JPS60201035A - Method of controlling electronically controlled engine - Google Patents

Method of controlling electronically controlled engine

Info

Publication number
JPS60201035A
JPS60201035A JP5586584A JP5586584A JPS60201035A JP S60201035 A JPS60201035 A JP S60201035A JP 5586584 A JP5586584 A JP 5586584A JP 5586584 A JP5586584 A JP 5586584A JP S60201035 A JPS60201035 A JP S60201035A
Authority
JP
Japan
Prior art keywords
value
intake pipe
engine
electronically controlled
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5586584A
Other languages
Japanese (ja)
Inventor
Takao Iura
孝男 井浦
Hideo Miyagi
宮城 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5586584A priority Critical patent/JPS60201035A/en
Publication of JPS60201035A publication Critical patent/JPS60201035A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent delay of response and occurrence of knocking, by correcting the detected value of the pressure in an intake pipe or the quantity of intake air in case that the opening and closing speed of a throttle valve is higher than a predetermined value. CONSTITUTION:The opening and closing speed of a throttle valve is detected at a step 1. At a step 2, judgement is made whether the opening and closing speed of the throttle valve is higher than a predetemined value or not. In case of YES, the detected value of the pressure in an intake pipe or the quantity of intake air is corrected at a step 3. Further, at a step 4, the injection quantity of fuel and the ignition timing are calculated by use of the pressure in the intake pipe or the quantity of intake air. By empolying such a method, it is enabled to prevent delay of response or occurrence of knocking.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、電子制御エンジンの制御方法に係り、特に、
アクセル応答性が重視される自動車用エンジンに用いる
のに好適な、少なくとも吸気管圧力又は吸入空気量を含
むエンジン運転状態に応じて、燃料噴射量及び/′又は
点火時期を制御用プるようにした電子制御エンジンの制
御方法の改良に1111ツる。 【従来技術】 自動車用エンジン等の内燃機関の燃焼制御を行う方法の
1つに、エンジン内に燃料を噴射するためのインジェク
タを、例えばスロットルボディに1個又は吸気マニホル
ドにエンジン気筒数個配設し、該インジェクタの開弁時
間を、エンジンの運転状態、例えば吸気管圧力又はエン
ジン1回転当りの吸入空気量から検知されるエンジン負
荷とエンジン回転数に応じて電子制卸することにより、
所定の空燃比の混合気がエンジン燃焼室に供給されるよ
うにすると共に、エンジン回転と同期して、適切な時期
に点火されるようにしたものがある。 しかしながら、このような電子制御エンジンにおける燃
料噴射時間や点火時期の制御は、これを決定する基準と
なる吸気管圧力(又は吸入空気量)が、センサの応答遅
れや演算j!れのために、定常状態では適正な値を取る
ことができるものの、加減速時等の過渡時にあっては、
要求値との正確な対応がつかなくなるという問題があっ
た。そのため、例えば、加速時にあっては燃料噴射量が
不足ぎみになると共に、点火時期が進み側にずれること
等から、アクセルの応答性が悪化したり、ノッキングが
発生したりする原因になるという問題を引き起こしてい
た。又、減速時等にあっても空燃比が適正な値からずれ
るために、燃費の悪化あるいはNOX発生という問題を
引き起こしていた。 [発明の目的] 本発明は、前記従来の問題点を解消するべくなされたも
ので、加減速時の吸気管圧力もしくは吸入空気量の検出
遅れや演算遅れに起因する応答性の悪化やノッキングの
発生を防止することのできる電子制御エンジンの制御方
法を提供4ることを目的とする。 [発明の構成1 本発明は、少なくとも吸気管圧力又は吸入空気量を会む
エンジン運転状態に応じて、燃料噴射量及び/″又は点
火時期を制御するようにした電子制(超エンジンの制御
方法において、第1図にその要旨を示す如く、スロワi
・ル弁の開閉速度を検出づる手順と、該開閉速度が設定
値以上のときに前記吸気管°圧力又は吸入空気量の検出
値を補正する手順と、該補正後の検出値に基づいて燃料
噴射量及び/又は点火時期を計樟する手順と、を含むこ
とにより、前記目的を達成したものである。 又、本発明の実施態様は、吸気管圧ツノ又は吸入空気量
の検出値の補正を、スロワ]・ル弁の開閉速度に応じて
行うようにして、加減速の程度に見合った適正量の補正
がなされるようにしたものである。 更に、本発明の他の実ms様は、補正後の検出値が設定
限界値以上となったときに、該補正後の検出値をこの設
定限界値に置き換えるようにしたリミッタ処理を絶すこ
とにより、前記補正処理によって異常値が出現づ”るの
を防止したものである。 [発明の作用] 本発明は、スロットル弁の開閉速度を検出することによ
ってエンジン運転状態が定常状態から外れた過渡状態で
あることを検知すると共に、該スロットル弁の開閉速度
が設定値以上の時に、吸気管圧力又は吸入空気量の検出
値を補正することとしたので、適正な補正が円滑に行わ
れ、適正な燃料噴射量制御及び/又は点火時期制御が行
われる。 従って、過渡時においてもアクセル応答性が良好となり
、ノッキング発生の恐れがない。 [実施例1 以下図面を参照して、本発明に係る電子制御エンジンの
制御方法が採用された、吸気管圧力感知式の電子制御燃
料IIjl躬装置及び点火時期制御装置を備えた自動車
用エンジンの実施例を詳細に説明する。 本実施例は、第2図に示す如(、外部から吸入される吸
入空気の温度を検出するための吸気温センサ12と、ス
ロットルボディ14に配設された、アクセルペダル15
と連動して吸入空気の流量を制御するスロットル弁16
と、該スロットル弁16の開度を検出するためのスロッ
トルボディ18と、吸気干渉を防止するサージタンク2
0内の吸入空気の圧力を検出するための吸気管圧力セン
ザ22と、吸気マニホルド24に配設された、エンジン
10の各気筒の吸気ボートに向けて、加圧燃料を間欠的
に噴射するためのインジェクタ26と、イグナイタ付き
の点火コイル30と、該点火コイル30で発生された高
圧の点火二次信号をエンジン10の各気筒の点火プラグ
32に配電するデストリビユータ34と、該ディストリ
ビュータ34に内蔵された、デストリピユータ軸34A
の回転状態からエンジン10の回転状態を検知するため
のクランク角度センサ36と、エンジン10のシリンダ
ブロックIOAに配設された、エンジン冷却水温を検出
するための水温センサ38と、前記吸気管圧力センサ2
2出力から検知されるエンジン負荷や前記クランク角度
センサ36出力からめられるエンジン回転数等に応じて
、前記点火プラグ32での点火時期をめると共に、イン
ジェクタ26の噴射時間をめ、該噴射時間に対応する開
弁時間信号を前記インジェクタ26に出力すると共に前
記点火コイル30に点火指令信号を出力する電子制御ユ
ニット(以下、ECUと称する)44と、から構成され
ている。図において、46は排気マニホルドである。 前記ECU44は、第3図に詳細に示す如く、各種演算
処理を行うための、例えばマイクロプロセッサからなる
中央処理ユニツ1〜(以下、CPUと称する)44Aと
、制御プログラムや各種データ等を記憶するためのリー
ドオンリメモリ44Bと、前記CPU44Aにおける演
算データ等を一時的に記憶するためのランダムアクセス
メモリ44Cと、前記吸気温センサ12、吸気管圧力セ
ンサ22、水温センサ38等から入力されるアナログ信
号をデジタル信号に変換して順次取込むための、マルチ
プレクサ機能を備えたアナログ−デジタル変換器44E
と、前記スロワ1〜ルセンサ18、クランク角度センサ
36等から入力されるデジタル信号を取込むと共に、前
記CP 1.、I 44 Aの演算結果に応じて、前記
インジェクタ26、点火コイル30等に制御信号を出力
するための入出カポ−1〜44Fと、前記各構成機器間
を接続して、データや命令を転送するためのコモンバス
44Gと、から構成されている。 以下、実施例の作用を説明する。 本実施例における燃料噴射制御は、第4図に示すような
ルーチンに従って実行される。 即ち、まずステップ110で、前記スロワ1〜ルセンサ
18の出力に基づいてめられるスロワ1〜ル弁16の開
き速度DELTAが設定値TΔS以上であるか否かを判
定する。開き速度DELTAが一定値TAS以上の加速
詩であると判定した時はステップ112に進み、次式に
示す如く、吸気管圧力の検出値をA/D変換した値PM
ADに、開き速度DELTAに定数Kを掛けた値を加算
し加算後の補正値をもって基準とすべきA/D変換1!
 P Mとする。 PM(−PMAo+に*DELTA ・・・(1)一方
、前出ステップ110でスロットル弁16の開き速度D
ELTAが一定値TAS以下の定常時又は減速時である
と判定された詩は、ステップ114に進み、吸気管圧力
のA/D変換値P Mへ〇がそのまま基準とすべきA/
D変換値PMとして採用される。 ステップ112又はステップ114で基準となるべきA
 、−′D変11m P Mがめられた後は、ステップ
116に進み、A/D変換#iPMの異常値を排除覆る
べくリミッタ処理が行われる。即ち、1qられたA 、
−′D変換値P M A Dが限界値P M guar
dより大きいか否かがこのステップ116で判定される
。大きいと判定された時はステップ118に進み、限界
値P M guardが基準とすべきA/D変1fAW
1P Iv+とされる。 一方、ステップ116で得られたA/D変換値P Mが
Ptvlguardより小さいと判定された時は、その
まま該A /’ D変換値P Mが基準とされる。 ステップ116及びステップ118によるリミッタ処理
が行われた後はステップ120に進み、ここまでの流れ
で得られたA 、−′D変! IIII P Mに基づ
いて従来と同様の点火時期の演算が行われ、次いでステ
ップ122に進み、燃料噴61を決定するインジェクタ
26の開弁時間の演算が行われてルーチンを閉じるもの
である。 第5図に、従来例と前記実施例とを比較した線図を示す
。 スロットル弁16の開度が図の実線のように変化した場
合、吸気管圧力、要求燃料噴01串、要求点火時期がそ
れぞれ実線Aのように変化する。しかしながら従来は、
破線Bで示されるように、センサの応答遅れやECU4
4での演n遅れにより、A / D変換値PMACの立
上りが実際の吸気管圧力に比べて遅れ、そのため、燃料
噴射量は要求に対し小さくなり、又点火時期は要求に対
し進み側へずれていた。これに対し本実施例においては
、図で二点類ICで示されるように、スロットル弁開き
速度DELTAに対応した補正が加えられているため、
A/D変換値PMxoの遅れが補正されており、補正後
のA/D変換値PMに基づいて演算された燃料噴射囲や
点火時期がそれぞれ要求燃料噴射聞、要求点火時期に極
めて近くなった。 その結果、従来はエンジン回転数の上昇開始時期に当る
矢視Xの部分で、もたつきヤノツキングが生じることが
あったが、本実施例においてはそのような症状が見られ
ないようになった。 なお、前記設定値TASは、ゆるやかな加速時は補正し
ないための比較レベルであるが、TΔS=0として全て
の加速時に適用するようにしてもよい。 又、前記実施例では、吸気管圧力の検出値の補正を、ス
ロットル弁の開き速度に比例させた量たけ行なうように
していたが、本発明ではこの手法に限定されず、より精
密に対応させたマツプのようなものを用いて補正しても
よく、又は、階段状に一定量補正するというような簡易
な補正を行うようにしてもよい。 なお、前記実施例では、スロットル弁16が開く時、即
ち加速時にのみ補正が行われるようにしていたが、本発
明は、減速時においても同様な補正をすることによって
、燃費向上、及び空燃比の適正化を図ることができる。 又、前記実施例では、燃料噴剣量及び点火時期の双方を
制御するようにしていたが、一方のみを制御する構成で
あっても相応の効果を1qることができる。 更に、前記実施例は、本発明を、吸気管圧力感知式の電
子制御燃料噴射装置及び点火時期制御装置を備えた自動
車用エンジンに適用したものであるが、本発明の適用範
囲はこれに限定されず、吸入空気量感知式の電子制御装
置を備えた自動車用エンジンや、一般の電子制御エンジ
ンにも同様に適用できる。 又、本発明は、例えば吸気管圧力(又は吸入空気量)の
変化が大きいアイドルスイッチがオンからオフになった
数点穴(又は数100m5)を検出し、この間だけ補正
するというような条件をっけ、より合理的なエンジン制
御ができるように発展させることができるのは明らかで
ある。 [発明の効果] 以上説明した通り、本発明によれば、加減速時等の過渡
時においても最適な空燃比となる充分な量の燃料供給及
び/′又は最適時における点火を行うことができ、加減
速時の吸気管圧力、あるいは吸入空気向の検出・演算遅
れ等に起因する応答性の悪さや、ノッキングを防止する
ことができるという優れた効果を有する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a control method for an electronically controlled engine, and in particular,
Suitable for use in automobile engines where accelerator response is important, the fuel injection amount and/or ignition timing is controlled according to engine operating conditions including at least intake pipe pressure or intake air amount. 1111 improvements have been made to the control method of electronically controlled engines. [Prior Art] One method of controlling combustion in an internal combustion engine such as an automobile engine is to arrange one injector in the throttle body or several engine cylinders in the intake manifold to inject fuel into the engine. By electronically controlling the valve opening time of the injector according to the engine operating state, for example, the engine load and engine rotation speed detected from the intake pipe pressure or the amount of intake air per engine rotation,
There is one in which an air-fuel mixture with a predetermined air-fuel ratio is supplied to the engine combustion chamber and is ignited at an appropriate time in synchronization with engine rotation. However, in controlling the fuel injection time and ignition timing in such an electronically controlled engine, the intake pipe pressure (or intake air amount), which is the reference for determining this, is affected by sensor response delays and calculations. Therefore, although it is possible to take an appropriate value in steady state, during transient times such as acceleration and deceleration,
There was a problem that accurate correspondence with the required value could not be established. As a result, for example, during acceleration, the amount of fuel injected becomes insufficient, and the ignition timing shifts to the advanced side, causing problems such as poor accelerator response and knocking. was causing Furthermore, even during deceleration, the air-fuel ratio deviates from an appropriate value, causing problems such as deterioration of fuel efficiency and generation of NOx. [Object of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and it solves the problem of deterioration of responsiveness and knocking caused by delay in detection and calculation of intake pipe pressure or intake air amount during acceleration and deceleration. An object of the present invention is to provide a control method for an electronically controlled engine that can prevent such occurrence. [Configuration 1 of the Invention The present invention provides an electronic control system (super engine control method) that controls fuel injection amount and/or ignition timing in accordance with engine operating conditions that meet at least intake pipe pressure or intake air amount. As shown in Fig. 1, the thrower i
- A procedure for detecting the opening/closing speed of the valve, a procedure for correcting the detected value of the intake pipe pressure or intake air amount when the opening/closing speed exceeds a set value, and a procedure for correcting the detected value of the intake pipe pressure or intake air amount based on the detected value after the correction. The above object is achieved by including a procedure for measuring the injection amount and/or ignition timing. Further, in an embodiment of the present invention, the detected value of the intake pipe pressure angle or the intake air amount is corrected in accordance with the opening/closing speed of the throttle valve, so that an appropriate amount corresponding to the degree of acceleration/deceleration is corrected. This is so that corrections can be made. Furthermore, another example of the present invention is that when the corrected detected value exceeds the set limit value, the limiter process that replaces the corrected detected value with the set limit value is stopped. The correction process prevents abnormal values from appearing. [Operation of the Invention] The present invention detects the transient state in which the engine operating state deviates from the steady state by detecting the opening/closing speed of the throttle valve. In addition, when the opening/closing speed of the throttle valve is equal to or higher than the set value, the detected value of intake pipe pressure or intake air amount is corrected. Fuel injection amount control and/or ignition timing control is performed. Therefore, the accelerator response is good even during transient times, and there is no risk of knocking. [Example 1] Referring to the drawings below, An embodiment of an automobile engine equipped with an intake pipe pressure sensing type electronically controlled fuel control device and an ignition timing control device, in which the control method of the controlled engine is adopted, will be described in detail. As shown in FIG.
A throttle valve 16 that controls the flow rate of intake air in conjunction with
, a throttle body 18 for detecting the opening degree of the throttle valve 16, and a surge tank 2 for preventing intake air interference.
In order to intermittently inject pressurized fuel toward the intake boats of each cylinder of the engine 10, which are arranged in the intake pipe pressure sensor 22 for detecting the pressure of intake air in the engine 10 and the intake manifold 24, an injector 26, an ignition coil 30 with an igniter, a distributor 34 that distributes the high-voltage secondary ignition signal generated by the ignition coil 30 to the spark plugs 32 of each cylinder of the engine 10, and a distributor 34 built in the distributor 34. Also, distributor shaft 34A
a crank angle sensor 36 for detecting the rotational state of the engine 10 from the rotational state of the engine 10, a water temperature sensor 38 disposed in the cylinder block IOA of the engine 10 for detecting the engine cooling water temperature, and the intake pipe pressure sensor. 2
The ignition timing of the spark plug 32 is adjusted according to the engine load detected from the two outputs and the engine rotation speed determined from the output of the crank angle sensor 36, and the injection time of the injector 26 is determined. It is comprised of an electronic control unit (hereinafter referred to as ECU) 44 that outputs a corresponding valve opening time signal to the injector 26 and an ignition command signal to the ignition coil 30. In the figure, 46 is an exhaust manifold. As shown in detail in FIG. 3, the ECU 44 stores central processing units 1 to 44A (hereinafter referred to as "CPU") consisting of, for example, a microprocessor for performing various arithmetic processing, control programs, various data, etc. a read-only memory 44B for temporarily storing data calculated by the CPU 44A, a random access memory 44C for temporarily storing data calculated by the CPU 44A, and analog signals input from the intake temperature sensor 12, intake pipe pressure sensor 22, water temperature sensor 38, etc. Analog-to-digital converter 44E with multiplexer function for converting into digital signals and sequentially capturing them.
The digital signals inputted from the thrower 1 to the throttle sensor 18, the crank angle sensor 36, etc. are taken in, and the CP 1. , I44A, the input/output capos 1 to 44F for outputting control signals to the injector 26, ignition coil 30, etc., and each of the component devices are connected to transfer data and instructions. It consists of a common bus 44G for The effects of the embodiment will be explained below. Fuel injection control in this embodiment is executed according to a routine as shown in FIG. That is, first, in step 110, it is determined whether or not the opening speed DELTA of the thrower valves 1 to 16, which is determined based on the outputs of the thrower valves 1 to 18, is greater than or equal to a set value TΔS. When it is determined that the opening speed DELTA is an acceleration rate greater than or equal to the constant value TAS, the process proceeds to step 112, where the value PM obtained by A/D converting the detected value of the intake pipe pressure is calculated as shown in the following equation.
Add the value obtained by multiplying the opening speed DELTA by the constant K to AD, and use the correction value after addition as the standard A/D conversion 1!
P M. PM(-PMAo+*DELTA...(1) On the other hand, in step 110 mentioned above, the opening speed D of the throttle valve 16 is
If it is determined that ELTA is in a steady state or deceleration state where ELTA is below a certain value TAS, the process proceeds to step 114, and the A/D conversion value P of the intake pipe pressure is changed to A/D which should be used as the reference.
It is adopted as the D conversion value PM. A that should be the reference in step 112 or step 114
, -'D variation 11m P M is detected, the process proceeds to step 116, and limiter processing is performed to eliminate and cover the abnormal value of A/D conversion #iPM. That is, A reduced by 1q,
−'D conversion value P M A D is the limit value P M guar
It is determined in step 116 whether or not the value is larger than d. When it is determined that the limit value P M guard is large, the process proceeds to step 118 and the A/D change 1fAW that the limit value P M guard should be used as a reference is determined.
1P Iv+. On the other hand, when it is determined that the A/D conversion value P M obtained in step 116 is smaller than Ptvlguard, the A/D conversion value P M is directly used as the reference. After the limiter processing in steps 116 and 118 is performed, the process proceeds to step 120, and the A, -'D changes obtained in the flow up to this point! The ignition timing is calculated in the same manner as in the conventional method based on IIIPM, and then the process proceeds to step 122, where the valve opening time of the injector 26 which determines the fuel injection 61 is calculated, and the routine is closed. FIG. 5 shows a diagram comparing the conventional example and the above embodiment. When the opening degree of the throttle valve 16 changes as shown by the solid line in the figure, the intake pipe pressure, required fuel injection 01, and required ignition timing change as shown by the solid line A, respectively. However, conventionally,
As shown by broken line B, sensor response delay and ECU4
4, the rise of the A/D conversion value PMAC is delayed compared to the actual intake pipe pressure, and as a result, the fuel injection amount becomes smaller than the request, and the ignition timing shifts to the advance side compared to the request. was. On the other hand, in this embodiment, as shown by the two-point IC in the figure, a correction corresponding to the throttle valve opening speed DELTA is added.
The delay in the A/D conversion value PMxo has been corrected, and the fuel injection range and ignition timing calculated based on the corrected A/D conversion value PM are extremely close to the required fuel injection interval and required ignition timing, respectively. . As a result, in the past, sluggishness and sluggishness sometimes occurred at the point indicated by arrow X, which corresponds to the time when the engine speed begins to rise, but in this embodiment, such symptoms are no longer observed. Note that the set value TAS is a comparison level for not making corrections during gentle acceleration, but it may be applied to all accelerations by setting TΔS=0. Furthermore, in the embodiment described above, the detected value of the intake pipe pressure is corrected by an amount proportional to the opening speed of the throttle valve, but the present invention is not limited to this method, and the correction can be made more precisely. The correction may be performed using a map, or a simple correction such as a fixed amount of correction may be performed in a stepwise manner. In the above embodiment, the correction is made only when the throttle valve 16 opens, that is, when accelerating, but the present invention improves fuel efficiency and improves the air-fuel ratio by making the same correction even when decelerating. It is possible to optimize the Further, in the above embodiment, both the fuel injection amount and the ignition timing are controlled, but even if only one of them is controlled, a corresponding effect of 1q can be obtained. Further, in the above embodiment, the present invention is applied to an automobile engine equipped with an electronically controlled fuel injection device and an ignition timing control device that sense intake pipe pressure, but the scope of application of the present invention is limited to this. However, the present invention can be similarly applied to automobile engines equipped with an intake air amount sensing type electronic control device and general electronically controlled engines. Furthermore, the present invention can meet conditions such as detecting several holes (or several hundred meters) where the idle switch changes from on to off, where the change in intake pipe pressure (or intake air amount) is large, and making corrections only during this period. It is clear that this technology can be developed to enable more rational engine control. [Effects of the Invention] As explained above, according to the present invention, it is possible to supply a sufficient amount of fuel to achieve an optimal air-fuel ratio even during transient times such as acceleration and deceleration, and/or to perform ignition at the optimal time. This has the excellent effect of preventing knocking and poor responsiveness caused by delays in detection and calculation of intake pipe pressure or intake air direction during acceleration and deceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る電子制御エンジンの制御方法の
要旨を示す流れ図、第2図は、本発明が採用された、吸
気管圧力感知式の電子制御燃料噴射装置及び点火時期制
御装置を備えた自動車用エンジンの実施例を示す、一部
ブロック線図を含む断面図、第3図は、前記実施例で用
いられている電子制御ユニットの構成を示すブロック線
図、第4図は、同じく、点火時期及びインジェクタの開
弁時間を決定するためのルーチンを示す流れ図、第5図
は、前記実施例での結果と従来例での結果とをそれぞれ
要求値(理想値)と比較して示す線図である。 10・・・エンジン、 22・・・吸気管圧力センサ、 26・・・インジェクタ、 36・・・クランク角度センザ、 44・・・電子制御ユニツ1−(ECU)、DELTA
・・・開き速度、 TAS・・・設定値、 PMAD・・・A/D変換値、 p iv+・・・補正後のA/D変換値、P M gu
ard・・・設定限界値。 代理人 高 矢 論 (ほか1名) 第1図 第4図 第2図 1Uハ 第3図
FIG. 1 is a flowchart showing the gist of the control method for an electronically controlled engine according to the present invention, and FIG. 2 shows an intake pipe pressure sensing type electronically controlled fuel injection device and ignition timing control device to which the present invention is adopted. FIG. 3 is a block diagram showing the configuration of the electronic control unit used in the embodiment, and FIG. Similarly, FIG. 5, a flowchart showing a routine for determining ignition timing and injector opening time, compares the results of the above embodiment and the conventional example with the required values (ideal values). FIG. DESCRIPTION OF SYMBOLS 10... Engine, 22... Intake pipe pressure sensor, 26... Injector, 36... Crank angle sensor, 44... Electronic control unit 1- (ECU), DELTA
... Opening speed, TAS... Setting value, PMAD... A/D conversion value, p iv+... A/D conversion value after correction, PM gu
ard...Setting limit value. Agent Takaya Ron (and 1 other person) Figure 1 Figure 4 Figure 2 1Uha Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも吸気管圧力又は吸入空気量を含むエン
ジン運転状態に応じて、燃料噴射量及び又は点火時期を
制御するようにした電子制御エンジンの制御用方法にお
いて、スロットル弁の開閉速度を検出り”る手順と、該
間開速度が設定値以上のときに前記吸気管圧力又は吸入
空気量の検出値を補正する手順と、該補正後の検出値に
基づいて燃料噴射量及び/又は点火時期を計算する手順
と、を含むことを特徴とする電子制御エンジンの制御方
法。
(1) In a method for controlling an electronically controlled engine that controls the fuel injection amount and/or ignition timing according to engine operating conditions including at least intake pipe pressure or intake air amount, the opening/closing speed of a throttle valve is detected. a procedure for correcting the detected value of the intake pipe pressure or intake air amount when the opening speed is equal to or higher than a set value; A method for controlling an electronically controlled engine, comprising: a procedure for calculating .
(2)前記検出値の補正は、前記スロットル弁の開閉速
度に応じて行われることを特徴とする特許請求の範囲第
1項記載の電子制御エンジンの制御方法。
(2) The method for controlling an electronically controlled engine according to claim 1, wherein the detected value is corrected in accordance with the opening/closing speed of the throttle valve.
(3)前記補正後の検出値は、該検出値が設定限界値以
上となったときに、該設定限界値に置き換えられるリミ
ッタ処理がなされることを特徴とする特許請求の範囲第
1項又は第2項に記載の電子制御エンジンの制御方法。
(3) The corrected detected value is subjected to limiter processing in which it is replaced with the set limit value when the detected value exceeds the set limit value, or The method for controlling an electronically controlled engine according to item 2.
JP5586584A 1984-03-23 1984-03-23 Method of controlling electronically controlled engine Pending JPS60201035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5586584A JPS60201035A (en) 1984-03-23 1984-03-23 Method of controlling electronically controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5586584A JPS60201035A (en) 1984-03-23 1984-03-23 Method of controlling electronically controlled engine

Publications (1)

Publication Number Publication Date
JPS60201035A true JPS60201035A (en) 1985-10-11

Family

ID=13010960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5586584A Pending JPS60201035A (en) 1984-03-23 1984-03-23 Method of controlling electronically controlled engine

Country Status (1)

Country Link
JP (1) JPS60201035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947816A (en) * 1987-10-27 1990-08-14 Japan Electronic Control Systems Company, Limited Control system for internal combustion engine with improved control characteristics at transition of engine driving condition
US5957110A (en) * 1996-10-25 1999-09-28 Toyota Jidosha Kabushiki Kaisha Ignition timing control device of an engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947816A (en) * 1987-10-27 1990-08-14 Japan Electronic Control Systems Company, Limited Control system for internal combustion engine with improved control characteristics at transition of engine driving condition
US5957110A (en) * 1996-10-25 1999-09-28 Toyota Jidosha Kabushiki Kaisha Ignition timing control device of an engine

Similar Documents

Publication Publication Date Title
US5224452A (en) Air-fuel ratio control system of internal combustion engine
US4448162A (en) Optimum control for internal combustion engines
US4448171A (en) Method and apparatus for optimum control of internal combustion engines
US5664544A (en) Apparatus and method for control of an internal combustion engine
US5927252A (en) Ignition timing control apparatus for internal combustion engine
US4725954A (en) Apparatus and method for controlling fuel supply to internal combustion engine
US5040509A (en) Control system for controlling spark timing for engine
JPH0275760A (en) Ignition timing control device for internal combustion engine
JPH01211633A (en) Fuel injection amount control device for internal combustion engine
US4502448A (en) Method for controlling control systems for internal combustion engines immediately after termination of fuel cut
JP3234434B2 (en) Lean limit detection method
JPS60201035A (en) Method of controlling electronically controlled engine
JP2929619B2 (en) Ignition timing control device for internal combustion engine
JPH0316498B2 (en)
JPS60249651A (en) Electronic control type fuel injector
JPH0463222B2 (en)
JPS60159372A (en) Ignition-timing control for internal-combustion engine
JPS5912164A (en) Ignition timing control for internal-combustion engine
JP2940035B2 (en) Fuel injection control device for internal combustion engine
JPS62170754A (en) Ignition timing control device for internal combustion engine
EP0133998A2 (en) Apparatus for and method of controlling an internal combustion engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JPH0429855B2 (en)
JPH0480218B2 (en)
JP2734056B2 (en) Ignition timing control device for internal combustion engine