JPH0480218B2 - - Google Patents

Info

Publication number
JPH0480218B2
JPH0480218B2 JP12520383A JP12520383A JPH0480218B2 JP H0480218 B2 JPH0480218 B2 JP H0480218B2 JP 12520383 A JP12520383 A JP 12520383A JP 12520383 A JP12520383 A JP 12520383A JP H0480218 B2 JPH0480218 B2 JP H0480218B2
Authority
JP
Japan
Prior art keywords
engine
intake pipe
pipe pressure
differential value
sudden acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12520383A
Other languages
Japanese (ja)
Other versions
JPS6017247A (en
Inventor
Kazuyoshi Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12520383A priority Critical patent/JPS6017247A/en
Publication of JPS6017247A publication Critical patent/JPS6017247A/en
Publication of JPH0480218B2 publication Critical patent/JPH0480218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Description

【発明の詳細な説明】 本発明は、電子制御燃料噴射式エンジンの加速
同非同期噴射制御方法に係り、特に、吸気管圧力
感知式の電子制御燃料噴射装置を備えた自動車用
エンジンに用いるのに好適な、エンジン回転と同
期して定期的に行われる同期噴射に加えて、吸気
管圧力の微分値が大である急加速時は非同期噴射
を行うようにした電子制御燃料噴射式エンジンの
加速時非同期噴射制御方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an acceleration and asynchronous injection control method for an electronically controlled fuel injection engine, and is particularly applicable to an automobile engine equipped with an electronically controlled fuel injection device that senses intake pipe pressure. When accelerating an electronically controlled fuel injection engine, in addition to the preferred synchronous injection that is performed periodically in synchronization with the engine rotation, asynchronous injection is performed during sudden acceleration when the differential value of the intake pipe pressure is large. This invention relates to improvements in asynchronous injection control methods.

自動車用エンジン等の内燃機関の燃焼室に所定
空燃比の混合気を供給する方法の一つに、電子制
御燃料噴射装置を用いるものがある。これは、エ
ンジン内に燃料を噴射するためのインジエクタ
を、例えばエンジンの吸気マニホルドにエンジン
気筒数個配設し、該インジエクタの開弁時間をエ
ンジンの運転状態、例えば吸気管圧力から検知さ
れるエンジン負荷とエンジン回転速度等に応じて
制御することにより、所定の空燃比の混合気がエ
ンジン燃焼室に供給されるようにするものであ
る。
2. Description of the Related Art One of the methods for supplying an air-fuel mixture at a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine such as an automobile engine uses an electronically controlled fuel injection device. In this system, injectors for injecting fuel into the engine are arranged in the intake manifold of the engine, for example, in several engine cylinders, and the valve opening time of the injectors is detected from the engine operating state, for example, the intake pipe pressure. By controlling according to the load, engine speed, etc., a mixture having a predetermined air-fuel ratio is supplied to the engine combustion chamber.

このような電子制御燃料噴射装置を備えた自動
車用エンジンにおいては、通常、エンジン回転に
同期して定期的に行われる同期噴射だけでは、加
速時に燃料が不足し、空燃比が一時的にオーバー
リーンとなつて、息付きやもたつき等の加速不良
が発生するため、例えば吸気管圧力の2階微分値
が大である急加速時は、前記同期噴射に加えて、
エンジンのクランク角度に拘わらず所定量の燃料
を噴射する、所謂非同期噴射が行われている。
In automobile engines equipped with such electronically controlled fuel injection devices, synchronous injection, which is performed periodically in synchronization with engine rotation, usually results in a fuel shortage during acceleration, causing the air-fuel ratio to temporarily become over-lean. As a result, poor acceleration such as breathing and sluggishness occurs. Therefore, for example, during sudden acceleration when the second differential value of the intake pipe pressure is large, in addition to the synchronous injection,
So-called asynchronous injection is performed in which a predetermined amount of fuel is injected regardless of the crank angle of the engine.

しかしながら、定常運転時であつても吸気管脈
動により吸気管圧力の変動が大となるエンジン低
速回転時には、わずかな加速でも吸気管圧力の2
階微分値が急加速判定値を越えてしまい、急加速
と判定されて非同期噴射が実行されるため、却つ
て過濃混合気となり、排気エミツシヨンの増加や
ドライバビリテイの低下を招く場合があつた。こ
のような問題点を解消するべく、急加速判定値を
一律に大とすることも考えられるが、その場合に
は、高速回転時における加速判定が遅れ、適切な
非同期噴射が行われなくなる恐れがあつた。
However, even during steady operation, when the engine rotates at low speeds, where fluctuations in intake pipe pressure are large due to intake pipe pulsations, even slight acceleration causes a drop in intake pipe pressure.
If the differential value exceeds the sudden acceleration judgment value, it will be judged as sudden acceleration and asynchronous injection will be performed, resulting in an overly rich mixture, which may lead to an increase in exhaust emissions and a decrease in drivability. Ta. In order to solve this problem, it is possible to uniformly increase the sudden acceleration judgment value, but in that case, there is a risk that the acceleration judgment at high speed rotation will be delayed and appropriate asynchronous injection will not be performed. It was hot.

本発明は前記従来の問題点を解消するべくなさ
れたもので、特にエンジン低速回転時の緩加速を
誤まつて急加速と判定することがなく、従つて、
加速時の空燃比を適確に制御することができる電
子制御燃料噴射式エンジンの加速時非同期噴射制
御方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and in particular, it does not erroneously determine that slow acceleration at low engine speed rotation is sudden acceleration, and therefore,
It is an object of the present invention to provide a method for controlling asynchronous injection during acceleration of an electronically controlled fuel injection engine that can accurately control the air-fuel ratio during acceleration.

本発明は、エンジン回転と同期して定期的に行
われる同期噴射に加えて、吸気管圧力の微分値が
大である急加速時は非同期噴射を行うようにした
電子制御燃料噴射式エンジンの加速時非同期噴射
制御方法において、第1図にその要旨を示す如
く、吸気管圧力の微分値を求める手順と、少くと
もエンジン回転速度に応じて、エンジン回転速度
が低い時に大となる急加速判定値を求める手順
と、吸気管圧力の微分値が前記急加速判定値を越
えたか否かを判定する手順と、吸気管圧力の微分
値が急加速判定値を越えた時に非同期噴射を実行
する手順と、を含むことにより、前記目的を達成
したものである。
The present invention provides acceleration of an electronically controlled fuel injection type engine in which, in addition to synchronous injection performed periodically in synchronization with engine rotation, asynchronous injection is performed during sudden acceleration when the differential value of intake pipe pressure is large. In the time-asynchronous injection control method, as summarized in Figure 1, there is a procedure for determining the differential value of the intake pipe pressure, and a sudden acceleration judgment value that is large when the engine rotation speed is low, at least according to the engine rotation speed. a procedure for determining whether the differential value of the intake pipe pressure exceeds the sudden acceleration determination value, and a procedure for executing asynchronous injection when the differential value of the intake pipe pressure exceeds the sudden acceleration determination value. The above objective is achieved by including the following.

又、前記微分値を、吸気管圧力の2階微分値と
して、より適確な急加速判定が行われるようにし
たものである。
Further, the differential value is set as a second-order differential value of the intake pipe pressure, so that a more accurate sudden acceleration determination can be made.

本発明においては、急加速判定値を、少くとも
エンジン回転速度に応じて、エンジン回転速度が
低い時に大となるようにしたので、エンジン低速
回転時の緩加速を誤つて急加速と判定することが
なく、従つて、加速時の空燃比を適確に制御する
ことができる。
In the present invention, the sudden acceleration determination value is determined at least according to the engine rotation speed, and is large when the engine rotation speed is low, so that it is possible to erroneously judge a slow acceleration at a low engine speed as a sudden acceleration. Therefore, the air-fuel ratio during acceleration can be accurately controlled.

以下図面を参照して、本発明に係る電子制御燃
料噴射式エンジンの加速時非同期噴射制御方法が
採用された、吸気管圧力感知式の電式制御燃料噴
射装置を備えた自動車用エンジンの実施例を詳細
に説明する。
Embodiments of an automobile engine equipped with an intake pipe pressure sensing type electrically controlled fuel injection device employing the acceleration asynchronous injection control method for an electronically controlled fuel injection engine according to the present invention will be described below with reference to the drawings. will be explained in detail.

本実施例は、第2図に示す如く、外部から吸入
される吸入空気の温度を検出するための吸気温セ
ンサ12と、スロツトルボデイ14に配設され、
運転席に配設されたアクセルペダル(図示省略)
と連動して開閉するようにされた、吸入空気の流
量を制御するためのスロツトル弁16と、該スロ
ツトル弁16の開度を検出するためのスロツトル
センサ18と、吸気干渉を防止するためのサージ
タンク20と、該サージタンク20内の吸入空気
の圧力を検出するための吸気管圧力センサ22
と、吸気マニホルド24に配設された、エンジン
10の各気筒の吸気ポートに向けて、加圧燃料を
間欠的に噴射するためのインジエクタ26と、エ
ンジン燃焼室10A内に導入された混合気に着火
するための点火プラグ28と、排気マニホルド3
0と、点火コイル32で発生された高圧の点火2
次信号をエンジン10の各気筒の点火プラグ28
に配電するための、エンジン10のクランク軸の
回転と連動して回転するデストリビユータ軸34
Aを有するデストリビユータ34と、該デストリ
ビユータ34に内蔵された、前記デストリビユー
タ軸34Aの回転状態からエンジン10の回転状
態を検知するためのクランク角度センサ36と、
エンジン10のシリンダブロツク10Bに配設さ
れた、エンジン冷却水温を検知するための水温セ
ンサ38と、前記吸気管圧力センサ22出力から
検知されるエンジン負荷や前記クランク角度セン
サ36出力から求められるエンジン回転速度等に
応じて同期噴射時間を計算し、エンジン回転と同
期して定期的に前記インジエクタ26に開弁時間
信号を出力して同期噴射を行うとともに、吸気管
圧力の2回微分値が急加速判定値を越えたことか
ら検知される急加速時は非同期噴射を行うための
電子制御ユニツト(以下ECUと称する)40と、
から構成されている。
In this embodiment, as shown in FIG. 2, an intake air temperature sensor 12 for detecting the temperature of intake air taken in from the outside and a throttle body 14 are provided.
Accelerator pedal located in the driver's seat (not shown)
A throttle valve 16 for controlling the flow rate of intake air, which is opened and closed in conjunction with the throttle valve 16, a throttle sensor 18 for detecting the opening degree of the throttle valve 16, and a throttle sensor 18 for preventing intake interference. A surge tank 20 and an intake pipe pressure sensor 22 for detecting the pressure of intake air in the surge tank 20
, an injector 26 disposed in the intake manifold 24 for intermittently injecting pressurized fuel toward the intake port of each cylinder of the engine 10; A spark plug 28 for ignition and an exhaust manifold 3
0 and the high voltage ignition 2 generated by the ignition coil 32.
The next signal is sent to the spark plug 28 of each cylinder of the engine 10.
A distributor shaft 34 that rotates in conjunction with the rotation of the crankshaft of the engine 10 for distributing power to the
a crank angle sensor 36 built into the distributor 34 for detecting the rotational state of the engine 10 from the rotational state of the distributor shaft 34A;
A water temperature sensor 38 disposed on the cylinder block 10B of the engine 10 for detecting the engine cooling water temperature, and an engine rotation determined from the engine load detected from the output of the intake pipe pressure sensor 22 and the output of the crank angle sensor 36. The synchronous injection time is calculated according to the speed, etc., and a valve opening time signal is periodically output to the injector 26 in synchronization with the engine rotation to perform synchronous injection, and the double differential value of the intake pipe pressure suddenly accelerates. An electronic control unit (hereinafter referred to as ECU) 40 for performing asynchronous injection when sudden acceleration is detected because the determination value has been exceeded;
It consists of

前記ECU40は、第3図に詳細に示す如く、
各種演算処理を行うための、例えばマイクロプロ
セツサからなる中央処理ユニツト(以下CPUと
称する)40Aと、制御プログラムや各種データ
等を記憶するためのリードオンリーメモリ(以下
ROMと称する)40Bと、前記CPU40Aにお
ける演算データ等を一時的に記憶するためのラン
ダムアクセスメモリ(以下RAMと称する)40
Cと、前記吸気温センサ12、吸気管圧力センサ
22、水温センサ38等から入力されるアナログ
信号をデジタル信号に変換して順次取込むため
の、マルチプレクサ機能を備えたアナログ−デジ
タル変換器(以下A/Dコンバータと称する)4
0Eと、前記スロツトルセンサ18、クランク角
度センサ36等から入力されるデジタル信号を取
込むとともに、CPU40Aの演算結果に応じて、
前記インジエクタ26等に制御信号を出力するた
めの、バツフア機能を備えた入出力ポート(以下
I/Oポートと称する)40Fと、前記各構成機
器間を接続して、データや命令を転送するための
コモンバス40Gと、から構成されている。
The ECU 40, as shown in detail in FIG.
A central processing unit (hereinafter referred to as CPU) 40A consisting of a microprocessor, for example, for performing various calculation processes, and a read-only memory (hereinafter referred to as CPU) for storing control programs and various data, etc.
a random access memory (hereinafter referred to as RAM) 40 for temporarily storing calculation data etc. in the CPU 40A;
C, an analog-to-digital converter (hereinafter referred to as "analog-to-digital converter") equipped with a multiplexer function for converting analog signals input from the intake air temperature sensor 12, intake pipe pressure sensor 22, water temperature sensor 38, etc. into digital signals and sequentially inputting the digital signals. (referred to as A/D converter)4
0E, and digital signals input from the throttle sensor 18, crank angle sensor 36, etc., and according to the calculation results of the CPU 40A,
For connecting an input/output port (hereinafter referred to as I/O port) 40F with a buffer function for outputting control signals to the injector 26, etc., and each of the component devices to transfer data and instructions. It consists of a common bus 40G.

以下作用を説明する。 The action will be explained below.

本実施例における加速時の非同期噴射は、第4
図に示すような、所定時間毎の割込みルーチンに
従つて実行される。即ち、所定時間経過毎にステ
ツプ110に進み、前記吸気管圧力センサ22の出
力から求められる吸気管圧力PMを入力する。次
いでステツプ112に進み、例えば次式の関係を用
いて、吸気管圧力PMの2階微分値DDPMを算出
する。
The asynchronous injection during acceleration in this example is the fourth
The interrupt routine is executed at predetermined time intervals as shown in the figure. That is, the routine advances to step 110 every predetermined time period, and the intake pipe pressure PM obtained from the output of the intake pipe pressure sensor 22 is input. Next, the process proceeds to step 112, where the second differential value DDPM of the intake pipe pressure PM is calculated using, for example, the following equation.

DDPM=(PM−PM-1) −(PM-1−PM-2) ……(1) ここで、PMは今回入力された吸気管圧力、
PM-1は前回入力された吸気管圧力、PM-2
は前々回に入力された吸気管圧力である。
DDPM=(PM-PM -1 )-(PM -1 -PM -2 )...(1) Here, PM is the intake pipe pressure input this time,
PM -1 is the previously input intake pipe pressure, PM -2
is the intake pipe pressure input the time before last.

次いでステツプ114に進み、前記クランク角度
センサ36の出力から求められるエンジン回転速
度NEが、所定値Aを越えているか否かを判定す
る。判定結果が正である場合、即ち、中高速回転
時であると判断される時には、ステツプ116に進
み、吸気管圧力PMが所定値Pを越えているか否
かを判定する。判定結果が正である場合、即ち、
中高負荷であると判断される時には、ステツプ
118に進み、急加速判定値Lとして、通常の値C
を入れる。
Next, the process proceeds to step 114, where it is determined whether the engine rotational speed NE determined from the output of the crank angle sensor 36 exceeds a predetermined value A. If the determination result is positive, that is, if it is determined that the engine is rotating at medium to high speed, the process proceeds to step 116, where it is determined whether the intake pipe pressure PM exceeds a predetermined value P. If the determination result is positive, that is,
When it is determined that the load is medium to high, the step
Proceed to step 118 and set the normal value C as the sudden acceleration judgment value L.
Put in.

一方前出ステツプ114又は116の判定結果が否で
ある場合、即ち、低速回転時であるか又は軽負荷
時であると判断される時には、ステツプ120に進
み、急加速判定値Lとして、比較的大きな値D
(>C)を入れる。
On the other hand, if the judgment result in step 114 or 116 is negative, that is, if it is judged that the engine is rotating at a low speed or under a light load, the process proceeds to step 120, where a sudden acceleration judgment value L is set as a relatively large value D
Insert (>C).

前出ステツプ118又は120終了後、ステツプ122
に進み、前出ステツプ112で算出された吸気管圧
力の2階微分値DDPMが急加速判定値Lを越え
ているか否かを判定する。判定結果が正である場
合、即ち、急加速時であると判断される時には、
ステツプ124に進み、非同期噴射を実行して、こ
のルーチンを終了する。一方前出ステツプ122の
判定結果が否である場合には、非同期噴射を行う
ことなく、このルーチンを終了する。
After completing step 118 or 120 above, step 122
Then, it is determined whether the second order differential value DDPM of the intake pipe pressure calculated in step 112 exceeds the sudden acceleration determination value L or not. When the determination result is positive, that is, when it is determined that the vehicle is rapidly accelerating,
Proceeding to step 124, asynchronous injection is performed and the routine ends. On the other hand, if the determination result in step 122 is negative, this routine is ended without performing asynchronous injection.

本実施例における、エンジン低速回転時の吸気
管圧力の2階微分値DDPMと急加速判定値L(=
D)の関係を第5図に、同じくエンジン高速回転
時の吸気管圧力の2階微分値DDPMと急加速判
定値L(=C)の関係の例を第6図に示す。第5
図及び第6図から明らかな如く、本実施例におい
ては、低速回転時に急加速判定値Lが大きな値D
とされるので、低速回転時に吸気管圧力の2階微
分値DDPMの変動が大となつているのにも拘わ
らず、急加速により高負荷に移行したことを正確
に判定することができる。これに対して、高速回
転時の判定値Cをそのまま低速回転時に用いた場
合には、緩加速時にも誤まつた急加速判定が行わ
れ、不適切な非同期噴射が行われて、混合気が過
濃となつていたものである。
In this example, the second-order differential value DDPM of the intake pipe pressure at low engine speed rotation and the sudden acceleration judgment value L (=
FIG. 5 shows the relationship D), and FIG. 6 shows an example of the relationship between the second-order differential value DDPM of the intake pipe pressure and the sudden acceleration determination value L (=C) when the engine rotates at high speed. Fifth
As is clear from the diagram and FIG. 6, in this embodiment, the sudden acceleration determination value L is a large value D during low speed rotation
Therefore, even though the second-order differential value DDPM of the intake pipe pressure fluctuates greatly during low-speed rotation, it is possible to accurately determine that the load has shifted to high due to sudden acceleration. On the other hand, if the judgment value C for high-speed rotation is used as it is for low-speed rotation, an erroneous sudden acceleration judgment will be made even during slow acceleration, and inappropriate asynchronous injection will occur, causing the air-fuel mixture to It had become too dense.

本実施例においては、吸気管圧力PMの2階微
分値DDPMに応じて急加速判定を行うようにし
ていたので、急加速判定がより的確に行われる。
なお、急加速判定を行う方法にこれに限定され
ず、吸気管圧力の1階微分値に応じて急加速判定
を行うようにすることも可能である。
In this embodiment, the sudden acceleration determination is made in accordance with the second-order differential value DDPM of the intake pipe pressure PM, so that the sudden acceleration determination can be made more accurately.
Note that the method for determining sudden acceleration is not limited to this, and it is also possible to determine sudden acceleration according to the first-order differential value of the intake pipe pressure.

なお前記実施例においては、急加速判定値L
を、エンジン回転速度NE及び吸気管圧力PMに
応じて変化させるようにしていたが、急加速判定
値を変化させる方法にこれに限定されず、例え
ば、エンジン回転速度のみに応じて変化させた
り、エンジン回転速度、吸気管圧力及び車両の走
行速度に応じて変化させることが可能である。
In the above embodiment, the sudden acceleration determination value L
is changed according to the engine rotational speed NE and the intake pipe pressure PM, but the method of changing the sudden acceleration determination value is not limited to this, for example, it may be changed only according to the engine rotational speed, It is possible to change it according to the engine rotation speed, intake pipe pressure, and vehicle running speed.

以上説明した通り、本発明によれば、エンジン
低速回転時の緩加速を誤つて急加速と判定するこ
とがない。従つて、不要な非同期噴射が行われる
ことがなく、加速時の空燃比制御を適確に行うこ
とができ、過濃混合気による排気エミツシヨンの
増加やドライバビリテイの悪化を防止することが
できるという優れた効果を有する。
As explained above, according to the present invention, it is possible to avoid erroneously determining that slow acceleration at low engine speed rotation is sudden acceleration. Therefore, unnecessary asynchronous injection is not performed, the air-fuel ratio can be accurately controlled during acceleration, and it is possible to prevent an increase in exhaust emissions and deterioration of drivability due to an overly rich mixture. It has this excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る電子制御燃料噴射式エ
ンジンの加速時非同期噴射制御方法の要旨を示す
流れ図、第2図は、本発明が採用された、吸気管
圧力感知式の電子制御燃料噴射装置を備えた自動
車用エンジンの実施例を示す、一部ブロツク線図
を含む断面図、第3図は、前記実施例で用いられ
ている電子制御ユニツトの構成を示すブロツク線
図、第4図は、同じく、非同期噴射を行うための
時間割込みルーチンを示す流れ図、第5図は、前
記実施例における、エンジン低速回転時の吸気管
圧力の2階微分値と急加速判定値の関係の例を示
す線図、第6図は、同じく、エンジン高速回転時
の吸気管圧力の2階微分値と急加速判定値の関係
の例を示す図である。 PM……吸気管圧力、NE……エンジン回転速
度、L……急加速判定値、10……エンジン、2
2……吸気管圧力センサ、26……インジエク
タ、36……クランク角度センサ、40……電子
制御ユニツト(ECU)。
FIG. 1 is a flowchart showing the gist of the asynchronous injection control method during acceleration of an electronically controlled fuel injection engine according to the present invention, and FIG. 2 is a flowchart showing an electronically controlled fuel injection method using intake pipe pressure sensing in which the present invention is adopted. FIG. 3 is a cross-sectional view including a partial block diagram showing an embodiment of an automobile engine equipped with the device; FIG. 4 is a block diagram showing the configuration of the electronic control unit used in the above embodiment; Similarly, FIG. 5 is a flowchart showing a time interrupt routine for performing asynchronous injection, and FIG. Similarly, the diagram shown in FIG. 6 is a diagram showing an example of the relationship between the second-order differential value of the intake pipe pressure and the sudden acceleration determination value when the engine rotates at high speed. PM...Intake pipe pressure, NE...Engine speed, L...Sudden acceleration judgment value, 10...Engine, 2
2...Intake pipe pressure sensor, 26...Injector, 36...Crank angle sensor, 40...Electronic control unit (ECU).

Claims (1)

【特許請求の範囲】 1 エンジン回転と同期して定期的に行われる同
期噴射に加えて、吸気管圧力の微分値が大である
急加速時は非同期噴射を行うようにした電子制御
燃料噴射式エンジンの加速時非同期噴射制御方法
において、吸気管圧力の微分値を求める手順と、
少くともエンジン回転速度に応じて、エンジン回
転速度が低い時に大となる急加速判定値を求める
手順と、吸気管圧力の微分値が前記急加速判定値
を越えたか否かを判定する手順と、吸気管圧力の
微分値が急加速判定値を越えた時に非同期噴射を
実行する手順と、を含むことを特徴とする電子制
御燃料噴射式エンジンの加速時非同期噴射制御方
法。 2 前記微分値を、吸気管圧力の2階微分値とし
た特許請求の範囲第1項に記載の電子制御燃料噴
射式エンジンの加速時非同期噴射制御方法。
[Claims] 1. An electronically controlled fuel injection system that performs asynchronous injection during sudden acceleration when the differential value of the intake pipe pressure is large, in addition to synchronous injection that is periodically performed in synchronization with engine rotation. In a method for controlling asynchronous injection during engine acceleration, a procedure for determining a differential value of intake pipe pressure;
At least according to the engine rotation speed, a procedure for determining a sudden acceleration determination value that becomes large when the engine rotation speed is low; and a procedure for determining whether a differential value of the intake pipe pressure exceeds the sudden acceleration determination value; 1. A method for controlling asynchronous injection during acceleration of an electronically controlled fuel injection engine, comprising: executing asynchronous injection when a differential value of intake pipe pressure exceeds a sudden acceleration determination value. 2. The asynchronous injection control method during acceleration of an electronically controlled fuel injection type engine according to claim 1, wherein the differential value is a second-order differential value of intake pipe pressure.
JP12520383A 1983-07-08 1983-07-08 Control method of asynchronous injection at acceleration in electronically controlled fuel injection engine Granted JPS6017247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12520383A JPS6017247A (en) 1983-07-08 1983-07-08 Control method of asynchronous injection at acceleration in electronically controlled fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12520383A JPS6017247A (en) 1983-07-08 1983-07-08 Control method of asynchronous injection at acceleration in electronically controlled fuel injection engine

Publications (2)

Publication Number Publication Date
JPS6017247A JPS6017247A (en) 1985-01-29
JPH0480218B2 true JPH0480218B2 (en) 1992-12-18

Family

ID=14904452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12520383A Granted JPS6017247A (en) 1983-07-08 1983-07-08 Control method of asynchronous injection at acceleration in electronically controlled fuel injection engine

Country Status (1)

Country Link
JP (1) JPS6017247A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043136A (en) * 1983-08-17 1985-03-07 Mazda Motor Corp Apparatus for detecting accelerating operation of engine
JPH01190948A (en) * 1988-01-25 1989-08-01 Nippon Denshi Kagaku Kk Hesitation judging device for engine

Also Published As

Publication number Publication date
JPS6017247A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0465227B2 (en)
US4565174A (en) Fuel injection control apparatus
JPH0480218B2 (en)
JPS5963330A (en) Method of controlling electrically controlled internal- combustion engine
JPH0463222B2 (en)
JPH0429855B2 (en)
JPS6043145A (en) Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine
JP2611473B2 (en) Fuel injection amount control device for internal combustion engine
JPH0733806B2 (en) Multi-cylinder engine controller
JPS59162333A (en) Control method of fuel injection in multi-cylinder internal-combustion engine
JPH0543872B2 (en)
JPS5996446A (en) Non-synchronous fuel injection method for internal- combustion engine under acceleration
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6022048A (en) Method of increasing fuel at the time of cancelling "fuel cut" in electronically controlled fuel injection engine
JPS60201035A (en) Method of controlling electronically controlled engine
JPS6223548A (en) Fuel control device for fuel-injection engine
JPH0575904B2 (en)
JPH0544550B2 (en)
JP2940035B2 (en) Fuel injection control device for internal combustion engine
JPH0647957B2 (en) Asynchronous injection control method during acceleration of an electronically controlled fuel injection engine
JPS6128731A (en) Fuel supply method for internal-combustion engine
JPS6125944A (en) Fuel-injection controller of internal-combustion engine
JPH0713495B2 (en) Idle rotation speed control method for internal combustion engine