JPS60254781A - Manufacture of magnetism detector - Google Patents

Manufacture of magnetism detector

Info

Publication number
JPS60254781A
JPS60254781A JP59111441A JP11144184A JPS60254781A JP S60254781 A JPS60254781 A JP S60254781A JP 59111441 A JP59111441 A JP 59111441A JP 11144184 A JP11144184 A JP 11144184A JP S60254781 A JPS60254781 A JP S60254781A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thin strip
longer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59111441A
Other languages
Japanese (ja)
Other versions
JPH0325036B2 (en
Inventor
Akira Hirano
明 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59111441A priority Critical patent/JPS60254781A/en
Publication of JPS60254781A publication Critical patent/JPS60254781A/en
Publication of JPH0325036B2 publication Critical patent/JPH0325036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Abstract

PURPOSE:To eliminate the deterioration in output efficiency, by using the same pattern, performing position matching in self-alignment, thereby realizing the position relationship between a magnetic layer and a conducting layer accurately. CONSTITUTION:As a means of performing accurate position matching, a conducting thin stripe (length: l) is made longer than a magnetic thin stripe (width: W) (W<l), both thin films are sequentially etched from the upper layer and a pattern is formed. A conducting layer 13, which is longer than the width (W) of a magnetic layer 12 is prepared. At this time, a closely contacted layer 16 is simultaneously etched. Then, a new resist layer 18 is used, and the magnetic layer 12 is patterned. Since l is longer than W, it is not required to perform strict position alignment. The conducting layer 13, which is protruded from the magnetic thin stripe, is simultaneously etched when the magnetic thin stripe is formed. Finally, a protecting layer 14 such as SiO2 is prepared, and a terminal corresponding to an outer terminal 5 in Figure 2 is formed by a conductor such as Au. Thus the detector is completed.

Description

【発明の詳細な説明】 (11発明の技術分野 本発明はバーバー・ボール型の磁気抵抗素子である磁気
検出器(磁気センサ)の製造方法、特にセルフアライン
メントの手法により正確に位置合せを行なえるようにし
た磁気検出器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (11) Technical Field of the Invention The present invention relates to a method for manufacturing a magnetic detector (magnetic sensor) that is a barber-ball type magnetoresistive element, and in particular to a method for accurately aligning a magnetic sensor using a self-alignment method. The present invention relates to a method of manufacturing a magnetic detector.

(2)技術の背景 磁気抵抗9)J果を利用して磁界を検出するためにば磁
界と出力との直線性を得る必要がある。その一つの手段
として磁性薄帯に45度傾けて多数の導電性薄帯を設け
ることにより磁界の変化に比例した磁気抵抗の変化を得
ることができる。すなわち、素子の抵抗ρは、磁化の方
向(Ml)と電流(’II )との成す角θに関係し、
ρ−ρ、+Δρo CO52θで表される。ここでΔρ
0=ρ、、−ρ工であり、ρ、1とρ工は各hat化の
方向と電流が平行および直角の時の比抵抗を示す。従っ
てθが45度になるように、抵抗の低い導電性薄帯中に
電流を流すと第1図の線に示すようにある範囲で磁界と
出力との線型性(直線性)を得ることができる。
(2) Background of the technology Magnetoresistance 9) In order to detect a magnetic field using the J effect, it is necessary to obtain linearity between the magnetic field and the output. As one means for this, it is possible to obtain a change in magnetic resistance proportional to a change in the magnetic field by providing a large number of conductive ribbons at an angle of 45 degrees to the magnetic ribbon. That is, the resistance ρ of the element is related to the angle θ formed by the direction of magnetization (Ml) and the current ('II),
It is expressed as ρ-ρ, +Δρo CO52θ. Here Δρ
0 = ρ, , -ρ, and ρ, 1 and ρ indicate the specific resistance when the direction of each hat and the current are parallel and perpendicular. Therefore, if a current is passed through a conductive ribbon with low resistance so that θ is 45 degrees, linearity between the magnetic field and the output can be obtained within a certain range as shown by the line in Figure 1. can.

第2図は従来例をfalの断面図とfb)の平面図に示
し、図において1は表面に二酸化シリコン(Si02)
 層が形成されたシリコンウェハまたはパイレックス基
板を示t。パーマロイ、ニッケルーコバルト等の磁性薄
膜が蒸着法およびスパッタ法でイ(1着され、リソグラ
フィーおよびエンチング技術によって短冊形の磁性薄膜
2が形成される。磁化の方向がパターンに平行に向いて
いるようにすると前記した直線性が良くなるから、真空
中で温度を」二げ、短冊に平行に磁界を加え、磁界容易
軸をパターンの長手方向に作る。または、磁界中で磁性
膜を付着させて異方性を生じせしめても良い。
Figure 2 shows a conventional example in a cross-sectional view of fal and a plan view of fb.
A silicon wafer or Pyrex substrate with layers formed thereon is shown. A magnetic thin film 2 of permalloy, nickel-cobalt, etc. is deposited by vapor deposition and sputtering, and a rectangular magnetic thin film 2 is formed by lithography and etching techniques.The direction of magnetization is oriented parallel to the pattern. The above-mentioned linearity improves when the temperature is lowered in a vacuum, and a magnetic field is applied parallel to the strip to create an easy axis of the magnetic field in the longitudinal direction of the pattern.Alternatively, a magnetic film can be attached in the magnetic field. Anisotropy may also be caused.

次に当該薄帯2上にチタン(Ti) 、クロム(Cr)
等の密着層6を介して金等の導電性膜が積層され、リソ
グラフィーにより磁性薄帯に対して45度伸けて導電性
薄帯3が作られる。なお、シリコンウェハを用いるとき
はその上に絶縁膜を形成する。
Next, titanium (Ti) and chromium (Cr) are placed on the ribbon 2.
A conductive film of gold or the like is laminated via an adhesive layer 6 such as the like, and a conductive thin strip 3 is formed by extending 45 degrees with respect to the magnetic thin strip by lithography. Note that when a silicon wafer is used, an insulating film is formed thereon.

(3)従来技術と問題点 バーバー・ポール型の検出器は磁性薄帯上に導電性薄帯
が形成されて成るが、従来下層の磁性薄帯から順次積層
されて形成されていた。しがし、この方法によると当該
上下層の位置合せを厳密に行わないと出力効率が落ちる
欠点があった。
(3) Prior Art and Problems Barber-pole type detectors are constructed by forming conductive thin strips on top of magnetic thin strips, and conventionally they have been formed by sequentially stacking layers starting from the lower layer of magnetic thin strips. However, this method has the disadvantage that output efficiency decreases unless the upper and lower layers are precisely aligned.

(4)発明の目的 本発明は上記従来の問題に鑑み、磁性薄帯と導電性薄帯
を正確に位置合せをするための効率の良い磁気検出器の
゛製造方法を提供することを目的とする。
(4) Purpose of the Invention In view of the above-mentioned conventional problems, an object of the present invention is to provide an efficient manufacturing method for a magnetic detector for accurately aligning a magnetic ribbon and a conductive ribbon. do.

(5)発明の構成 そしてこの目的は本発明によると、磁性薄帯から成る磁
性層上に約45度傾けて導電性薄帯から成る導電層が配
置されて成る磁気検出器を作る方法にして、前記両薄膜
を積層し磁性薄帯の幅よりも長い導電性薄帯を形成した
後に同一パターンをマスクに導電層と磁性層を同時にエ
ツチングすることによって前記磁性薄帯を形成すること
を特徴とする磁気検出器の製造方法を提供することによ
って達成される。
(5) Structure and object of the invention According to the present invention, a method for manufacturing a magnetic detector is provided, in which a conductive layer made of a conductive thin strip is arranged on a magnetic layer made of a magnetic thin strip at an angle of about 45 degrees. , characterized in that the magnetic thin strip is formed by laminating both of the thin films to form a conductive thin strip that is longer than the width of the magnetic thin strip, and then simultaneously etching the conductive layer and the magnetic layer using the same pattern as a mask. This is achieved by providing a method for manufacturing a magnetic detector.

(6)発明の実施例 以下本発明の実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明は正確な位置合せを行う手段として導電性薄帯(
長さりを磁性薄帯(幅W)より長くしくW<Z)、両薄
膜を順次上層からエツチングしてパターンを形成するも
のである。
The present invention uses a conductive thin strip (
The length is made longer than the magnetic thin strip (width W) (W<Z), and both thin films are sequentially etched from the upper layer to form a pattern.

第3図(A)、、、’(E)の断面図と同図中)1.。Fig. 3 (A), , '(E) cross-sectional view and the same figure) 1. .

(Qlの平面図に本発明実施例を示すが、平面図(bl
 、 、 。
(The embodiment of the present invention is shown in the plan view of Ql, but the plan view (bl
, , .

(0)ルよ断面図(B)、、、(E)に対応する。第3
図(A)に示される如く基板II上に磁性層(I!!i
i厚300〜500人)12、密着層(II!1厚25
0−1000人)16、導電層(膜厚500〜2000
人)13を連続して成膜する。磁化容易軸の形成は従来
の場合と同様である。
(0) Corresponds to cross-sectional views (B), , (E). Third
As shown in Figure (A), a magnetic layer (I!!i
i thickness 300-500 people) 12, adhesion layer (II! 1 thickness 25
0-1000 people) 16, conductive layer (thickness 500-2000
(13) are continuously formed into a film. The formation of the axis of easy magnetization is the same as in the conventional case.

リソグラフィーとエツチング技術(ケミカル。Lithography and etching techniques (chemical.

プラズマ、イオンミリング)を用い磁性層12の幅(W
)よりも長い導電層13を作製する(第3図(B))。
The width of the magnetic layer 12 (W
) (FIG. 3(B)).

このとき、密着層16も同時にエツチングする。次に新
たなレジスト膜18を用い磁性層12をリソグラフィー
によりパターニングするが(第3図(C1) 、ff1
J<Wより長いために厳密に位置合せを行う必要はない
(第3図(b)、fcl参照)。磁性薄帯よりはみ出た
導電体層13は磁性薄帯を形成する際に同時にエツチン
グされる(第3図(D) 、 +d))。
At this time, the adhesive layer 16 is also etched at the same time. Next, the magnetic layer 12 is patterned by lithography using a new resist film 18 (FIG. 3 (C1), ff1
Since it is longer than J<W, it is not necessary to perform exact alignment (see FIG. 3(b), fcl). The conductive layer 13 protruding from the magnetic ribbon is etched at the same time as the magnetic ribbon is formed (FIG. 3(D), +d).

最後に5i02等の保護層14が作製され、篩等の導体
によって第2図の外部端子5に対応する端子が形成され
て完成する(第3図(E) 、 (el)。
Finally, a protective layer 14 such as 5i02 is produced, and a terminal corresponding to the external terminal 5 in FIG. 2 is formed using a conductor such as a sieve (FIGS. 3E and 3E).

本発明によれば、Wより長い導電性薄帯を用い上層より
順次パターンを形成してゆくことにより、簡略な位置合
せにより正確な磁性層と導電層の位置関係を実現するこ
とができるので、出力効率の低下を防ぐことができ、そ
の効果は大きい。
According to the present invention, by forming a pattern sequentially from the upper layer using a conductive thin strip longer than W, it is possible to realize an accurate positional relationship between the magnetic layer and the conductive layer through simple alignment. It is possible to prevent a decrease in output efficiency, and the effect is significant.

なお、薄帯や密着層等用いる材料は実施例に限らない。Note that the materials used for the ribbon, adhesive layer, etc. are not limited to those in the examples.

また薄帯の幅、形状等も図示の場合限定されず又つづら
折り形状にした場合のコーナ部分等にも適用できる。シ
リコンウェハを用いるときは従来の場合と同様にその上
に絶縁膜を設けなければならないが、パイレックス基板
を用いるときはその必要がない。エツチングをケミカル
エツチングでなすときは基板11は影響を受けないが、
イオンミリングのときは基板も若干エツチングされる。
Further, the width, shape, etc. of the thin strip are not limited to those shown in the drawings, and can also be applied to corner portions of a meandering shape. When using a silicon wafer, it is necessary to provide an insulating film thereon as in the conventional case, but when using a Pyrex substrate, this is not necessary. When etching is done by chemical etching, the substrate 11 is not affected, but
During ion milling, the substrate is also slightly etched.

しかし、基板は磁気抵抗素子をのせる台として設けられ
るものであるから、それのエンチングは別に問題はない
However, since the substrate is provided as a stand on which the magnetoresistive element is placed, there is no problem with the etching of the substrate.

(7)発明の効果 以上詳細に説明した如く本発明によれば、同じパターン
を用いセルフアラインメントの位置合せにより正確に磁
性層と導電層の位置関係を実現することができるので出
力効率の低下をなくす効果がある。
(7) Effects of the Invention As explained in detail above, according to the present invention, the positional relationship between the magnetic layer and the conductive layer can be realized accurately by self-alignment using the same pattern, thereby reducing the output efficiency. It has the effect of eliminating

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本検出器の原理を説明する図、第2図は従来例
の断面図と平面図、第3図は本発明の実施例を示す図で
ある。 ti−一基板、12−磁性層、13−導電層、14−保
護層、15−外部端子、16−密着層、17、18−−
レジスト膜 (b) 第1図 jls 2 i”j 第3図
FIG. 1 is a diagram explaining the principle of the present detector, FIG. 2 is a cross-sectional view and a plan view of a conventional example, and FIG. 3 is a diagram showing an embodiment of the present invention. ti--substrate, 12-magnetic layer, 13-conductive layer, 14-protective layer, 15-external terminal, 16-adhesion layer, 17, 18--
Resist film (b) Fig. 1jls 2 i”j Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 磁性薄帯から成る磁性層上に約45度傾けて導電性薄帯
から成る導電層が配置されて成る磁気検出器を作る方法
にして、前記両層を積層し磁性薄帯の幅よりも長い導電
性薄帯を形成した後に同一パターンをマスクに導電層と
磁性層を同時にエツチングすることによって前記磁性薄
帯を形成することを特徴とする磁気検出器の製造方法。
A method of making a magnetic detector in which a conductive layer made of a conductive thin strip is arranged at an angle of about 45 degrees on a magnetic layer made of a magnetic thin strip, and both layers are laminated to have a length longer than the width of the magnetic thin strip. 1. A method of manufacturing a magnetic detector, characterized in that after forming a conductive thin strip, the conductive layer and the magnetic layer are simultaneously etched using the same pattern as a mask to form the magnetic thin strip.
JP59111441A 1984-05-31 1984-05-31 Manufacture of magnetism detector Granted JPS60254781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111441A JPS60254781A (en) 1984-05-31 1984-05-31 Manufacture of magnetism detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111441A JPS60254781A (en) 1984-05-31 1984-05-31 Manufacture of magnetism detector

Publications (2)

Publication Number Publication Date
JPS60254781A true JPS60254781A (en) 1985-12-16
JPH0325036B2 JPH0325036B2 (en) 1991-04-04

Family

ID=14561276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111441A Granted JPS60254781A (en) 1984-05-31 1984-05-31 Manufacture of magnetism detector

Country Status (1)

Country Link
JP (1) JPS60254781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200683A (en) * 1988-02-04 1989-08-11 Sony Corp Magnetoresistance element and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843237A (en) * 1971-09-30 1973-06-22
JPS57102160U (en) * 1980-12-15 1982-06-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843237A (en) * 1971-09-30 1973-06-22
JPS57102160U (en) * 1980-12-15 1982-06-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200683A (en) * 1988-02-04 1989-08-11 Sony Corp Magnetoresistance element and manufacture thereof

Also Published As

Publication number Publication date
JPH0325036B2 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US7842334B2 (en) Magnetic sensor using giant magnetoresistive elements and methods for manufacturing the same
KR100645291B1 (en) Magnetic sensor and method of producing the same
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
AU2003257500B2 (en) Magnetic sensor, production process of the magnetic sensor and magnetic array suitable for the production process
JPH06130088A (en) Current sensor
WO2006057379A1 (en) Thin film magnetic resistor element and method for manufacturing it, and magnetic sensor using thin film magnetic resistor element
JP4329746B2 (en) Magnetic sensor using giant magnetoresistive element and method of manufacturing the same
JPH05281319A (en) Magnetic sensor
JP2006266777A (en) Magnetometric sensor equipped with huge magnetoresistance effect element
JPS60254781A (en) Manufacture of magnetism detector
JPS5816580A (en) Method of bias magnetic field impression for magnetic reluctance effect element
KR20000076208A (en) Improved magnetoresistive read sensor and method of fabricating a magnetoresistive read sensor
JP3835445B2 (en) Magnetic sensor
JP3475867B2 (en) Polishing sensor, bar block for thin film device provided with the sensor, and wafer substrate for thin film device provided with the sensor
JPS5829116A (en) Magnetoelectric signal converter
JPS61145720A (en) Magnetic head
JP2586680B2 (en) Magnetoresistive element and manufacturing method thereof
JPS57107088A (en) Magnetoresistive element and manufacture therefor
JP2891221B2 (en) Monitor element of thin-film magnetic head and method of manufacturing the same
JPS6157027A (en) Magnetoresistance effect head and its manufacture
JPH06251327A (en) Thin film magnetic head
JPH03207007A (en) Thin-film magnetic head
JPS61248485A (en) Ferromagnetic resistance element
JPH03219683A (en) Magnetoresistance element
JPS5917290A (en) Magnetic sensor