JPS60252141A - Fuel feed controlling method at acceleration of internal-combustion engine - Google Patents

Fuel feed controlling method at acceleration of internal-combustion engine

Info

Publication number
JPS60252141A
JPS60252141A JP11052584A JP11052584A JPS60252141A JP S60252141 A JPS60252141 A JP S60252141A JP 11052584 A JP11052584 A JP 11052584A JP 11052584 A JP11052584 A JP 11052584A JP S60252141 A JPS60252141 A JP S60252141A
Authority
JP
Japan
Prior art keywords
engine
predetermined
acceleration
fuel
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052584A
Other languages
Japanese (ja)
Inventor
Akihiro Yamato
大和 明博
Akimasa Yasuoka
安岡 章雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11052584A priority Critical patent/JPS60252141A/en
Publication of JPS60252141A publication Critical patent/JPS60252141A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent a driving shock in time of acceleration from occurring before it happens, by synchronizing an accelerating fuel quantity with each control signal to be produced in consecutive order at the specified driving range and thereby increasing the quantity gradually till it reaches the specified value. CONSTITUTION:Whether an engine speed is in the specified range or not is judged with steps 2 and 3, while whether throttle opening thetan is less than the specified opening thetaSOFT1 or no is judged. If it is discriminated as being driven by acceleration from a low load range, a flag is set with a step 11. At the time of a relief condition being effected, a throttle valve opening variation DELTAtheta is judged with a step 17. A specified factor value KSOFT set by a step 18 is used for operation of fuel injection time TOUT, whereby fuel increment immediately after transfer to an accelerating state is checked. Thus, a driving shock due to a sudden increase in engine output torque attributable to the oversupply of an accelerating fuel quantity is prevented from occurring before it happens.

Description

【発明の詳細な説明】 (技術分野) 本発明は内燃エンジンの加速時燃料供給制御方法に関し
、特に加速時の過剰燃料供給に起因する運転ショックの
発生を1νJ止した加速時燃料供給制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fuel supply control method during acceleration of an internal combustion engine, and more particularly to a fuel supply control method during acceleration that prevents the occurrence of driving shock due to excessive fuel supply during acceleration by 1 νJ. .

(発明の技術的背景とその問題点) 従来、エンジンの加速運転時に加速状態に応じた加速燃
料量をエンジンに供給しエンジンの加速運転性能を向上
させるようにした方法は公知であし、例えば、エンジン
回転数等の基本的なエンジ。
(Technical Background of the Invention and Problems Thereof) Conventionally, methods have been known that improve the accelerating performance of the engine by supplying an amount of accelerating fuel to the engine in accordance with the acceleration state during accelerating operation of the engine. Basic engine such as engine speed.

ン運転パラメータ値に応じてめた基本燃料供給量をエン
ジンが加速運転状態にある間所定の増量補正値にて増量
補正する一方、加速状態への移行時には上記増量補正と
は別個に一時的に所定量の加速時増量燃料を供給する方
法が知られている。
While the engine is in acceleration mode, the basic fuel supply amount determined according to the operating parameter values is increased using a predetermined increase correction value. A method of supplying a predetermined amount of increased fuel during acceleration is known.

しかしながら、加速時燃料を供給する場合、とくに上述
の従来の方法のようにエンジンの運転領域のいかんにか
かわらず加速状態継続中は基本燃料供給量を増量しかつ
加速状態への移行時に加速時増量燃料?供給すると、燃
料量がエンジンの要求する燃料量より過大になる場合が
ある。斯かる場合、エンジンの出力トルクが急変動して
エンジンが取付は位置において回動変位し、エンジンを
支持スるエンジンマウントを介して、例えば、エンジン
を搭載した車体に衝撃を与え、車輛の運転者に不快なシ
ョックc以下、運転ショックと云う)を与える。
However, when supplying fuel during acceleration, in particular, as in the conventional method described above, the basic fuel supply amount is increased while the acceleration state continues regardless of the operating range of the engine, and the amount of fuel supplied during acceleration is increased when transitioning to the acceleration state. fuel? If supplied, the amount of fuel may exceed the amount required by the engine. In such a case, the output torque of the engine suddenly fluctuates, causing the engine to rotate in its mounting position, and impacting the vehicle body on which the engine is mounted, for example, through the engine mount that supports the engine, and disrupting the operation of the vehicle. This causes an unpleasant shock (hereinafter referred to as "driving shock") to the driver.

かかる不具合を解消するために、従来、燃料供給遮断運
転状態から燃料供給運転状態への復帰時に燃料供給量を
徐々に増加させ、該復帰時の運転ショックを緩和させる
方法(*公昭56−38781号)、及びエンジンブレ
ーキ開始時と終了時との夫々に於て選択可能な関数に従
って燃料供給量を減少及び復元させ、エンジンの出力ト
ルクの変動を抑制し運転ショックを緩和させる方法(特
開昭54−103924号)が提案されている。
In order to solve this problem, conventionally, a method has been proposed in which the amount of fuel supplied is gradually increased when returning from a fuel supply cut-off operating state to a fuel supply operating state, and the operating shock at the time of return is alleviated (* Publication No. 56-38781). ), and a method of reducing and restoring the fuel supply amount according to a selectable function at the start and end of engine braking, suppressing fluctuations in engine output torque and mitigating driving shock (Japanese Patent Laid-Open No. 54 -103924) has been proposed.

しかしながら、上記提案に係る方法はいずれも、燃料供
給遮断状態から燃料供給状態へ復帰するときの運転ショ
ックを低減させるものに過ぎない。
However, all of the methods proposed above merely reduce the driving shock when returning from the fuel supply cutoff state to the fuel supply state.

一方、斯かる運転ショックはエンジンが巡航運転領域及
びその近傍から加速される場合にも生じ得る。そして、
特に、エンジンが低回転域でかつ軽負荷域にあつそ加速
されるときに発生する運転ショックは運転者に不快感を
与えるので、これを除去し若しくは緩和することが望ま
れる。
On the other hand, such driving shocks may also occur when the engine is accelerated from the cruising operating range or its vicinity. and,
In particular, since the driving shock that occurs when the engine is accelerated in a low speed range and a light load range causes discomfort to the driver, it is desirable to eliminate or alleviate this.

(発明の概要) 本発明は上述の事情に鑑みてなされたものであり、内燃
エンジンの運転パラメータ値に基づいてエンジンが巡航
運転領域及びその近傍から加速されたことを検知し、検
出した加速状態に応じた加速燃料量を供給する内燃エン
ジンの加速時燃料供給制御方法において、制御信号を順
次発生させると共にエンジン回転数、エンジンの負荷状
態を表わすパラメータの値及びスロットル弁開度変化を
検出し、これら検出値に基づいてエンジンの運転状態が
前記加速によジエンジン回転数が所定域にあシかつエン
ジノ負荷が所定負荷以下である所定運転領域に所定量以
上のスロットル弁開度変化を伴って移行したと判別され
た直後は前記加速燃料量を前記制御信号に同期して所定
値になるまで漸増させるようにし、エンジンの運転状態
が前記所定運転領域に加速によシ移行した場合に加速時
の燃料増量を一時的に抑制して過剰燃料供給に起因する
運転ショックの発生を防止するようにした内燃エンジン
の加速時燃料供給制御方法を提供するものである。
(Summary of the Invention) The present invention has been made in view of the above-mentioned circumstances, and it detects that the engine is accelerated from the cruising operation range or the vicinity thereof based on the operating parameter values of the internal combustion engine, and provides a detected acceleration state. A fuel supply control method during acceleration of an internal combustion engine that supplies an acceleration fuel amount according to Based on these detected values, the operating state of the engine is changed to a predetermined operating region in which the engine rotational speed is within a predetermined range due to the acceleration and the engine load is below a predetermined load, with a change in throttle valve opening of more than a predetermined amount. Immediately after it is determined that the acceleration fuel amount has shifted, the acceleration fuel amount is gradually increased in synchronization with the control signal until it reaches a predetermined value. The present invention provides a fuel supply control method during acceleration of an internal combustion engine, which temporarily suppresses an increase in fuel amount to prevent the occurrence of driving shock due to excessive fuel supply.

(発明の実施例) 以下、本発明の実施例を図面を参照して説明する0 第1図は本発明の方法が適用される燃料供給制脚装置を
例示し、4気筒内燃エンジン1には吸気管2が接続され
、この吸気管2の途中には内部にスロットル弁3aを配
したスロットルボディ3が設けられている。スロットル
弁3aにはスロットル弁開度センサ4が連設されてスロ
ットル弁3aの弁開度を電気的信号に変換し電子コント
ロールユニット(以下[ECUjと言う)5に送るよう
にされている。
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 illustrates a fuel supply brake system to which the method of the present invention is applied. A pipe 2 is connected to the intake pipe 2, and a throttle body 3 having a throttle valve 3a disposed therein is provided in the middle of the intake pipe 2. A throttle valve opening sensor 4 is connected to the throttle valve 3a to convert the valve opening of the throttle valve 3a into an electrical signal and send it to an electronic control unit (hereinafter referred to as ECUj) 5.

吸気管2のエンジン1とスロットルボディー3間には燃
料噴射弁6が設けられ、図示しない燃料ポンプに接続さ
れると共にECU3に電気的に接続されてお、9、EC
U3からの信号によって燃料噴射の開弁時間が制御され
る。
A fuel injection valve 6 is provided between the engine 1 and the throttle body 3 in the intake pipe 2, and is connected to a fuel pump (not shown) and electrically connected to the ECU 3.
The valve opening time of fuel injection is controlled by the signal from U3.

一方、前記スロットルボディ3の直ぐ下流には管を介し
て絶対圧センサ7が設けられておシ、この絶対圧セン茗
7によって電気的信号に変換された絶対圧信号は前記E
CU3に送られる。
On the other hand, an absolute pressure sensor 7 is provided immediately downstream of the throttle body 3 via a pipe, and the absolute pressure signal converted into an electrical signal by the absolute pressure sensor 7 is transmitted to the E
Sent to CU3.

クラッチスイッチ8及びギヤ位置スイッチ9は、エンジ
ン1と図示しない駆動輪間に介設されたクラッチ及び多
段変速機(共に図示ぜず)の夫々に機械的又は電気的に
連結し、前者はクラッチの接続時及び切離時に夫々オン
及びオフ信号をECU3に供給し、後者は低速(例えば
第1速及び$2速)ギヤ噛合時にオン信号を、高速(例
えば第3速及び第4速)ギヤ噛合時にオフ信号をECU
3に供給するようにされている。
The clutch switch 8 and the gear position switch 9 are mechanically or electrically connected to a clutch and a multi-stage transmission (both not shown), respectively, which are interposed between the engine 1 and a driving wheel (not shown), and the former is connected to a clutch and a multi-stage transmission (both not shown). On and off signals are supplied to the ECU 3 during connection and disconnection, respectively, and the latter supplies an on signal when low speed (e.g. 1st and 2nd speed) gears are engaged, and an on signal when high speed (e.g. 3rd and 4th speed) gears are engaged. ECU off signal when
3.

エンジン1の本体にはエンジン水温センサ1゜が設けら
れ、このセンサ10はサーミスタ等カラ成シ、冷却水が
充満したエンジン気筒周壁内に挿着されて、その検出水
温信号をECUsに供給する。エンジン回転数センサ(
以下「Neセンサ」と言う)11および気筒判別センサ
12がエンジンの図示し々いカム軸周囲又はクランク軸
周囲に取付けられておシ、前者11はTDC信号即ちエ
ンジンのクランク軸の1800回転毎に所定のクランク
角度位置で、後者12は特定の気筒の所定のクランク角
度位置でそれぞれ1パルスを出力するものであり、これ
らのパルスはECU5に送られる。
An engine water temperature sensor 1° is provided in the main body of the engine 1. This sensor 10 is made up of components such as a thermistor, and is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECUs. Engine speed sensor (
(hereinafter referred to as "Ne sensor") 11 and a cylinder discrimination sensor 12 are installed around the camshaft or crankshaft of the engine. At a given crank angle position, the latter 12 outputs one pulse each at a given crank angle position of a particular cylinder, and these pulses are sent to the ECU 5.

エンジン1の排気管13には三元触媒14が配置され排
気ガス中のHC、CO、NOx成分の浄化作用食付なう
。この三元触媒14の上流側には02センサ15が排気
管13に挿着されこのセンサ15は排気中の酸素濃度音
検出しその検出値信号をECU3に供給する。
A three-way catalyst 14 is disposed in the exhaust pipe 13 of the engine 1 to purify HC, CO, and NOx components in the exhaust gas. An 02 sensor 15 is inserted into the exhaust pipe 13 on the upstream side of the three-way catalyst 14, and this sensor 15 detects the oxygen concentration sound in the exhaust gas and supplies the detected value signal to the ECU 3.

ECU3は上述の各種センナからのエンジン運転パラメ
ータ信号に基いてエンジンが間エンジン回転域VCある
か否か等のエンジン運転状態を判別し、エンジン運転状
態に応じて以下に示す式で与えられる燃料噴射弁6の燃
料噴射時間TOUT f演算する。
The ECU 3 determines the engine operating state, such as whether or not the engine is in the inter-engine rotation range VC, based on the engine operating parameter signals from the various sensors mentioned above, and injects fuel according to the formula shown below depending on the engine operating state. The fuel injection time TOUT f of the valve 6 is calculated.

’f’oar=TiXKSOFTXKWOTXKI −
1−TACCXK2 +に3ここにTiは燃料噴射弁6
の基本燃料噴射時間を示し、この基本燃料噴射時間は、
例えば吸気管内絶対圧PBAとエンジン回転数Neに応
じて演算される。KSOFTは加速時増量を一時的に抑
制する本発明に係る補正係数を示し、KWOTはスロッ
トル弁全開時のリッチ化係数を示し、TACCは、加速
時の増量補正値を示す。Kl−に3は前述の各種セ゛、
ンサ、すなわち、スロットル弁開度センサ4、吸気管内
絶対圧センサ7、クラッチスイッチ8、ギヤ位置スイッ
チ9、エンジン水温セフ’r ]、 0 、 Neセン
サ11、気筒判別センサ12,0.センサ15からのエ
ンジンパラメータ信号に応じて演算される補正係数及び
変数であってエンジン運転状態に応じ、加速性能、始動
特性、排気ガス特性、燃費特性等の緒特性が最適なもの
となるように所定の演算式に基いて演算される。
'f'oar=TiXKSOFTXKWOTXKI -
1-TACCXK2 +3 Ti here is fuel injection valve 6
This basic fuel injection time is
For example, it is calculated according to the intake pipe absolute pressure PBA and the engine rotation speed Ne. KSOFT represents a correction coefficient according to the present invention that temporarily suppresses the amount increase during acceleration, KWOT represents the enrichment coefficient when the throttle valve is fully open, and TACC represents the amount increase correction value during acceleration. Kl-3 is the various types mentioned above,
The sensors include a throttle valve opening sensor 4, an intake pipe absolute pressure sensor 7, a clutch switch 8, a gear position switch 9, an engine water temperature sensor 11, a cylinder discrimination sensor 12, 0 . Correction coefficients and variables that are calculated according to engine parameter signals from the sensor 15, and are used to optimize acceleration performance, starting characteristics, exhaust gas characteristics, fuel efficiency characteristics, etc. according to engine operating conditions. It is calculated based on a predetermined calculation formula.

ECU3は上述のようにしてめた燃料噴射時間TovT
に基いて燃料噴射弁6を開弁させる駆動信号を燃料噴射
弁6に供給する。
The ECU 3 uses the fuel injection time TovT set as described above.
A drive signal is supplied to the fuel injection valve 6 to open the fuel injection valve 6 based on this.

、第2図は第1図のECU3内部の回路構成を示す図で
、第1図のNeセンサ11からのエンジン回転数信号は
波形整形回路501で波形整形された後、TDC信号と
して中央処理装置(以下1”CPUjという)503に
供給されると共にMeカウンタ502にも供給される。
, FIG. 2 is a diagram showing the circuit configuration inside the ECU 3 shown in FIG. 1. The engine rotation speed signal from the Ne sensor 11 shown in FIG. (hereinafter referred to as 1'' CPUj) 503 and is also supplied to the Me counter 502.

Meカウンタ502ijNeセンサ11からの前回TD
C信号パルスの入力時から今回TDc@4パルスの入力
時までの時間間隔を計数するもので、その計数値Meは
エンジン回転数Neの逆数に比例する。Meカウンタ5
02はこのtJ数値Meをデータバス510を介してC
PU503に供給する。
Previous TD from Me counter 502ijNe sensor 11
The time interval from the input of the C signal pulse to the input of the current TDc@4 pulse is counted, and the counted value Me is proportional to the reciprocal of the engine rotation speed Ne. Me counter 5
02 sends this tJ value Me to C via the data bus 510.
Supplied to PU503.

第2図のスロットル弁開度センサ4、吸気管内絶対圧P
BAセンセン、エンジン水温センサ10等の各種センサ
からの夫りの出力信号はレベル修正回路504で所定電
圧レベルに修正された後、マルチプレクサ505によシ
順次A/Dコンバータ506に供給される1、A、/D
コンバータ506は前述の各センサからの出力信号を順
次デジタル信号に変換して該デジタル信号音データバス
510を介1〜てCPU503に供給する。
Throttle valve opening sensor 4 in Fig. 2, absolute pressure P in the intake pipe
The output signals from various sensors such as the BA sensor and the engine water temperature sensor 10 are corrected to a predetermined voltage level by a level correction circuit 504, and then sequentially supplied to an A/D converter 506 by a multiplexer 505. A, /D
The converter 506 sequentially converts the output signals from the aforementioned sensors into digital signals and supplies them to the CPU 503 via the digital signal sound data bus 510.

CPU503は、更に、データバス510を介してリー
 ドオンリメモリ(以下[ROMlという)507、ラ
ンダムアクセスメモリ(R,AM) 508及び駆動回
路509に接続されており、RAM508はc:pTJ
so3での演算結果等を一時的に記憶し、ROM507
はCPU503で実行される制御プログラム、燃料噴射
弁6の基本噴射時間マツプ等をE己憶し、ている。CP
U503はI(,0M507に記憶されている制御プロ
グラムに従って前述の各。
The CPU 503 is further connected to a read-only memory (hereinafter referred to as ROMl) 507, a random access memory (R, AM) 508, and a drive circuit 509 via a data bus 510, and the RAM 508 is connected to a c:pTJ.
Temporarily stores calculation results etc. in so3, and stores them in ROM507.
The control program executed by the CPU 503, the basic injection time map of the fuel injection valve 6, etc. are stored in memory. C.P.
U503 performs each of the above operations according to the control program stored in I(,0M507).

種エンジンパラメータ信号に応じた燃料噴射弁6の燃料
噴射時間’[” o U Tを演算して、この演算値を
データバス510を介して駆動回路509に供給する。
The fuel injection time '['' o U T of the fuel injection valve 6 according to the engine parameter signal is calculated, and this calculated value is supplied to the drive circuit 509 via the data bus 510.

駆動回路509は前記演算値に応じて燃料噴射弁6を開
弁させる制御信号を該噴射弁6に供給する。
The drive circuit 509 supplies a control signal to the fuel injection valve 6 to open the fuel injection valve 6 according to the calculated value.

第1図及び第2図の装置において、ECU3はスロット
ル弁開度θTHの変化量Δθに基づきエンジンが加速運
転状態にあることを検知すると、該検知後、所定数のT
DC信号パルスが発生するまアの間前記加速時増量補正
値TACCに依存する加速時増量燃料を供給すると共に
、加速運転継続中は加速状態に応じた、例えばスロット
ル弁開度が大きくなるにつれて増大するリッチ化係数に
、woTを適用して基本噴射時間Tiを増量補正する。
In the apparatuses shown in FIGS. 1 and 2, when the ECU 3 detects that the engine is in an accelerating operating state based on the amount of change Δθ in the throttle valve opening θTH, after this detection, the ECU 3
Until the DC signal pulse is generated, an increased amount of fuel is supplied during acceleration depending on the above-mentioned acceleration amount increase correction value TACC, and during continued acceleration operation, the amount of fuel is increased depending on the acceleration state, for example, as the throttle valve opening becomes larger. woT is applied to the enrichment coefficient to increase the basic injection time Ti.

しかし、既に述べたように、加速時のエンジン運転領域
のいかんにかかわらず、こうした加速時の燃料増量を施
すならば、運転域によっては運転ショックが発生するの
で、本発明では以下に述べたように所定の運転域に限シ
加速時燃料増量を抑制する2、 第3図は本発明の一実施例に係る所定のエンジン運転領
域Aを例示t/、該領域において加速時増量を緩和する
ことにより加速時の運転ショックが回避される。つマシ
、同図において第1及び第2の所定回転数N5OFTo
、 N5OFTI及び第1の所定スロットル弁開度θ5
OFT1により画成される運転領域Aは加速時増量を緩
和しないならば許容できないような運転ショックが発生
するような領域とし7て設定されている。又、本発明は
とくにエンジンが巡航連転領域及びその近傍に於て運転
されているときの運転ショックの緩和を図るもので、こ
れに関連して上記領域Aの低負荷側を画成する第2の所
定スロットル弁開度θ5OFToは低速巡航時のエンジ
ン負荷状態を代衣する値に設定されている。
However, as mentioned above, regardless of the engine operating range during acceleration, if such an increase in fuel is applied during acceleration, driving shock will occur depending on the operating range, so in the present invention, as described below, Fig. 3 illustrates a predetermined engine operating range A according to an embodiment of the present invention. This avoids driving shock during acceleration. In the figure, the first and second predetermined rotational speeds N5OFTo
, N5OFTI and first predetermined throttle valve opening θ5
The operating region A defined by OFT1 is set as a region 7 in which an unacceptable driving shock will occur unless the increase in fuel consumption during acceleration is alleviated. Further, the present invention aims at alleviating the driving shock when the engine is operated in or near the continuous cruising range, and in this regard, the engine is operated in the continuous cruising range and in the vicinity thereof. The predetermined throttle valve opening degree θ5OFTo of No. 2 is set to a value that substitutes for the engine load state during low-speed cruising.

第゛4図は一上記実施例に係る加速時燃料供給制御ザブ
ルーチンの)・コーチヤードを示し、先ス各TDC信号
パルス発生時にスロットル弁開度θTH゛を読込みかつ
RA、 M 50’ 8に該読込み値をストアする(ス
テップ1)。次いで、エンジン回転数Neが第2の所定
回転数N5OFT1(例えば1800rpm)より低い
か否かを判別しくステップ2)、その答が肯定(Yes
)ならばエンジン回転数Neがアイドル回転数よシ若干
大きい第1の所定回転数N5OFT。
FIG. 4 shows the coachyard of the fuel supply control subroutine during acceleration according to the above embodiment, in which the throttle valve opening degree θTH is read at the time of each TDC signal pulse generation and RA, M50'8 is applied. Store the read value (step 1). Next, it is determined whether the engine rotation speed Ne is lower than a second predetermined rotation speed N5OFT1 (for example, 1800 rpm) (step 2), and the answer is affirmative (Yes).
), then the engine speed Ne is a first predetermined speed N5OFT which is slightly larger than the idle speed.

(例えば101000rpより高いか否かを判別する(
ステップ3)。この判別結果が肯定(Yes)ならば今
回ループ時のスロットル弁開度θnが所定開度θ5OF
Tl(例えば25°)未満であるか否かを判別しくステ
ップ4)、答が肯定(Yes)ならばエンジン冷却水温
Twがエンジンの暖機完了状態に、相当する所定温度T
WF CI (例えばs o’c)よシ高いか否かを判
別する(ステップ5)。この判別結果が肯定(Yes)
ならばステップ6に進み、低速ギヤが接続状態にあるか
否かをクラッチスイッチ8及びギヤ位置スイッチ9のオ
ンオフ状態から判別し、その答が肯定(Yes)すなわ
ちエンジン1と駆動輪とが第1速又は第2速ギヤを介し
て接続されていると判別されたならば、前回ループ時の
スロットル弁開度θn−1をR,AM508から読出し
7(ステップ7)、次にフラグNSF圓の値が1である
か否かを判別する(ステップ8)。フラグN8FLGは
後述の加速時増量を緩和すべき条件(以下、緩和条件と
いう)が成立し2ているか否かを示し、緩和条件成立時
に値1にセットされる。
(For example, determine whether it is higher than 101000rp (
Step 3). If this determination result is affirmative (Yes), the throttle valve opening θn during the current loop is the predetermined opening θ5OF.
If the answer is affirmative (Yes), the engine cooling water temperature Tw is set to a predetermined temperature T corresponding to the engine warm-up completion state (step 4).
It is determined whether the WF CI (for example, so'c) is higher than that (step 5). This determination result is positive (Yes)
If so, proceed to step 6, and determine whether or not the low speed gear is in the engaged state based on the on/off states of the clutch switch 8 and gear position switch 9. If it is determined that the connection is made through the speed or second speed gear, the throttle valve opening degree θn-1 at the previous loop is read out from the R, AM508 (step 7), and then the value of the flag NSF circle is read out. is 1 (step 8). The flag N8FLG indicates whether or not a condition (hereinafter referred to as a relaxation condition) for relaxing the increase during acceleration, which will be described later, is satisfied (2), and is set to a value of 1 when the relaxation condition is satisfied.

次いで、ステップ8の判別の答が否定(No)すなわち
今回ループ時の上記ステップ2乃至6の判別結果の全て
が肯定(Yes)にもかかわらず前回ループ時に緩和条
件が成立していなかったならばステップ9に移行して前
回ループ時から今回ループ時までのTDC信号信号スル
フ間じたスロットル弁開度変化Δθ(=θn−θn−1
)の値が所定値GASO(例えば4°/TDC)より大
きいか否かを判別し、その答が肯定(Yes)すなわち
エンジンが加速状態にあると判別されたならば、前回ル
ープ時のスロットル弁開度θn−1が第1’J所、定ス
(ロ°ットル弁開度θ5OFTO(例えば15°)よシ
小さいか否かを判別する(ステップ]O)。
Next, if the answer to the determination in step 8 is negative (No), that is, even though all of the determination results in steps 2 to 6 in the current loop are positive (Yes), the relaxation condition was not satisfied in the previous loop. Proceeding to step 9, the throttle valve opening change Δθ (=θn−θn−1
) is larger than a predetermined value GASO (for example, 4°/TDC), and if the answer is affirmative (Yes), that is, the engine is in an accelerating state, the throttle valve at the previous loop is It is determined whether the opening degree θn-1 is smaller than the first throttle valve opening degree θ5OFTO (for example, 15 degrees) (step O).

ステップ2〜6,9及び100判別結果が肯定(Yes
)すなわちエンジンの暖機が完了しかつ低速ギヤが接続
した状態においてエンジンがスロットル弁開度15°以
下に対応する低負荷域から所定の運転領域へ加速運転さ
れたと判別されたならば、緩和条件が成立したと判断し
てフラグ”5FLGを値】にセットする(ステップ11
)。すなわち、このような加速運転時に基本燃料供給量
としての基本噴射時間Ttを所定の補正係数値Kwor
にて増量するならばエンジン出力トルクが急増し、運転
ショックが発生することがあるので、後述の各ステップ
によりこの増量分を一時的に低減すべく緩和条件成立を
表わす情報を記憶するのである。
Steps 2 to 6, 9 and 100 determination results are affirmative (Yes
) In other words, if it is determined that the engine has been accelerated from the low load range corresponding to the throttle valve opening of 15 degrees or less to the predetermined operating range after the engine has been warmed up and the low speed gear is connected, the relaxation condition is met. is established and sets the flag "5FLG to the value" (step 11).
). That is, during such acceleration operation, the basic injection time Tt as the basic fuel supply amount is adjusted to a predetermined correction coefficient value Kwor.
If the amount is increased, the engine output torque will increase rapidly and a driving shock may occur. Therefore, in order to temporarily reduce this amount of increase in each step described below, information indicating that the relaxation condition is satisfied is stored in each step described below.

一方、ステップ2,4,6.9及び10の判別結果のい
ずれかが否定(No)ならば許容できない運転ショック
が発生することがないので緩和条件不成立と判断する。
On the other hand, if any of the determination results in steps 2, 4, 6.9, and 10 is negative (No), it is determined that the mitigation condition is not satisfied because an unacceptable driving shock will not occur.

例えば、低速ギヤ解離時には加速によるエンジンの出力
トルクの急増が生じK<<、又、運転者が運転ショック
防止よシも急加速を優先させる場合にはステップ4の答
が否定(NO)になる。又、ステップ3又は5の答が否
定(NO)すなわちアイドル回転時又は暖機完了前なら
ば燃料供給量を低減することは却ってエンジンの動力性
能の低下ひいてはエンジンストールの発トしくステップ
12)、この判断結果を記憶し、更に、所定係数Kso
rrの値を1に設定しくステップ13)、本プログラム
を終了する。
For example, when the low-speed gear is disengaged, the engine output torque rapidly increases due to acceleration, K<<, and if the driver prioritizes sudden acceleration rather than preventing driving shock, the answer to step 4 will be negative (NO). . Furthermore, if the answer to step 3 or 5 is negative (NO), that is, during idling or before completion of warm-up, reducing the fuel supply amount will actually reduce the power performance of the engine and even cause the engine to stall (step 12). This judgment result is stored, and a predetermined coefficient Kso
Set the value of rr to 1 (step 13) and end this program.

さて、緩和条件成立時すなわちステップ11の答が肯定
(Yes)ならばステップ14に進み、第1の制御変数
”srを適当な値4にセットし、第2の制御変数11T
DCを適当な所定値”TDCO例えば16にセットしく
ステップ15)、第2の制御変数nTDCの値がOであ
るか否かを判別する(ステップ16)。そして、緩和条
件が初めて成立したループ時の変数”TDCO値は16
であり、該ループ時のステップ16の判別結果は当然に
否定(NO)となるのでステップ17に移行してスロッ
トル弁開度変化lθが所定値GA”l (−−0,6/
TDC)未満すなわち減速中であるか否かが判断される
。緩和条件が初めて成立したときのスロットル弁開度変
化Δθの値はステップ9で所定値GAso(>O)より
大きいと判別されたので該ループ時のスーテツブ17の
判別結果は否定(NO)となシステップ18に移行して
第1の制御変数”SFの値に応じた所定係数K S O
p rの値をめる。該係数に80FTの値は例えば第5
図に示すように第1の制御変数”SFの値が減少するに
従って増大する値に設定されている。
Now, when the relaxation condition is satisfied, that is, if the answer to step 11 is affirmative (Yes), the process proceeds to step 14, where the first control variable "sr" is set to an appropriate value 4, and the second control variable 11T
Set DC to an appropriate predetermined value "TDCO", for example 16 (step 15), and determine whether the value of the second control variable nTDC is O (step 16). Then, in the loop where the relaxation condition is satisfied for the first time The variable “TDCO value is 16
Since the determination result in step 16 during this loop is naturally negative (NO), the process moves to step 17 and the throttle valve opening change lθ is set to a predetermined value GA"l (--0,6/
TDC), that is, whether or not the vehicle is decelerating. Since the value of the throttle valve opening change Δθ when the relaxation condition is satisfied for the first time is determined in step 9 to be larger than the predetermined value GAso (>O), the determination result of the suite 17 during this loop is negative (NO). Step 18 then proceeds to step 18 where a predetermined coefficient KSO is determined according to the value of the first control variable "SF".
Find the value of pr. The value of 80FT for this coefficient is, for example, the fifth
As shown in the figure, as the value of the first control variable "SF" decreases, it is set to a value that increases.

すなわち、第1の制御変数の値が4からOに変化するに
従って係数Kso、rrは所定値KSOFT4からに8
0FToに減少するように、例えばKSOFT、〜KS
OFToは、夫々、値0175,0.85,0.90゜
0.95及び1.0に設定される。そして斯く設定され
た所定係数値I(SOFTは燃料噴射時間TOU丁の演
算に用いられ、加速状態への移行直後の燃料増量が抑制
される。
That is, as the value of the first control variable changes from 4 to O, the coefficients Kso and rr change from the predetermined value KSOFT4 to 8.
For example, KSOFT, ~KS
OFTo is set to the values 0175, 0.85, 0.90°0.95 and 1.0, respectively. The predetermined coefficient value I (SOFT) thus set is used to calculate the fuel injection time TOU, and an increase in fuel amount immediately after transition to the acceleration state is suppressed.

上記ステップ18に続いて、第2の制御変数”TDCか
ら値1を減算しくステップ19)、所定係数に80F丁
が値1であるか否かを判別しくステップ20)、その答
が否定(No)ならば本プログラムを終了する。
Following step 18, the value 1 is subtracted from the second control variable "TDC" (step 19), and it is determined whether the predetermined coefficient is 80F (step 20), and the answer is negative (No. ), then terminate this program.

さて、緩和条件成立後もステップ2乃至6の判別結果の
全てが肯定(Yes)である限ジエンジンは加速時増量
の緩和処理を継続し運転ショックの発生を防止すべき運
転状態にあるので、ステップ7及び8を介してステップ
16以降の各ステップが繰返し実行される。但しステッ
プ2乃至6のいずれかの答が否定(NO)ならば前述の
ステップ12に移行し緩和処理が停止される。まだ、ス
テップ17の判別結果が肯定(Yes)即ちスロットル
弁開度変化Δθが所定値GAII!□(= 0.677
DC)未満であシ、減速方向にスロットル弁開度が所定
以上変化したと判別されたならば所定係数Ks OFT
の値を1にセットしくステップ21)、フラグ”5FL
Gの値をOにセットして(ステップ22)緩和処理を中
止させ、本プログラムを終了する。減速状態に移行すれ
ば緩和処理の対象となるべき加速時増量補正がもはや表
されないからである。
Now, even after the relaxation conditions are satisfied, as long as all of the determination results in steps 2 to 6 are affirmative (Yes), the engine is in an operating state in which it is necessary to continue the mitigation process for the increase in fuel consumption during acceleration and prevent the occurrence of driving shock. Each step after step 16 is repeatedly executed via steps 7 and 8. However, if the answer to any of steps 2 to 6 is negative (NO), the process moves to step 12 described above and the relaxation process is stopped. Still, the determination result in step 17 is affirmative (Yes), that is, the throttle valve opening change Δθ is the predetermined value GAII! □(=0.677
DC), and if it is determined that the throttle valve opening has changed by a predetermined amount or more in the deceleration direction, a predetermined coefficient Ks OFT
Set the value to 1 in step 21), and set the flag "5FL" to 1.
The value of G is set to O (step 22), the relaxation process is stopped, and this program is ended. This is because once the vehicle enters the deceleration state, the acceleration increase correction that should be subject to the mitigation process is no longer expressed.

そして、級和条件成立後16個目のTDC信号パルスが
発生し該パルスに同期して本プログラムが実行されると
、その直前のループのステップ19にて第2の制御変数
nTD Cの値が0にされているので、ステップ16の
判別結果は肯定(Yes)となシ、ステップ23に移行
して第1の制御変数nSFから値lを減算し、第2の制
御変数”TDCを所定値nTDCo(= 16 )にセ
ットしくステップ24)、次いで前述のステップ17以
降を実行する。これにより所定係数に80FT値がKS
OFT4からKSOFT3に増加される。
Then, when the 16th TDC signal pulse is generated after the class sum condition is satisfied and this program is executed in synchronization with this pulse, the value of the second control variable nTDC is determined in step 19 of the immediately preceding loop. 0, the determination result in step 16 is affirmative (Yes), and the process proceeds to step 23, where the value l is subtracted from the first control variable nSF, and the second control variable "TDC" is set to a predetermined value. Set nTDCo (= 16) in step 24), and then execute the steps from step 17 described above.As a result, the 80FT value is set to the predetermined coefficient.
Increased from OFT4 to KSOFT3.

その後、ステップ2乃至6の判別結果の全てが肯定(Y
es)でかつステップ17の判別結果が否定(No)と
なるようなエンジン運転状態が継続すれば、TDC信号
パルスが16個発生する度に第1の制御変数nSFから
値1が減算され、これに伴って所定係数KSOFT値ひ
いては基本燃料噴射時間Tiの増量値が増大する。そし
て、斯かる状態にあっては緩和条件成立時から69個目
のTDC信号パルスに同期して実行される本プログラム
のステップ18に於て所定係数KSOFTとして値1が
まり、ステップ2oの答が肯定(Yes)となるので、
ステップ22に移行してフラグ”5FLGが値〇にセッ
トされる。この結果、基本燃料供給量の加速時増量を緩
和する処理が完了し、その後所定の加速時増量値にょシ
加速時の燃料増量補正がなされる。
After that, all of the determination results in steps 2 to 6 are positive (Y
es) and the engine operating state continues such that the determination result in step 17 is negative (No), the value 1 is subtracted from the first control variable nSF every time 16 TDC signal pulses are generated. As a result, the predetermined coefficient KSOFT value and thus the increase value of the basic fuel injection time Ti increase. In such a state, the predetermined coefficient KSOFT is set to 1 in step 18 of this program, which is executed in synchronization with the 69th TDC signal pulse after the relaxation condition is satisfied, and the answer in step 2o is Since it is affirmative (Yes),
Proceeding to step 22, the flag "5FLG" is set to the value 0. As a result, the process of easing the increase in the basic fuel supply amount during acceleration is completed, and then the fuel increase during acceleration is set to the predetermined increase value during acceleration. Corrections are made.

上記実施例では加速時にエンジンが所定の負荷域にある
か否かを第4図のステップ4でスロットル弁開度に基づ
bて判別しているが、これに代えて吸気管内圧力若しく
はエンジンへの吸入空気量に基づき判別しても良い。
In the above embodiment, whether or not the engine is in a predetermined load range during acceleration is determined based on the throttle valve opening in step 4 of FIG. The determination may be made based on the amount of intake air.

又、上記実施例では第4図のステップ1oに於て、加速
時増量を緩和すべきが否かの判別をなす直前のループ時
のスロットル弁開度が所定開度未満であるときにエンジ
ンが軽負荷域から加速されたと判別しているが、これに
代えて例えば第6図若しくは第7図の判別方法を採って
も良い。
Further, in the above embodiment, in step 1o of FIG. 4, when the throttle valve opening during the loop immediately before determining whether or not to reduce the increase in acceleration during acceleration is less than the predetermined opening, the engine is activated. Although it is determined that the vehicle has been accelerated from a light load range, instead of this, for example, the determination method shown in FIG. 6 or FIG. 7 may be used.

第6図の判別方法に於ては、第4図のステップ9の判別
結果が肯定(Yes)のとき前回ループ時のスロットル
弁開度θrl−1が所定開度例えば前述の第2の所定ス
ロットル弁開度θ5OFTO(=15°)未満であるか
否かを判別しくステップ10a)、答が肯定(Yes)
ならば更に今回ループ時のスロットル弁開度θnが該所
定開度θ5OFToよシ大きいが否かを判別する(ステ
ップ10b)。そして、両判別結果が肯定(Yes)な
らば第4図のステップ11に、いずれか一方が否定(N
o)ならば同図のステップ12に移行する。
In the determination method shown in FIG. 6, when the determination result in step 9 of FIG. Step 10a) to determine whether the valve opening degree is less than θ5OFTO (=15°), the answer is affirmative (Yes)
Then, it is further determined whether the throttle valve opening θn during the current loop is larger than the predetermined opening θ5OFTo (step 10b). If both discrimination results are affirmative (Yes), one of them is negative (N
o), the process moves to step 12 in the same figure.

第7図の方法はエンジンの加速が軽負荷域から行われた
ことを吸気管内絶対圧PBAに基づき判別する。このた
め、第4図のステップ1においてスロットル弁開度θ慴
と共に吸気管内絶対圧PB人を読込み及びストアしてお
き、第4図のステップ9の判別結果が肯定(Yes)の
とき前回ループ時の絶対圧値PnAn−1を取出しくス
テップ10a’)、該絶対圧値pBAn−1が所定圧P
BASF例えば26−弧よシ低いか否かを判別しくステ
ップl Ob’) 、答が肯定(Yes)ならばさらに
今回ループ時の絶対圧値PB Anが該所定圧PBAS
Pよシも高いか否かを判別する(ステップIOC’)。
The method shown in FIG. 7 determines whether the engine has been accelerated from a light load range based on the intake pipe absolute pressure PBA. Therefore, in step 1 of Fig. 4, the intake pipe absolute pressure PB is read and stored together with the throttle valve opening θ, and when the determination result of step 9 of Fig. 4 is affirmative (Yes), the previous loop Step 10a') of extracting the absolute pressure value PnAn-1 of
If the answer is affirmative (Yes), then the absolute pressure value PB An during the current loop is determined as the predetermined pressure PBAS.
It is determined whether P is also higher (step IOC').

そして、両判別結果が肯定(Yes)ならば第4図のス
テップ11に、いずれか一方が否定(No)ならば同図
のステップ12に進む。
If both determination results are affirmative (Yes), the process proceeds to step 11 in FIG. 4, and if either one is negative (No), the process proceeds to step 12 in the same figure.

第6図及び第7図の方法は、緩和条件をエンジンの仕様
によってはとくに運転ショックが生じ易い運転状態に即
して設定してあり、運転ショック防止に有用である。
The methods shown in FIGS. 6 and 7 are useful for preventing driving shocks because the relaxation conditions are set in accordance with driving conditions in which driving shocks are particularly likely to occur depending on the specifications of the engine.

(発明の効果) 以上説明したように、本発明によれば、エンジンが巡航
運転領域及びその近傍から加速されたとき加速状態に応
じて加速燃料量を供給する内燃エンジンの燃料供給制御
方法において、エンジン回転数、エンジンの負荷状態を
表わすパラメータ値及びスロットル弁開度変化を検出し
、エンジン運転状態が加速によジエンジン回転数が所定
域にあシかつエンジン負荷が所定負荷以下であるような
所定:iλ)i転領域に所定量以上のスロットル弁開度
変化を伴って判別された直後は前記加速燃料量を、順次
発生する制御信号に同期して所定量になるまで漸増さぜ
るようにしたので必要に応じて加速時の燃料増量を一時
的に抑制でき、加速燃料量の過剰供給に起因するエンジ
ン出力トルクの急増による運転ショックの発生を未然に
防止できる。又、・本発明によれは、車輛とくに軽量で
かつフロントエンジンフロントトリイブ方式等の加速応
答性が良く運転ショックが生じ易い車輛の乗シ心地を改
善できる。
(Effects of the Invention) As explained above, according to the present invention, in the fuel supply control method for an internal combustion engine, which supplies an acceleration fuel amount according to the acceleration state when the engine is accelerated from the cruising operation region or the vicinity thereof, The engine speed, parameter values representing the engine load state, and changes in throttle valve opening are detected, and the engine operating state is detected such that the engine speed is within a predetermined range and the engine load is below the predetermined load due to acceleration. Predetermined: iλ) Immediately after it is determined that the i-turn region is accompanied by a change in the throttle valve opening of more than a predetermined amount, the acceleration fuel amount is gradually increased until it reaches a predetermined amount in synchronization with sequentially generated control signals. Therefore, it is possible to temporarily suppress the increase in fuel amount during acceleration as necessary, and prevent the occurrence of driving shock due to a sudden increase in engine output torque due to excessive supply of acceleration fuel. Further, according to the present invention, the riding comfort of a vehicle can be improved, especially a vehicle that is lightweight and has good acceleration response such as a front engine front tribe system and is susceptible to driving shock.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法が適用される燃料供給制御装置の
一例を示す構成図、第2図は第1図の電子コントロール
ユニットの回路構成を示すブロック回路図、第3図は本
発明の方法にょシ加速時増量が緩和されるエンジン運転
域を例示するグラフ、%4図は本発明の一実施例に係る
加速時燃料供給制御サブルーチンのフローチャート、第
5図は所定係数KSOFTの設定例を示すグラフ、及び
、第6図及び第7図は第4図のサブルーチンの変形例を
示すフローチャートである。 1−・・内燃エンジン、4・−スロットル弁開度センサ
、5・−・電子コントロールユニット、6・・・燃料噴
射弁、7・・・絶対圧センサ、8・・・クラッチスイッ
チ、9・・・ギヤ位置スイッチ、10・・・エンジン水
温センサ、11・・・エンジン回転数センサ。 第3図 B 問 に90FT ム 第4図
FIG. 1 is a block diagram showing an example of a fuel supply control device to which the method of the present invention is applied, FIG. 2 is a block circuit diagram showing the circuit configuration of the electronic control unit of FIG. 1, and FIG. Graph illustrating an engine operating range in which the fuel increase during acceleration is moderated, Figure 4 is a flowchart of a subroutine for fuel supply control during acceleration according to an embodiment of the present invention, and Figure 5 is an example of setting the predetermined coefficient KSOFT. The graph shown and FIGS. 6 and 7 are flowcharts showing a modification of the subroutine shown in FIG. 4. 1--Internal combustion engine, 4--Throttle valve opening sensor, 5--Electronic control unit, 6--Fuel injection valve, 7--Absolute pressure sensor, 8--Clutch switch, 9-- - Gear position switch, 10... Engine water temperature sensor, 11... Engine rotation speed sensor. Figure 3 B Question 90FT Figure 4

Claims (1)

【特許請求の範囲】 1、 内燃エンジンの運転パラメータ値に基づいてエン
ジンが巡航運転領域及びその近傍から加速されたことを
検知し、検知した加速状態に応じた加速燃料量を供給す
る内燃エンジンの加速時燃料供給制御方法において、制
御信号を順次発生させると共にエンジン回転数、エンジ
ンの負荷状態を表わすパラメータの値及びスロットル弁
開度変化を検出し、これら検出値に基づいてエンジンの
運転状態が前記加速によジエンジン回転数が所定域にあ
シかつエンジン負荷が所定負荷以下である所定運転領域
に所定量以上のスロットル弁開度変化を伴って移行した
と判別された直後は前記加速燃料量を前記制御信号に同
期して所定値になるまで漸増させるようにしたことを特
徴とする内燃エンジンの加速時燃料供給制御方法。 2、 エンジンの前記所定運転領域への移行が判別され
た後は、エンジンが引続き前記所定運転領域で運転され
ているときのみ前記加速燃料量の漸増を継続する特許請
求の範囲第1項記載の内燃エンジンの加速時燃料供給制
御方法。 3、エンジン負荷が前記所定負荷よシ小さい第2の所定
負荷以下である第2の所定運転領域から前記所定運転領
域に移行したときのみ前記加速燃料量を漸増させる特許
請求の範囲第1項又は第2項記載の内燃エンジンの加速
時燃料供給制御方法。 4、前記所定運転領域はエンジン回転数がアイドル回転
数より高い領域である特許請求の範囲第1項乃至第3項
のいずれかに記載の内燃エンジンの加速時燃料供給制御
方法。 5、前記エンジンの負荷状態を表わすパラメータは、ス
ロットル弁開度及び吸気管内絶対圧の少なくとも一方で
ある特許請求の範囲第1項乃至第4項のいずれかに記載
の内燃エンジンの加速時燃料供給制御方法。 6、前記加速燃料量は所定の係数値を用いて算出され、
前記加速燃料量の漸増は前記所定の係数値を漸増させる
ことによシ行われる特許請求の範囲第1項乃至第5項の
いずれかに記載の内燃エンジンの加速時燃料供給制御方
法。 7、 前記制御信号はエンジンの所定クランク角度位置
毎に発生するクランク角度位置信号である特許請求の範
廂第1項乃至第6項のいずれかに記載の内燃エンジンの
加速時燃料供給制御方法。
[Claims] 1. An internal combustion engine that detects that the engine is accelerated from a cruising operating range or its vicinity based on operating parameter values of the internal combustion engine, and supplies an amount of accelerating fuel according to the detected acceleration state. In a fuel supply control method during acceleration, a control signal is sequentially generated, and the engine speed, a value of a parameter representing the engine load state, and a change in the throttle valve opening are detected, and based on these detected values, the operating state of the engine is determined as described above. Immediately after it is determined that the engine rotational speed is within the predetermined range due to acceleration and the engine load is below the predetermined load, it is determined that the throttle valve opening has changed by a predetermined amount or more. A method for controlling fuel supply during acceleration of an internal combustion engine, characterized in that the amount of fuel is gradually increased in synchronization with the control signal until it reaches a predetermined value. 2. After it is determined that the engine has shifted to the predetermined operating range, the accelerating fuel amount continues to be gradually increased only when the engine continues to be operated in the predetermined operating range. A method for controlling fuel supply during acceleration of an internal combustion engine. 3. The accelerating fuel amount is gradually increased only when the engine load shifts to the predetermined operating region from a second predetermined operating region in which the engine load is less than or equal to a second predetermined load that is smaller than the predetermined load. The method for controlling fuel supply during acceleration of an internal combustion engine according to item 2. 4. The fuel supply control method during acceleration of an internal combustion engine according to any one of claims 1 to 3, wherein the predetermined operating range is a range where the engine speed is higher than the idle speed. 5. Fuel supply during acceleration of an internal combustion engine according to any one of claims 1 to 4, wherein the parameter representing the load state of the engine is at least one of a throttle valve opening degree and an absolute intake pipe pressure. Control method. 6. The acceleration fuel amount is calculated using a predetermined coefficient value,
6. The method for controlling fuel supply during acceleration of an internal combustion engine according to claim 1, wherein the gradual increase in the acceleration fuel amount is performed by gradually increasing the predetermined coefficient value. 7. The fuel supply control method during acceleration of an internal combustion engine according to any one of claims 1 to 6, wherein the control signal is a crank angle position signal generated at every predetermined crank angle position of the engine.
JP11052584A 1984-05-30 1984-05-30 Fuel feed controlling method at acceleration of internal-combustion engine Pending JPS60252141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052584A JPS60252141A (en) 1984-05-30 1984-05-30 Fuel feed controlling method at acceleration of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052584A JPS60252141A (en) 1984-05-30 1984-05-30 Fuel feed controlling method at acceleration of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60252141A true JPS60252141A (en) 1985-12-12

Family

ID=14538010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052584A Pending JPS60252141A (en) 1984-05-30 1984-05-30 Fuel feed controlling method at acceleration of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60252141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962640A3 (en) * 1998-06-03 2000-09-27 Keihin Corporation Control apparatus for controlling internal combustion engine
KR20020046747A (en) * 2000-12-15 2002-06-21 이계안 Devise and the method for engine controlling of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962640A3 (en) * 1998-06-03 2000-09-27 Keihin Corporation Control apparatus for controlling internal combustion engine
KR20020046747A (en) * 2000-12-15 2002-06-21 이계안 Devise and the method for engine controlling of vehicle

Similar Documents

Publication Publication Date Title
US8251042B2 (en) Control unit and control method for torque-demand-type internal combustion engine
US4924832A (en) System and method for controlling ignition timing for internal combustion engine
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
JP2008069658A (en) Throttle opening control device of internal combustion engine
JPH0323345A (en) Acceleration slip control device for vehicle
US4513723A (en) Fuel supply control method for internal combustion engines at acceleration
JPS60252141A (en) Fuel feed controlling method at acceleration of internal-combustion engine
US5661974A (en) Control system with function of protecting catalytic converter for internal combustion engines for vehicles
JPS6411818B2 (en)
JPS60138245A (en) Fuel injection control device of engine
JP3593394B2 (en) Fuel supply control device for internal combustion engine
JP3292020B2 (en) Ignition timing control device for internal combustion engine
JP3202743B2 (en) Fuel cut control device for vehicle internal combustion engine
JP4285086B2 (en) Secondary air supply control device for internal combustion engine
JP2518604B2 (en) Engine fuel cut device
JPH0520578B2 (en)
JPS58155226A (en) Control method for fuel injection of internal-combustion engine
JP2998370B2 (en) Fuel injection amount control device for internal combustion engine
JPH0429855B2 (en)
JP2526617B2 (en) Fuel supply control device for internal combustion engine
JPH0480218B2 (en)
JPH04350340A (en) Air-fuel ratio controller of internal combustion engine
JPS62261628A (en) Fuel cut control device for internal combustion engine
JPS5828554A (en) Electronic controller for engine with fuel injection
JPS6128731A (en) Fuel supply method for internal-combustion engine