した。
In 9C and 9D, 31 polypropylene sludge supporting members (Raschig rings) each with an apparent volume were arranged, and an intermittent aeration means 12 was installed at the bottom.

又反応槽9の□下流側には゛沈降分゛離槽6を配置した
Further, on the downstream side of the reaction tank 9, a ``sedimentation separation tank 6'' was arranged.

間欠的曝気槽9A、9B、9Cの曝気停止中に廃水を導
入しながら、間欠曝気槽のDOが1〜1.5fnti/
lとなる様にプロワ5aからの吹込空気量を調整し、1
0分間曝気した後30分間曝気を停止するサイクルを繰
返したところ、沈降分離槽6からは第2表に示す水質の
処理水が得られた。
While introducing wastewater during the aeration stoppage of the intermittent aeration tanks 9A, 9B, and 9C, the DO of the intermittent aeration tanks is 1 to 1.5 fnti/
Adjust the amount of air blown from the blower 5a so that it becomes 1.
When the cycle of aeration for 0 minutes and then stopping aeration for 30 minutes was repeated, treated water having the quality shown in Table 2 was obtained from the settling tank 6.

第 2 表 □ 尚運転中9Dでは連続的曝気を行外いDOが1.5へ一
2〜/ノとなる様に空気送給量を刺部した。
Table 2 □ At 9D during operation, continuous aeration was omitted and the air supply amount was adjusted so that the DO was 1.5 to 12 to 1/2.

又反応槽内のMLSSが40000四となる様に余剰汚
泥の定期的抜き出しを行なった。
Additionally, excess sludge was periodically extracted so that the MLSS in the reaction tank was 40,0004.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硝化液循環方式の処理装置を示す説明図、第2
図は本発明に係る処理装置の説明図、第3〜8図は栓流
状態を示す模式図、第9〜12図は他の実施例を示す説
明図である。 4・・・廃水 9・・・反応槽 16・・・汚泥相持部材 出願人 株式会社神戸製鋼所 第3図 第4図 第6甲 第7閂 17i7/ 第5図 第8図 ν
Figure 1 is an explanatory diagram showing a nitrification liquid circulation type processing equipment, Figure 2
The figure is an explanatory diagram of the processing apparatus according to the present invention, FIGS. 3 to 8 are schematic diagrams showing a plug flow state, and FIGS. 9 to 12 are explanatory diagrams showing other embodiments. 4...Wastewater 9...Reaction tank 16...Sludge holding member Applicant Kobe Steel, Ltd. Figure 3 Figure 4 Figure 6A 7th bolt 17i7/ Figure 5 Figure 8 ν

Claims (1)

【特許請求の範囲】[Claims] 微生物付着担体な槽内に配した複数の曝気槽を、該曝気
槽に流入する有機性廃水が栓流状態で移動するよう互い
に連通配置し、各曝気槽の底部に間欠曝気手段を設け、
該曝気槽の下流側に曝気処理水中の汚泥の沈降分離槽を
設けるとともに、分離汚泥番前記曝気槽に戻す汚泥返送
手段を備えてなることを特徴とする窒素と燐の同時除去
可能な有機性廃水の生物学的処理装置。
A plurality of aeration tanks arranged in a microbial adhesion carrier tank are arranged in communication with each other so that organic wastewater flowing into the aeration tank moves in a plug flow state, and an intermittent aeration means is provided at the bottom of each aeration tank,
A sedimentation separation tank for sludge in the aerated water is provided downstream of the aeration tank, and a sludge return means for returning the separated sludge to the aeration tank is provided. Biological treatment equipment for wastewater.
JP59112322A 1984-05-31 1984-05-31 Biological treating device for organic waste water Granted JPS60255199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112322A JPS60255199A (en) 1984-05-31 1984-05-31 Biological treating device for organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112322A JPS60255199A (en) 1984-05-31 1984-05-31 Biological treating device for organic waste water

Publications (2)

Publication Number Publication Date
JPS60255199A true JPS60255199A (en) 1985-12-16
JPH0421558B2 JPH0421558B2 (en) 1992-04-10

Family

ID=14583770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112322A Granted JPS60255199A (en) 1984-05-31 1984-05-31 Biological treating device for organic waste water

Country Status (1)

Country Link
JP (1) JPS60255199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019256A1 (en) * 2004-08-17 2006-02-23 Jae Hyuk Yi Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906047B (en) * 2016-05-05 2019-06-11 江苏奥尼斯环保科技有限公司 A kind of integrated water body in-situ immobilization equipment and its application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019256A1 (en) * 2004-08-17 2006-02-23 Jae Hyuk Yi Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus

Also Published As

Publication number Publication date
JPH0421558B2 (en) 1992-04-10

Similar Documents

Publication Publication Date Title
CN110891908B (en) Method for water treatment in a system comprising at least one sequencing batch reactor and a moving bed biofilm reactor
KR19980051067A (en) Simultaneous Biological and Nitrogen Eliminators
WO1995024361A1 (en) Method of operating a sequencing batch reactor
JP3845515B2 (en) System and method for removing nitrogen and phosphorus in waste water
KR100825518B1 (en) Device and method for Biological Treatment of Wastewater using MBR and Zeolite Powder
JPH11244891A (en) Method for denitrification treating waste water and treating system
CN110550813A (en) Sewage treatment device
US7056438B2 (en) Flood and drain wastewater treatment system and associated methods
JP3677783B2 (en) Nitrification method
JPS60255199A (en) Biological treating device for organic waste water
JPH04310298A (en) Biological nitrogen removing unit
JP3136901B2 (en) Wastewater treatment method
JP2504248B2 (en) Sewage treatment equipment
JPH1157778A (en) Waste water treating device and treatment
JPH03213197A (en) Device for treating putrescible waste liquor
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
JP3407342B2 (en) Biological denitrification / phosphorus removal equipment
JPH02214596A (en) Method and device for removing nitrogen from sewage
JPH0421559B2 (en)
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
JP2000279992A (en) Waste water treatment and apparatus therefor
JPH02139094A (en) Method and equipment for removing nitrogen from sewage
JP2000279993A (en) Waste water treatment and apparatus therefor
JPH0671291A (en) Sewage treatment equipment using packed layer