JPS60253246A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60253246A
JPS60253246A JP10919384A JP10919384A JPS60253246A JP S60253246 A JPS60253246 A JP S60253246A JP 10919384 A JP10919384 A JP 10919384A JP 10919384 A JP10919384 A JP 10919384A JP S60253246 A JPS60253246 A JP S60253246A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
semiconductor element
die
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10919384A
Other languages
Japanese (ja)
Inventor
Hisashi Sawaki
佐脇 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10919384A priority Critical patent/JPS60253246A/en
Publication of JPS60253246A publication Critical patent/JPS60253246A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To obtain the ohmic contacting property having few irregularity by a method wherein the first metal thin film is formed, it is alloyed by performing a heat treatment, the second metal thin film is formed, and a die-bonding by conductive resin is performed using a semiconductor element whereon a metallization layer having two layers on back side is formed. CONSTITUTION:A semiconductor element is formed on an N type semiconductor substrate wafer. An Au thin film containing Sb is formed on the back side of said semiconductor wafer. Besides, the semiconductor wafer is heat-treated in an electric furnance, and an Au-Si layer is formed on the back side of said wafer. Subsequently, the second Au-Sb thin film is formed by performing the same method as above. A two-layered back side metallization process is completed, an ordinary pelletizing process is performed, and a die-bonding process is conducted. The above-mentioned materials are bonded in the die-bonding process using epoxy resin.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法に関し、特に、安価で
電気特性の優れた半導体装置の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device that is inexpensive and has excellent electrical characteristics.

(従来技術) 従来より、半導体装置の製造において、半導体素子裏面
とリードフレーム・アイランドとの間に、オーεツクコ
ンタクトを得ることは、半導体素子のラッチアップ不良
を低減するため等、重要な技術となっており、種々の裏
面メタライゼーション方法、又は、ダイボンディング方
法が提供されている。
(Prior art) Traditionally, in the manufacturing of semiconductor devices, obtaining open contact between the back surface of a semiconductor element and a lead frame island has been an important technology for reducing latch-up defects of semiconductor elements. Various backside metallization methods or die bonding methods have been provided.

広く用いられている方法に、Au Sr共晶法がある。A widely used method is the Au/Sr eutectic method.

Au−8i共晶法は、半導体素子をAu薄膜又は、微量
のsbを含んだAu薄膜片をダイボンディング用ソルダ
ーとして、400℃以上に加熱しリードフレームアイラ
ンド上にダイボンディングする方法である。Au−8i
共晶法でダイボンディングした半導体素子はラッチアッ
プ不良の発生はなく、即ちオーミック・コンタクト性は
良好であるが、非常に高価である欠点がある。又、Au
−8i共晶法で、ダイボンディングするためには、半導
体素子裏面の表面状態、即ち、表面の酸化物層の厚みに
注意しなければならず、工程管理上にも問題がある。
The Au-8i eutectic method is a method in which a semiconductor element is die-bonded onto a lead frame island by heating it to 400° C. or higher using an Au thin film or an Au thin film piece containing a small amount of SB as a die-bonding solder. Au-8i
Semiconductor elements die-bonded by the eutectic method do not cause latch-up failures, that is, have good ohmic contact, but have the drawback of being very expensive. Also, Au
In order to perform die bonding using the -8i eutectic method, attention must be paid to the surface condition of the back surface of the semiconductor element, that is, the thickness of the oxide layer on the surface, which also poses problems in terms of process control.

他の方法として、半導体素子裏面にあらかじめ金属薄膜
を形成し、しかる後、導電性樹脂にてダイボンディング
する裏面一層メタライゼーシ田ン法がある。この場合、
金属薄膜は、Au又はsbを含むAu薄膜(以下Au又
はAu−8b薄膜と略記)を真空蒸着法によって形成す
る方法が広く用いられている。この従来方法は、安価で
、かつ、オーミックコンタクト性もほぼ良好である。し
かしながら、この従来方法では、オーミック・コンタク
ト性のバラツキが大きく、半導体装置の歩留シを低下さ
せる原因となる。このバラツキ改善のため、■半導体基
板を加熱した後、Au又はAu−8b薄膜を真空蒸着す
る方法、又は■Au又はA、u−8b薄脱の蒸着に先だ
ち Ipi薄膜を蒸着する方法が提案されているが、い
ずれも、メーミックコンタクト性のバラツキを改善する
に致っていない。
Another method is a backside single-layer metallization method in which a metal thin film is previously formed on the backside of the semiconductor element and then die-bonded with a conductive resin. in this case,
As the metal thin film, a method of forming an Au thin film containing Au or sb (hereinafter abbreviated as Au or Au-8b thin film) by vacuum evaporation is widely used. This conventional method is inexpensive and has almost good ohmic contact properties. However, in this conventional method, there is large variation in ohmic contact properties, which causes a decrease in the yield of semiconductor devices. In order to improve this variation, a method has been proposed: (1) vacuum-depositing an Au or Au-8b thin film after heating the semiconductor substrate, or (2) depositing an Ipi thin film prior to the thin-film deposition of Au, A, or U-8b. However, none of these methods has been able to improve the variation in memic contact properties.

(発明が解決しようとする問題点) 本発明の目的れ安価でオーミックコンタクト性の優れた
ダイボンディング方法を含む半導体装置の製造方法を得
ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing a semiconductor device including a die bonding method that is inexpensive and has excellent ohmic contact properties.

(問題点を解決するための手段) 本発明によれば、半導体素子の裏面に半導体素子構成材
料とAu又は8bを含んだAuである第1の金属との合
金を形成する工程と、その後この合金の上にAu又はs
bを含んだAuである第2の金属を被覆する工程と、第
2の金属をリードフレームもしくは素子容器に導電性樹
脂で接着する工程とを含む半導体装置の製造方法を得る
(Means for Solving the Problems) According to the present invention, there is a step of forming an alloy of a semiconductor element constituent material and a first metal which is Au or Au containing 8b on the back surface of a semiconductor element, and then this step. Au or S on the alloy
A method for manufacturing a semiconductor device is obtained, which includes a step of coating a second metal, which is Au containing b, and a step of bonding the second metal to a lead frame or an element container with a conductive resin.

(発明の効果) 本発明によれば、安価でオーミック・コンタクト性が良
好で、かつ、バラツキの少ない半導体装置の製造方法を
提供できる。即ち本発明によれば高価なAu−8i共晶
法を用いることなしに、Au−8i共晶法と、同程度の
バラツキのないオーミック・コンタクト性を提供するこ
とが出来、従来、Au−8i共晶法によるダイボンディ
ングでしか生産出来なかった半導体装置を、安価な導電
性樹脂によるダイボンディング法で生産できる裏面メタ
ライゼーシ璽ン方法を提供するものである。
(Effects of the Invention) According to the present invention, it is possible to provide a method for manufacturing a semiconductor device that is inexpensive, has good ohmic contact properties, and has little variation. That is, according to the present invention, it is possible to provide ohmic contact properties with the same level of variation as the Au-8i eutectic method without using the expensive Au-8i eutectic method. To provide a backside metallization method that can produce semiconductor devices that could only be produced by die bonding using the eutectic method, by die bonding using an inexpensive conductive resin.

(実施例) まず、本発明の構成を更に詳しく説明する。本発明によ
ると、あらかじめ、第一の金属薄膜を形成する工程と、
熱処理を施して、合理化する工程と、さらに第二の金属
薄膜を形成する工程とを経た、即ち裏面二層メタライゼ
ーシ冒ン層を形成した半導体素子を用いて、導電性樹脂
によるダイボンディングをすることによJ) Au−8
i共晶法と同程度の、バラツキの少ないオーミックコン
タクト性5− が得られ、Au−84共晶法と比較して数分の1の価格
で、生産することが可能と力る。本発明で、使用する、
第1、第2の金属薄膜としてAu又はAu・sb薄膜が
有効であるが、使用方法は衣−1の如く使用半導体基板
の導電型により異なる。表−1でAu、 Au −8b
と書かれているのは同金属を蒸着した後、加熱する方法
で、形成する金属薄膜であシ、Tt−Au、 Ti A
u−8bと書かれているのは、あらかじめTiを蒸着し
た後、直ちにAu又はAu−8bを蒸着する方法で形成
する金属薄膜を示している。
(Example) First, the configuration of the present invention will be explained in more detail. According to the present invention, the step of forming a first metal thin film in advance;
Die bonding with a conductive resin is performed using a semiconductor element that has undergone a process of heat treatment and rationalization and a process of forming a second metal thin film, that is, a two-layer metallization layer is formed on the back side. Yo J) Au-8
It is believed that it is possible to obtain ohmic contact properties 5- with little variation comparable to that of the i-eutectic method, and to be able to produce it at a fraction of the price compared to the Au-84 eutectic method. In the present invention, used
Au or Au.sb thin films are effective as the first and second metal thin films, but the method of use differs depending on the conductivity type of the semiconductor substrate used, as in Example 1. In Table-1, Au, Au-8b
This is a method in which the same metal is vapor-deposited and then heated, and the formed metal thin film is
The letter u-8b indicates a metal thin film formed by depositing Ti in advance and then immediately depositing Au or Au-8b.

表−1半導体基板の導電型による金属薄膜の種類6− 以下、本発明を実施例にもとづき説明する。N型半導体
基板ウェーハに通常の酸化、拡散、フォト・エツチング
法等を用いて半導体素子を形成した。この半導体ウェー
ハの裏面に0.2%のsb を含んだ、Au薄膜を約2
00OA、E・ガン蒸着法によって形成した。この時A
u−8b薄膜のハガレを防止する手段として■Au薄膜
を蒸着した後200’Cに半導体ウェーハを加熱する。
Table 1 Types of metal thin films according to conductivity type of semiconductor substrate 6 The present invention will be described below based on examples. Semiconductor elements were formed on an N-type semiconductor substrate wafer using conventional oxidation, diffusion, photo-etching, etc. methods. Approximately 20% of the Au thin film containing 0.2% sb was deposited on the back side of this semiconductor wafer.
It was formed by the 00OA, E gun evaporation method. At this time A
As a means to prevent peeling of the U-8B thin film, (1) After depositing the Au thin film, the semiconductor wafer is heated to 200'C.

■あらかじめ、Tiを約300A程度蒸着した後、Au
−8b薄膜を連続蒸着するの三方法がある。さらに、半
導体ウェーハを480℃の電気炉にて1o分間加熱処理
を施こし、該ウェーハ裏面にAu−84層を形成した。
■After evaporating Ti to about 300A in advance, Au
There are three methods for successively depositing -8b thin films. Furthermore, the semiconductor wafer was heat-treated for 10 minutes in an electric furnace at 480° C. to form an Au-84 layer on the back surface of the wafer.

しかる後、前記と同様の方法で、第2のAu−8b薄膜
を形成した。これらの処理は通常ウェーハ状態で行なわ
れる。以上で、裏面二層メタライゼーション工程は完了
し、以下通常のベレッタイジング工程を経て、ダイボン
ディング工程と々る。ダイボンディング工程においては
、90重量%のAgを含んだエポキシ樹脂を用いて接着
した。その後、通常の工程を経て、半導体装置を製造す
る。
Thereafter, a second Au-8b thin film was formed in the same manner as above. These processes are usually performed in the wafer state. With the above steps, the back side two-layer metallization process is completed, followed by the usual pelletizing process and then the die bonding process. In the die bonding process, bonding was performed using an epoxy resin containing 90% by weight of Ag. Thereafter, a semiconductor device is manufactured through normal steps.

本実施例を用いて製造した、C−MO8型半導体集積回
路のラッチアップによる製品不良率を、他の方法と比較
した結果を表−2に示す。
Table 2 shows the results of comparing the product defect rate due to latch-up of the C-MO8 type semiconductor integrated circuit manufactured using this example with other methods.

表−2本発明の一実施例におけるラッチアップ不良率々
お、従来方法−Ct)Fi、単にAu片でダイボンディ
ングした製品でオシ、従来方法−(2)は半導体素子表
面に0.2%のsbを含んだAu(Au 、8b )薄
膜を形成した後200℃で加熱処理した素子(a)、T
iを形成した稜直ちにAu−8bを蒸着した素子(b)
を用゛いて、導電性樹脂にてダイボンディングした製品
である。
Table 2: Latch-up failure rate in one embodiment of the present invention, Conventional method - Ct) Fi, Product simply die-bonded with Au pieces, Conventional method - (2) 0.2% on the surface of the semiconductor element Element (a), T
Element in which Au-8b was deposited immediately on the edge where i was formed (b)
This is a product that is die-bonded with conductive resin.

又、同様に本実施例を用いて製造した、高速スイッチン
グ・ダイオードの順方向電圧分布を、他の方法で製造し
た結果と比較して表−3に示す。
Table 3 also shows the forward voltage distribution of a high-speed switching diode similarly manufactured using this example, in comparison with the results of manufacturing using other methods.

比較対象は前記、C−MO8型半導体集積回路装置と同
じである。
The comparison target is the same as the C-MO8 type semiconductor integrated circuit device described above.

このように、本発明を用いることにより、安価でかつA
u−8i共晶法で、ダイボンディングしたのと、同様の
効果が得られた。
In this way, by using the present invention, it is possible to achieve low cost and A
The same effect as die bonding using the u-8i eutectic method was obtained.

表−3本発明の一実施例におゆる順方向電圧特性のバラ
ツキ 9− 以上の実施例では、N型半導体基板についてのみ記した
がP創生導体基板においては、第一の金属薄膜としてA
u−8b薄膜の代シに99.99%以上の純度のAu薄
膜を使用することによシ実施できる。
Table 3 Variation in forward voltage characteristics in one embodiment of the present invention 9 In the above embodiment, only the N-type semiconductor substrate was described, but in the P-generated conductor substrate, A
This can be achieved by using an Au thin film with a purity of 99.99% or more instead of the U-8B thin film.

又、半導体基板の導電型にかかわらず、第二の金属薄膜
としてAu又はAu−8b薄膜のいずれも使用可能であ
る。
Furthermore, regardless of the conductivity type of the semiconductor substrate, either Au or Au-8b thin film can be used as the second metal thin film.

さらに、合金化のための、熱処理条件は、半導体素子、
及び熱処理装置の性能によシ種々選択出来、Au−8i
層を形成する380℃から半導体素子の特性を変動させ
ない500℃の範囲内で、5〜30分加熱するだけで十
分である。その時の熱処理雰囲気は特に限定されること
はない。
Furthermore, the heat treatment conditions for alloying include semiconductor elements,
Various choices can be made depending on the performance of the heat treatment equipment and Au-8i.
It is sufficient to heat for 5 to 30 minutes within the range of 380° C., which forms the layer, to 500° C., which does not change the characteristics of the semiconductor element. The heat treatment atmosphere at that time is not particularly limited.

第一の金属薄膜として使用するAu−8b薄腹中のsb
濃度は0.2 %に限定されないことは言うまでもない
sb in Au-8b thin film used as first metal thin film
It goes without saying that the concentration is not limited to 0.2%.

10−10-

Claims (4)

【特許請求の範囲】[Claims] (1)半導体素子の裏面に第1の金属薄膜を形成する工
程と、前記半導体素子を形成する材料と該第−の金属薄
膜とを合金化するための熱処理工程と、さらに第2の金
属薄膜を形成する工程とを経た前記半導体素子を用いて
、導電性樹脂にて半導体素子容器に接着することを特徴
とする半導体装置の製造方法。
(1) A step of forming a first metal thin film on the back surface of a semiconductor element, a heat treatment step of alloying the material forming the semiconductor element and the second metal thin film, and further forming a second metal thin film. A method of manufacturing a semiconductor device, characterized in that the semiconductor element that has undergone the step of forming a semiconductor element is bonded to a semiconductor element container using a conductive resin.
(2)前記第1の金属薄膜として、前記半導体素子を形
成する材料がN型半導体基板の時、Sbを含ん′/eA
u薄膜、前記半導体素子を形成する材料がP型半導体基
板の時、Au薄膜を使用することを特徴とする特許請求
の範囲第1項記載の半導体装置の製造方法。
(2) When the material forming the semiconductor element is an N-type semiconductor substrate, the first metal thin film does not contain Sb'/eA
2. The method of manufacturing a semiconductor device according to claim 1, wherein an Au thin film is used when the material forming the semiconductor element is a P-type semiconductor substrate.
(3)前記合金化するための熱処理工程として、380
〜500℃で、5〜30分の熱処理を施すことを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(3) As the heat treatment step for alloying, 380
2. The method of manufacturing a semiconductor device according to claim 1, wherein heat treatment is performed at 500° C. for 5 to 30 minutes.
(4)前記第2の金属薄膜として、Au又はSbを含ん
だAu薄膜を用いることを特徴とする特許請求の範囲第
1項又は第2項記載の半導体装置の製造方法。
(4) The method for manufacturing a semiconductor device according to claim 1 or 2, wherein an Au thin film containing Au or Sb is used as the second metal thin film.
JP10919384A 1984-05-29 1984-05-29 Manufacture of semiconductor device Pending JPS60253246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10919384A JPS60253246A (en) 1984-05-29 1984-05-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10919384A JPS60253246A (en) 1984-05-29 1984-05-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60253246A true JPS60253246A (en) 1985-12-13

Family

ID=14503985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10919384A Pending JPS60253246A (en) 1984-05-29 1984-05-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60253246A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154844A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154844A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Semiconductor element

Similar Documents

Publication Publication Date Title
CA2155091C (en) Bonding material and bonding method for electric element
US3200490A (en) Method of forming ohmic bonds to a germanium-coated silicon body with eutectic alloyforming materials
US2820932A (en) Contact structure
JP3339552B2 (en) Semiconductor device and manufacturing method thereof
US4042951A (en) Gold-germanium alloy contacts for a semiconductor device
US4035526A (en) Evaporated solderable multilayer contact for silicon semiconductor
US3959522A (en) Method for forming an ohmic contact
JP3013786B2 (en) Method for manufacturing semiconductor device
JPH06252091A (en) Semiconductor device and its manufacture
US20200152594A1 (en) Silicon carbide semiconductor device, silicon carbide semiconductor assembly, and method of manufacturing silicon carbide semiconductor device
US5057454A (en) Process for producing ohmic electrode for p-type cubic system boron nitride
JPS60253246A (en) Manufacture of semiconductor device
US4613890A (en) Alloyed contact for n-conducting GaAlAs-semi-conductor material
JPS6024074A (en) Gallium arsenide semiconductor device and method of producing same
JPS6148776B2 (en)
US3990094A (en) Evaporated solderable multilayer contact for silicon semiconductor
JPH084095B2 (en) Method for manufacturing semiconductor device
JPS59189625A (en) Manufacture of semiconductor device
JPS6016463A (en) Ohmic electrode
JPS60110127A (en) Semiconductor device having laminated metal electrode
JP2950285B2 (en) Semiconductor element and method for forming electrode thereof
US3153600A (en) Process for applying electrodes on semiconductors
JPS6337497B2 (en)
JPH07115185A (en) Electrode of semiconductor
JPS5811096B2 (en) How to set up the handset