JPS60254722A - Substrate for semiconductor device - Google Patents

Substrate for semiconductor device

Info

Publication number
JPS60254722A
JPS60254722A JP11133184A JP11133184A JPS60254722A JP S60254722 A JPS60254722 A JP S60254722A JP 11133184 A JP11133184 A JP 11133184A JP 11133184 A JP11133184 A JP 11133184A JP S60254722 A JPS60254722 A JP S60254722A
Authority
JP
Japan
Prior art keywords
film
substrate
aluminum nitride
single crystal
microcracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11133184A
Other languages
Japanese (ja)
Inventor
Hideki Tsuya
英樹 津屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11133184A priority Critical patent/JPS60254722A/en
Publication of JPS60254722A publication Critical patent/JPS60254722A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide an SOI film having no microcracks and realize high speed operation of silicon element or three dimensional structure by forming a single crystal Si film on an aluminum nitride substrate having the thermal expansion coefficient almost equal to that of Si. CONSTITUTION:The thermal expansion coefficient of aluminum nitride sintered in higher extent is 3.5X10<-6>/ deg.C which is equal to that of Si. A melting point is also as high as 2,400 deg.C which does not result in any problem from the point of view of forming a device. Therefore, microcracks are not generated at all on the single crystal Si film 2 which has been formed by laser annealing of polycrystalline Si film deposited on such aluminum nitride substrate 1 and a very excellent substrate for SOI semiconductor can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はSOI (5ilicon on In5ul
ator )を容易に形成できる半導体装置用基板に関
する、(従来技術とその問題点) 非晶質絶縁体上にSi単結晶を成長させるいわゆるSO
I成長技術は、シリコン素子の高速化あるいは三次元構
造化にとって非常に有効であシ、また表示素子など広範
囲な応用が期待されている。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is directed to SOI (5ilicon on In5ul)
(Prior art and its problems) So-called SO, which grows Si single crystals on an amorphous insulator, regarding substrates for semiconductor devices that can easily form
I-growth technology is very effective for increasing the speed of silicon devices or creating three-dimensional structures, and is expected to have a wide range of applications such as display devices.

現在SOI単結晶膜の成長には二つの方式が検討されて
いる。一つは単結晶シリコン基板上の二酸化シリコン(
Stow)膜の一部を開口し、そこを種子部として堆積
した多結晶Si@をレーザ元や電子ビーム等の加熱手段
を用いて単結晶化する方法である。
Currently, two methods are being considered for growing SOI single crystal films. One is silicon dioxide (
In this method, a part of the Stow film is opened and the deposited polycrystalline Si@ is made into a single crystal using a heating means such as a laser source or an electron beam using the opening as a seed part.

前者の種子部を用いてSOI膜を形成する方法は、結晶
学的な配向性の制御が容易なため、魅力的な方法である
が、プロセスに複雑な要因が増えること、また開口部と
非開口部の境界に段差が生じることなど解決すべき問題
が多い。
The former method of forming an SOI film using a seed part is an attractive method because it is easy to control the crystallographic orientation, but it adds complicating factors to the process, and There are many problems that need to be solved, such as the occurrence of steps at the boundaries of the openings.

一方、後者の種子部を用いない方式は余分なプロセスが
ないこと、また原理的に段差を生じないこと、種子部分
に制約されないこと等、利点を有しているが、単結晶S
OI膜の良質化や配向性の制御にまだ問題を残している
On the other hand, the latter method that does not use a seed part has advantages such as no extra process, no steps in principle, and no restrictions on the seed part, but single crystal S
Problems still remain in improving the quality of the OI film and controlling its orientation.

本発明は後者の種子部を用いない方式に関するもので、
良好なSOI膜を有する半導体装置用基板を提供するも
のである。SOI用の絶縁基板としては、溶融石英やS
i基板上に形成した5iO1膜が用いられでいる。特に
溶融石英は可視光領域で透明であるため、該基板上につ
くられたトランジスタはカラーディスプレイのスイッチ
ング素子等に有望である。
The present invention relates to the latter method that does not use seeds,
The present invention provides a substrate for a semiconductor device having a good SOI film. As an insulating substrate for SOI, fused silica or S
A 5iO1 film formed on an i-substrate has been used. In particular, since fused silica is transparent in the visible light range, transistors fabricated on this substrate are promising as switching elements for color displays and the like.

しかしながら、溶融石英は熱膨張率が0.55X107
℃とシリコンの3.5X10 7℃に比べて1桁近く小
さいために、SOI膜にマイクロクラックが入るという
問題がある。そのために、シリコン゛の熱膨張率に近い
基板材料の作索が行われてきた。
However, fused silica has a coefficient of thermal expansion of 0.55X107
℃ is nearly an order of magnitude smaller than that of silicon, which is 3.5×10 7 C, which causes the problem of microcracks in the SOI film. For this reason, attempts have been made to create substrate materials with a coefficient of thermal expansion close to that of silicon.

その結果、文献(R、A 、 Lemons et: 
al 、 Appl 。
As a result, the literature (R, A., Lemons et al.
al, Appl.

Phys、Lett、40,469 (1982))に
示されているように、コーニングガラス7740や70
59が開発された。前者の熱膨張率は3.25X10 
7℃。
Phys, Lett, 40, 469 (1982)), Corning Glass 7740 and 70
59 was developed. The thermal expansion coefficient of the former is 3.25X10
7℃.

後者のそれは4.6X10 7℃で比較的Siに近い値
を示すが、軟化点の低いことが問題である。すなわち、
前者の軟化点は821℃、後者のそれは844℃である
ため、現在のデバイスプロセスに投入し、トランジスタ
を作成することは不可能である。
The latter exhibits a value relatively close to that of Si at 4.6×10 7°C, but its low softening point is a problem. That is,
Since the former has a softening point of 821° C. and the latter has a softening point of 844° C., it is impossible to input it into current device processes and create transistors.

(本発明の目的) 本発明はこのような従来技術の欠点を除去せしめて、S
OI形成時にマイクロクラ、りの入らない半導体装置用
基板を提供することにある。
(Objective of the present invention) The present invention eliminates the drawbacks of the prior art and improves S
It is an object of the present invention to provide a substrate for a semiconductor device in which microcracks and oxides do not enter during OI formation.

(本発明の構成) 本発明によれば、完全性のより高い焼結体の窒化アルミ
ニウム基板上に単結晶Si膜が形成されていることを特
徴とする半導体装置用基板が得られる。
(Structure of the Present Invention) According to the present invention, a substrate for a semiconductor device is obtained, which is characterized in that a single crystal Si film is formed on a sintered aluminum nitride substrate with higher integrity.

(構成の詳細な説明) 本発明は上述の構成をとることによシ、従来技術の問題
点を解決した。高度に焼結された窒化アルミニウムの熱
膨張係数は3.5X10 7℃であることが判明し、こ
の値はSiの3.5X10 7℃と等しい値であった。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. The coefficient of thermal expansion of highly sintered aluminum nitride was found to be 3.5X10 7 °C, which was equivalent to that of Si, 3.5X10 7 °C.

また融点も2400℃と極めて高く、デバイス形成上全
く問題がなかった。そのため該窒化アルミニウム基板上
に堆積した多結晶Si膜をレーザアニールして形成した
単結晶Si膜にはマイクロクラ、りは全く発生せず、極
めて優れたSOI半導体装置用基板が容易に得られた。
Moreover, the melting point was extremely high at 2400° C., and there were no problems in device formation. Therefore, the single crystal Si film formed by laser annealing the polycrystalline Si film deposited on the aluminum nitride substrate did not have any microcracks or pores, and an extremely excellent substrate for SOI semiconductor devices was easily obtained. .

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
明する。第1図は本発明の実施例を示す断面図である。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the present invention.

まず窒化アルミニウム焼結体にカルシウムカーバイト(
CaCt)1モル%を添加しホ、ドブレス法によシ基板
を作成した。本発明で得られた基板の熱膨張率を測定し
たところ、20〜1000℃で3.5X10 7℃であ
った。この値は従来のホットプレス法で作成された窒化
アルミニウム焼結体の埴4.8〜6.lX10 71m
、に比べて小さく、Si単結晶の値3.5X10 7℃
に等しかった。
First, calcium carbide (
A substrate was prepared by adding 1 mol % of CaCt) and using the Dobres method. When the thermal expansion coefficient of the substrate obtained in the present invention was measured, it was 3.5×10 7°C at 20 to 1000°C. This value is 4.8-6. lX10 71m
, the value of Si single crystal is 3.5X10 7℃
was equal to

この基板をメカニカルケミカル研磨によシ平坦化した。This substrate was planarized by mechanical chemical polishing.

該窒化アルミニウム基板1に化学気相成長法(CVD)
により700℃で多結晶Si2に厚−さ0.68m堆積
した。この試料に約IWOArレーザを照射し、単結晶
化した。得られたSO,I膜を工、ツチングし、光学w
A徴鏡で観察したところ、マイクロクラックの全くない
極めて高品質の単結晶膜であることが分った。またラマ
ン分光によりSOI膜の結晶性を評価したところ、ラマ
ンシフトの波数は521an−1で、単結晶Siのそれ
と等しく、冷却時に基板からの歪を全く受けていないこ
とも判明した。
Chemical vapor deposition (CVD) is applied to the aluminum nitride substrate 1.
A thickness of 0.68 m was deposited on polycrystalline Si2 at 700°C. This sample was irradiated with approximately IWOAr laser to form a single crystal. The obtained SO,I film was processed and then optically processed.
When observed with an A-shape mirror, it was found to be an extremely high quality single crystal film with no microcracks. Furthermore, when the crystallinity of the SOI film was evaluated by Raman spectroscopy, it was found that the wave number of the Raman shift was 521an-1, which was equal to that of single crystal Si, and that it was not subjected to any strain from the substrate during cooling.

また窒化アルミニウムの融点は2400℃であり、この
値はコーニングガラス7740や7059に比較して非
常に高く、デバイス形成時には全く問題にならない。
Furthermore, the melting point of aluminum nitride is 2400° C., which is much higher than Corning Glass 7740 and 7059, and poses no problem when forming devices.

更にまた窒化アルミニウム基板に厚さ0.1μmのs 
iQ、膜をCVD法によシ形成し、該膜上に多結晶シリ
コン膜を堆積したのち、レーザアニールを行った場合に
も全くマイクロクラックは入らなかった。
Furthermore, the aluminum nitride substrate has a thickness of 0.1 μm.
iQ, a film was formed by the CVD method, a polycrystalline silicon film was deposited on the film, and then laser annealing was performed, no microcracks were generated at all.

(発明の効果) 以上、詳細に述べたように、本発明による半導体装置用
基板はマイクロクラックのないSOI膜を提供し、シリ
コン素子の高速化あるいは三次元化、また表示素子用等
に広い応用が期待される。
(Effects of the Invention) As described above in detail, the substrate for semiconductor devices according to the present invention provides an SOI film without microcracks, and is widely applicable to high-speed or three-dimensional silicon devices, display devices, etc. There is expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置用基板の断面図であシ、1
は窒化アルミニウム基板、2は多結晶Si膜で、レーザ
照射によシ単結晶化される。 代理人弁理士内原 晋
FIG. 1 is a cross-sectional view of a substrate for a semiconductor device according to the present invention.
2 is an aluminum nitride substrate, and 2 is a polycrystalline Si film, which is made into a single crystal by laser irradiation. Representative Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] 3iと熱膨張係数がほぼ等しい窒化アルミニウム基板上
に単結晶St膜が形成されて−ることを特許とする半導
体装置用基板。
A semiconductor device substrate patented in that a single crystal St film is formed on an aluminum nitride substrate having a coefficient of thermal expansion approximately equal to 3i.
JP11133184A 1984-05-31 1984-05-31 Substrate for semiconductor device Pending JPS60254722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11133184A JPS60254722A (en) 1984-05-31 1984-05-31 Substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11133184A JPS60254722A (en) 1984-05-31 1984-05-31 Substrate for semiconductor device

Publications (1)

Publication Number Publication Date
JPS60254722A true JPS60254722A (en) 1985-12-16

Family

ID=14558494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11133184A Pending JPS60254722A (en) 1984-05-31 1984-05-31 Substrate for semiconductor device

Country Status (1)

Country Link
JP (1) JPS60254722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425248B2 (en) 2011-12-22 2016-08-23 Shin-Etsu Chemical Co., Ltd. Composite substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425248B2 (en) 2011-12-22 2016-08-23 Shin-Etsu Chemical Co., Ltd. Composite substrate

Similar Documents

Publication Publication Date Title
USRE33096E (en) Semiconductor substrate
JPH07140454A (en) Manufacture of glass panel for silicon device
KR930002932B1 (en) Liquid crystal light valve and associated bonding structure
US6274463B1 (en) Fabrication of a photoconductive or a cathoconductive device using lateral solid overgrowth method
JP2660064B2 (en) Crystal article and method for forming the same
JPS60254722A (en) Substrate for semiconductor device
JP2000150835A (en) Manufacture of non-single crystal silicon thin-film
US5234843A (en) Method of making a semiconductor film where the hydrogen and/or fluorine is released prior to ion beam crystallization
JPS6046019A (en) Noncrystal substrate with single crystal silicon thin film and its manufacture
JPH05218367A (en) Production of polycrystalline silicon thin film board and polycrystalline silicon thin film
JP2898360B2 (en) Method for manufacturing semiconductor film
JPS59148322A (en) Manufacture of semiconductor device
JPH04298020A (en) Manufacture of silicon thin film crystal
JP2532252B2 (en) Method for manufacturing SOI substrate
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JP2004059341A (en) METHOD FOR FORMING ORIENTED THIN FILM OF LiNbO3
EP0431685A1 (en) Method of forming thin defect-free strips of monocrystalline silicon on insulators
JPH05259458A (en) Manufacture of semiconductor device
JPH0118575B2 (en)
JPH08167740A (en) Pyroelectric infrared thin film element
JPS5860697A (en) Forming method of silicon single crystal film
JP3484547B2 (en) Thin film formation method
JPS59163817A (en) Substrate for semiconductor device
JPH059089A (en) Method for growing crystal
JPS62174969A (en) Manufacture of semiconductor device