JPH04350340A - Air-fuel ratio controller of internal combustion engine - Google Patents

Air-fuel ratio controller of internal combustion engine

Info

Publication number
JPH04350340A
JPH04350340A JP12126091A JP12126091A JPH04350340A JP H04350340 A JPH04350340 A JP H04350340A JP 12126091 A JP12126091 A JP 12126091A JP 12126091 A JP12126091 A JP 12126091A JP H04350340 A JPH04350340 A JP H04350340A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
shift position
basic
high load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12126091A
Other languages
Japanese (ja)
Inventor
Akihiro Nakajima
中嶋 明浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12126091A priority Critical patent/JPH04350340A/en
Publication of JPH04350340A publication Critical patent/JPH04350340A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make improvement of acceleration, fuel consumption and emission compatible at the time of increasing a quantity of high load. CONSTITUTION:There are provided operation condition detection means 31, 38 which detect the operation condition of an internal combustion engine, a basic injection quantity calculation means 40 which calculates a basic fuel injection quantity required by the internal combustion engine based on the operation condition, a high-load increase quantity setting means 40 which sets a basic high-load increase quantity value for increasingly correcting the basic injection quantity based on a high-load condition, and shift position detection means 38, 50 which detect the shift position of an internal combustion engine, a high-load detection means 31 which detects the high-load condition of the internal combustion engine. This controller is characterized in provision of correction means 40 which corrects more greatly the basic high-load increase quantity as the shift position is lower, and a final injection period setting means 40 which corrects the basic injection quantity and sets the final injection period based on the value corrected by the correction means.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は内燃機関の空燃比制御装
置に関し、特に高負荷時の増量方法に特徴がある空燃比
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to an air-fuel ratio control device characterized by a method of increasing the amount at high loads.

【0002】0002

【従来の技術】従来より、内燃機関の運転状態を検出し
、その運転状態に応じて内燃機関の燃料噴射量を決定す
るといった、電子制御式の燃料噴射制御装置がある。 そして、この種の燃料噴射制御装置においては機関の吸
気管内圧力と機関回転数に基づいて基本噴射量を算出し
、加速時等の高負荷運転時には基本噴射量を増量補正し
て、機関出力を上昇させるものが種々提案されている。 また、特開平2−99733号公報には高負荷増量に伴
う燃費の悪化を抑制するためにシフト位置がトップのと
きは増量を行わず、トップ以外のときはシフト位置にか
かわらず一律に増量補正するものが開示されている。
2. Description of the Related Art Conventionally, there has been an electronically controlled fuel injection control device that detects the operating state of an internal combustion engine and determines the fuel injection amount of the internal combustion engine in accordance with the operating state. This type of fuel injection control device calculates the basic injection amount based on the engine's intake pipe pressure and engine speed, and increases the basic injection amount during high-load operation such as during acceleration to increase the engine output. Various methods have been proposed to increase the temperature. Furthermore, in order to suppress the deterioration of fuel efficiency due to a high load increase, the amount is not increased when the shift position is at the top, and when the shift position is other than the top, the amount is uniformly increased regardless of the shift position. What is disclosed is disclosed.

【0003】0003

【発明が解決しようとする課題】しかしながら、上述し
た装置の様にシフト位置がトップのときに高負荷増量を
行わない様にすると例えば高速走行時の加速性が損なわ
れる。また、シフト位置がトップ以外のとき例えば4速
車において1〜3速のとき、一律に高負荷増量を行うと
、例えば登坂や急加速時にはそれに見合った高負荷増量
がなされるが、登坂や急加速時はたいていシフト位置は
1または2速であり、出力がさほど必要でない3速走行
時にも1,2速と同様の増量が施され燃費及びエミッシ
ョンの悪化を招くという問題がある。
However, if a high load increase is not performed when the shift position is at the top, as in the above-mentioned device, for example, acceleration during high-speed driving will be impaired. Also, if a high load is increased uniformly when the shift position is other than the top, for example, when the shift position is 1st to 3rd in a 4-speed car, a commensurate high load increase will be made when climbing a hill or accelerating suddenly, but During acceleration, the shift position is usually 1st or 2nd speed, and even when running in 3rd speed, where output is not so necessary, the same increase as in 1st and 2nd speeds is applied, resulting in a problem of deterioration of fuel efficiency and emissions.

【0004】本発明は上記課題に鑑みて、高負荷運転時
に加速性能と燃費及びエミッションの向上を両立させる
べく空燃比制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide an air-fuel ratio control device that achieves both acceleration performance and improvements in fuel consumption and emissions during high-load operation.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明は内燃機関の運転状態を検出する
運転状態検出手段と、前記運転状態に基づいて前記内燃
機関が要求する基本噴射量を算出する基本噴射量算出手
段と、前記内燃機関の高負荷状態を検出する高負荷検出
手段と、前記高負荷状態に基づいて前記基本噴射量を増
量補正するための基本高負荷増量値を設定する高負荷増
量設定手段と、前記内燃機関のシフト位置を検出するシ
フト位置検出手段と、前記シフト位置が低い程前記基本
高負荷増量を大きく補正する補正手段と、この補正手段
により補正された値に基づいて前記基本噴射量を補正し
、最終噴射時間を設定する最終噴射時間設定手段と、を
備えたことを特徴とする内燃機関の空燃比制御装置を要
旨とする。
[Means for Solving the Problems] As a means for solving the above problems, the present invention provides an operating state detection means for detecting the operating state of an internal combustion engine, and a basic injection that is requested by the internal combustion engine based on the operating state. a basic injection amount calculation means for calculating the amount, a high load detection means for detecting a high load state of the internal combustion engine, and a basic high load increase value for increasing the basic injection amount based on the high load state. a high load increase setting means for setting a high load increase; a shift position detection means for detecting a shift position of the internal combustion engine; a correction means for correcting the basic high load increase to a greater extent as the shift position is lower; The present invention provides an air-fuel ratio control device for an internal combustion engine, comprising: final injection time setting means for correcting the basic injection amount based on the value and setting a final injection time.

【0006】[0006]

【作用】これにより、シフト位置が低いときの高負荷時
は、基本噴射量がシフト位置が高いときよりも大きく増
量され加速性重視で空燃比が制御され、シフト位置が高
い高負時は、基本噴射量が小さく増量され燃費,エミッ
ション重視で空燃比が制御される。
[Function] As a result, when the shift position is low and the load is high, the basic injection amount is increased to a greater extent than when the shift position is high, and the air-fuel ratio is controlled with emphasis on acceleration, and when the shift position is high and negative, The basic injection amount is increased by a small amount, and the air-fuel ratio is controlled with emphasis on fuel efficiency and emissions.

【0007】[0007]

【実施例】図2に本発明の内燃機関の燃料供給量制御装
置をガソリン式自動車様内燃機関に適用した第1実施例
を示す。
Embodiment FIG. 2 shows a first embodiment in which the fuel supply amount control device for an internal combustion engine of the present invention is applied to an internal combustion engine for a gasoline-powered automobile.

【0008】同図において、内燃機関1は、シリンダ2
,ピストン3,シリンダブロック4,シリンダヘッド5
により形成される燃焼室6を有している。上記燃焼室6
には、点火プラグ7が配設されている。ピストン3から
の回転駆動力は、図示しない変速機等各種装置を介して
、図示しない駆動輪に伝達される。また更にその回転駆
動力は図示しない発電機を回転させ各装置に給電すると
共に、図示しない給電用バッテリに蓄電する。
In the figure, an internal combustion engine 1 has a cylinder 2.
, piston 3, cylinder block 4, cylinder head 5
It has a combustion chamber 6 formed by. The above combustion chamber 6
A spark plug 7 is disposed in the engine. The rotational driving force from the piston 3 is transmitted to drive wheels (not shown) via various devices such as a transmission (not shown). Furthermore, the rotational driving force rotates a generator (not shown) to supply power to each device, and is also stored in a power supply battery (not shown).

【0009】内燃機関1の吸気系統は、燃焼室6の吸気
バルブ8を介して上流の吸気管9に通じ、該吸気管9の
上流には吸入空気の脈動を吸収するサージタンク10が
設けられており、該サージタンク10上流にはスロット
ルバルブ11が配設されている。該スロットルバルブ1
1は運転者によるアクセルペダル12の加速・減速の指
示操作により開度が調整されている。
The intake system of the internal combustion engine 1 communicates with an upstream intake pipe 9 via an intake valve 8 of the combustion chamber 6, and a surge tank 10 is provided upstream of the intake pipe 9 to absorb pulsation of intake air. A throttle valve 11 is disposed upstream of the surge tank 10. The throttle valve 1
1, the opening degree is adjusted by the driver's operation of accelerating or decelerating the accelerator pedal 12.

【0010】一方、内燃機関1の排気系統は、燃焼室6
の排気バルブ16を介して、排気管17及び排気浄化用
の触媒コンバータ17aを通じている。燃料系統は、図
示しない燃料タンク及び燃料ポンプよりなる燃料供給源
と燃料供給管及び吸気管9に配設された燃料噴射弁18
により構成されている。
On the other hand, the exhaust system of the internal combustion engine 1 includes a combustion chamber 6
The exhaust valve 16 passes through an exhaust pipe 17 and a catalytic converter 17a for purifying exhaust gas. The fuel system includes a fuel supply source consisting of a fuel tank and a fuel pump (not shown), a fuel supply pipe, and a fuel injection valve 18 disposed in the intake pipe 9.
It is made up of.

【0011】又、点火系統は、点火に必要な高電圧を出
力するイグナイタ19、及び図示していないクランク軸
に連動して上記イグナイタ19で発生した高電圧を上記
点火プラグ7に分配供給するディストリビュータ20よ
り構成されている。
The ignition system also includes an igniter 19 that outputs the high voltage necessary for ignition, and a distributor that distributes the high voltage generated by the igniter 19 to the spark plug 7 in conjunction with a crankshaft (not shown). It is composed of 20 pieces.

【0012】更に、内燃機関1は検出器として、上記吸
気管9前方に設けられて吸入空気流量を計測するエアフ
ロメータ31,上記吸気管9内に設けられて吸入空気温
度を測定する吸気温センサ32,車速を検出する車速セ
ンサ50,スロットルバルブ11に連動して該スロット
ルバルブの開度を検出するスロットルポジションセンサ
33,シリンダブロック4の冷却系統に設けられて冷却
水温度を検出する水温センサ34、及び排気管17内に
設けられて排気中の残存酸素を検出する酸素センサ35
を備える。上記スロットルポジションセンサ33はスロ
ットルバルブ11の全閉状態にてオン信号を出力するア
イドルスイッチを備えている。
The internal combustion engine 1 further includes, as detectors, an air flow meter 31 provided in front of the intake pipe 9 to measure the intake air flow rate, and an intake temperature sensor provided in the intake pipe 9 to measure the intake air temperature. 32, a vehicle speed sensor 50 that detects vehicle speed, a throttle position sensor 33 that detects the opening degree of the throttle valve in conjunction with the throttle valve 11, and a water temperature sensor 34 that is installed in the cooling system of the cylinder block 4 and detects the coolant temperature. , and an oxygen sensor 35 provided in the exhaust pipe 17 to detect residual oxygen in the exhaust gas.
Equipped with The throttle position sensor 33 includes an idle switch that outputs an on signal when the throttle valve 11 is fully closed.

【0013】また、上記ディストリビュータ20内部に
は、該ディストリビュータ20のカムシャフトの1/2
4回転毎に、即ちクランク角0°から30°の整数倍毎
に回転角信号N、及び上記ディストリビュータ20のカ
ムシャフトの1回転毎に即ち図示しないクランク軸の2
回転毎に2つのクランク角位置信号G1,G2を各1回
出力する回転センサ38が設けられている。
[0013] Also, inside the distributor 20, 1/2 of the camshaft of the distributor 20 is provided.
A rotation angle signal N is generated every four rotations, that is, every integer multiple of the crank angle from 0° to 30°, and every rotation of the camshaft of the distributor 20, that is, the rotation angle signal N of the crankshaft (not shown) is generated.
A rotation sensor 38 is provided that outputs two crank angle position signals G1 and G2 once each rotation.

【0014】尚、上記各センサからの信号は、電子制御
装置(以下単にECUとよぶ。)40に入力されるとと
もに、この信号やその他の情報に基づいてECU40は
上記内燃機関1を制御している。
The signals from each of the above sensors are input to an electronic control unit (hereinafter simply referred to as ECU) 40, and the ECU 40 controls the internal combustion engine 1 based on these signals and other information. There is.

【0015】次に、上記ECU40の構成を図3に基づ
いて説明する。ECU40は、CPU40a,ROM4
0b,RAM40c,バックアップRAM40d及びク
ロック40z等を中心に構成された論理演算回路として
構成されている。ECU40は、コモンバス40e,入
出力ポート40f,入力ポート40g,出力ポート40
hを介して外部との入出力を行う。電源回路41は通電
ライン42と接続されており、通電ライン42はキース
イッチ43を介して給電・蓄電用のバッテリ44に接続
されている。
Next, the configuration of the ECU 40 will be explained based on FIG. 3. ECU40 is CPU40a, ROM4
0b, RAM 40c, backup RAM 40d, clock 40z, etc. as a logical operation circuit. The ECU 40 includes a common bus 40e, an input/output port 40f, an input port 40g, and an output port 40.
External input/output is performed via h. The power supply circuit 41 is connected to an energizing line 42, and the energizing line 42 is connected via a key switch 43 to a battery 44 for power supply and storage.

【0016】また上記バックアップRAM40dは、キ
ースイッチ43が切られ、ECU40に電力供給がなく
なった状態でも別の電源回路46からの電力を供給され
て記憶内容を保持するように構成されている。
The backup RAM 40d is configured so that even when the key switch 43 is turned off and power is no longer supplied to the ECU 40, it is supplied with power from another power supply circuit 46 and retains its stored contents.

【0017】ECU40は、上述した各センサの検出信
号のバッファ40i,40j,40k,40w,マルチ
プレクサ40n,A/D変換器40pを有し、これらの
検出信号は入出力ポート40fを介してCPU40aに
入力される。
The ECU 40 has buffers 40i, 40j, 40k, 40w for the detection signals of the sensors described above, a multiplexer 40n, and an A/D converter 40p, and these detection signals are sent to the CPU 40a via an input/output port 40f. is input.

【0018】又、ECU40は、酸素検出信号のバッフ
ァ40q,コンパレータ40r、及びアイドルスイッチ
33の信号と回転センサ38の信号との波形整形回路4
0sを備え、これらの信号は入力ポート40gを介して
CPU40aに入力される。
The ECU 40 also includes a buffer 40q for the oxygen detection signal, a comparator 40r, and a waveform shaping circuit 4 for the signal from the idle switch 33 and the signal from the rotation sensor 38.
0s, and these signals are input to the CPU 40a via the input port 40g.

【0019】更に、ECU40は、既述した燃料噴射弁
18の駆動回路40uとイグナイタ19の駆動回路40
yとを有し、CPU40aは出力ポート40hを介して
上記両駆動回路40u,40yに制御信号を出力する。
Furthermore, the ECU 40 includes a drive circuit 40u for the fuel injection valve 18 and a drive circuit 40 for the igniter 19, which have already been described.
y, and the CPU 40a outputs a control signal to both drive circuits 40u and 40y via an output port 40h.

【0020】次に上記ECUによって実行される燃料噴
射量制御について図4〜6に示すフローチャートに基づ
いて説明する。図4は360℃A毎に起動実行される最
終噴射量(Ti)を設定するルーチンであって、ステッ
プ101において吸入空気量Qとエンジン回転数Neと
に基づいて以下の演算式より基本噴射量TPを算出する
Next, the fuel injection amount control executed by the ECU will be explained based on the flowcharts shown in FIGS. 4 to 6. FIG. 4 shows a routine for setting the final injection amount (Ti) that is started and executed every 360°C. In step 101, the basic injection amount is Calculate TP.

【0021】[0021]

【数1】TP=K×Q/Ne ここでKは定数である。次にステップ102でステップ
101で算出された基本噴射量TPを以下の演算式を用
いて補正し、最終噴射時間Tiを設定する。
[Formula 1] TP=K×Q/Ne where K is a constant. Next, in step 102, the basic injection amount TP calculated in step 101 is corrected using the following arithmetic expression, and the final injection time Ti is set.

【0022】[0022]

【数2】Ti=TP×(1+K1+C)+TvここでK
1は水温等で定まる各種補正係数、Cは後述するルーチ
ンで定まる高負荷増量補正係数、Tvは無効噴射時間で
ある。
[Math. 2] Ti=TP×(1+K1+C)+Tv where K
1 is various correction coefficients determined by water temperature, etc., C is a high load increase correction coefficient determined by a routine described later, and Tv is an invalid injection time.

【0023】図5は所定時間毎(例えば50msec毎
)に実行され、シフト位置に応じたシフト位置補正値を
設定するルーチンである。まずステップ201ではエン
ジン回転数Neと車速SPDの商(Ne/SPD)を算
出しそれをXとして記憶する。次にステップ202〜ス
テップ204でXに基づいて現在のシフト位置を求める
。即ち、Xが判定値β1以上のとき1速とステップ20
6で判別し、Xが判定値β1より小さく判定値β2以上
のとき2速とステップ207で判定し、またXが判定値
β2より小さく判定値β3以上のときはステップ208
で3速と判別する。また、Xが判定値β3より小さいと
きは4速とステップ205で4速と判別される。
FIG. 5 shows a routine that is executed at predetermined time intervals (for example, every 50 msec) and sets a shift position correction value according to the shift position. First, in step 201, the quotient (Ne/SPD) of the engine speed Ne and the vehicle speed SPD is calculated and stored as X. Next, in steps 202 to 204, the current shift position is determined based on X. That is, when X is greater than or equal to the judgment value β1, the first speed and step 20 are selected.
6, and when X is less than the judgment value β1 and more than the judgment value β2, it is judged as 2nd speed at step 207, and when X is less than the judgment value β2 and more than the judgment value β3, step 208
It is determined that it is in 3rd gear. Further, when X is smaller than the determination value β3, it is determined that the vehicle is in the fourth speed and in step 205, the vehicle is in the fourth speed.

【0024】一般的にシフト位置が一定ならばエンジン
回転数Neと車速SPDは比例関係にあり、Xはシフト
位置が低い程大きくなるため判定値β1,β2及びβ3
を予め実験等でシフト位置に応じて定めることができ、
β1>β2>β3という関係をなしている。
Generally, if the shift position is constant, the engine speed Ne and the vehicle speed SPD are in a proportional relationship, and the lower the shift position, the larger X becomes, so the determination values β1, β2, and β3
can be determined in advance according to the shift position through experiments, etc.
The relationship is β1>β2>β3.

【0025】以上の様にしてシフト位置が求まるとステ
ップ209に進んで図7に示すマップよりシフト位置に
応じたシフト位置補正値Bを算出する。ここでシフト位
置補正値Bは図7に示す様にシフト位置が低い程大きな
値をとる様設定されている。
When the shift position is determined as described above, the process proceeds to step 209, where a shift position correction value B corresponding to the shift position is calculated from the map shown in FIG. Here, the shift position correction value B is set to take a larger value as the shift position is lower, as shown in FIG.

【0026】図6は高負荷増量補正係数Cを設定するル
ーチンであって50msec毎に起動実行される。まず
ステップ301で高負荷増量補正係数Cを0にする。そ
してステップ302で高負荷運転状態であるかどうかを
吸入空気量Qが所定値α以下かで判別し、高負荷状態の
ときはステップ303で基本高負荷増量値(例えば0.
2)をAに設定する。そしてステップ304で図5で示
したルーチンで求めたシフト位置補正値βと基本負荷増
量値Aとの積を高負荷増量補正係数Cに設定する。
FIG. 6 shows a routine for setting the high load increase correction coefficient C, which is activated and executed every 50 msec. First, in step 301, the high load increase correction coefficient C is set to 0. Then, in step 302, it is determined whether the operating state is high load or not, based on whether the intake air amount Q is less than a predetermined value α.If the intake air amount Q is in the high load state, step 303 is performed to determine the basic high load increase value (for example, 0.
2) is set to A. Then, in step 304, the product of the shift position correction value β obtained by the routine shown in FIG. 5 and the basic load increase value A is set as the high load increase correction coefficient C.

【0027】[0027]

【数3】C←A×B ここで高負荷増量補正係数Cは、シフト位置が低い程大
きな値となって、基本噴射量TPはシフト位置が低いと
大きく増量補正され、加速性が向上し、シフト位置が高
いときは小さく増量補正されて燃費が向上する。
[Equation 3] C←A×B Here, the high load increase correction coefficient C becomes a larger value as the shift position is lower, and the basic injection amount TP is greatly increased when the shift position is lower, improving acceleration. , when the shift position is high, the amount is increased by a small amount and fuel efficiency is improved.

【0028】以上説明した実施例ではシフト位置をエン
ジン回転数Neと車速SPDから求めていたが、シフト
位置スイッチ等を設けて直接シフト位置を検出する様に
構成してもよい。
In the embodiment described above, the shift position is determined from the engine speed Ne and the vehicle speed SPD, but a shift position switch or the like may be provided to directly detect the shift position.

【0029】また、基本高負荷増量値は一定値(0.2
)とせずにエンジン回転数に応じた可変値など運転状態
に応じて設定してよい。
[0029] Furthermore, the basic high load increase value is a constant value (0.2
) may be set according to the operating condition, such as a variable value according to the engine speed.

【0030】[0030]

【発明の効果】以上述べた本発明によれば、高負荷増量
をシフト位置が低い程大きくなる様に設定している。そ
のため、登坂時や急加速時等シフト位置が低くなりやす
い高負荷運転時は基本噴射量は大きく増量され加速性が
向上し、一般走行時等高シフト位置で運転しているとき
の高負荷時の増量は低く抑えられて燃費及びエミッショ
ンの悪化が抑制されるため、高負荷運転時において加速
性の向上及び燃費・エミッションの悪化の抑制が両立さ
れるという優れた効果がある。
According to the present invention described above, the high load increase is set to be larger as the shift position is lower. Therefore, during high-load operation where the shift position tends to be low, such as when climbing a slope or sudden acceleration, the basic injection amount is greatly increased and acceleration performance is improved, and during high-load operation when driving at the same high shift position during general driving. Since the increase in fuel consumption is kept low and deterioration of fuel efficiency and emissions is suppressed, there is an excellent effect of improving acceleration and suppressing deterioration of fuel economy and emissions during high-load operation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】クレーム対応図である。FIG. 1 is a complaint correspondence diagram.

【図2】本発明実施例の概略構成図である。FIG. 2 is a schematic configuration diagram of an embodiment of the present invention.

【図3】ECU及びその周辺の構成を示したブロック図
である。
FIG. 3 is a block diagram showing the configuration of an ECU and its surroundings.

【図4】最終噴射時間の設定する際のECUの作動を示
したフローチャートである。
FIG. 4 is a flowchart showing the operation of the ECU when setting the final injection time.

【図5】シフト位置補正値設定時のECUの作動を示し
たフローチャートである。
FIG. 5 is a flowchart showing the operation of the ECU when setting a shift position correction value.

【図6】高負荷増量補正係数設定時のECUの作動を示
したフローチャートである。
FIG. 6 is a flowchart showing the operation of the ECU when setting a high load increase correction coefficient.

【図7】シフト位置とシフト位置補正値との関係を示し
た特性図である。
FIG. 7 is a characteristic diagram showing the relationship between shift position and shift position correction value.

【符号の説明】[Explanation of symbols]

31  エアフロメータ 38  回転センサ 40  ECU 50  車速センサ 31 Air flow meter 38 Rotation sensor 40 ECU 50 Vehicle speed sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内燃機関の運転状態を検出する運転状
態検出手段と、前記運転状態に基づいて前記内燃機関が
要求する基本噴射量を算出する基本噴射量算出手段と、
前記内燃機関の高負荷状態を検出する高負荷検出手段と
、前記高負荷状態に基づいて前記基本噴射量を増量補正
するための基本高負荷増量値を設定する高負荷増量設定
手段と、前記内燃機関のシフト位置を検出するシフト位
置検出手段と、前記シフト位置が低い程前記基本高負荷
増量を大きく補正する補正手段と、この補正手段により
補正された値に基づいて前記基本噴射量を補正し、最終
噴射時間を設定する最終噴射時間設定手段と、を備えた
ことを特徴とする内燃機関の空燃比制御装置。
1. Operating state detection means for detecting an operating state of an internal combustion engine; basic injection amount calculation means for calculating a basic injection amount required by the internal combustion engine based on the operating state;
a high load detection means for detecting a high load state of the internal combustion engine; a high load increase setting means for setting a basic high load increase value for increasing the basic injection amount based on the high load state; a shift position detection means for detecting a shift position of the engine; a correction means for correcting the basic high load increase to a greater extent as the shift position is lower; and a correction means for correcting the basic injection amount based on the value corrected by the correction means. An air-fuel ratio control device for an internal combustion engine, comprising: final injection time setting means for setting a final injection time.
JP12126091A 1991-05-27 1991-05-27 Air-fuel ratio controller of internal combustion engine Withdrawn JPH04350340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12126091A JPH04350340A (en) 1991-05-27 1991-05-27 Air-fuel ratio controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12126091A JPH04350340A (en) 1991-05-27 1991-05-27 Air-fuel ratio controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04350340A true JPH04350340A (en) 1992-12-04

Family

ID=14806856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12126091A Withdrawn JPH04350340A (en) 1991-05-27 1991-05-27 Air-fuel ratio controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04350340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061536A (en) * 2000-08-16 2002-02-28 Robert Bosch Gmbh Method and device for operation of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061536A (en) * 2000-08-16 2002-02-28 Robert Bosch Gmbh Method and device for operation of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4597156B2 (en) Control device for torque demand type internal combustion engine
JPH1182090A (en) Internal combustion engine control system
JPH04350340A (en) Air-fuel ratio controller of internal combustion engine
US11149671B2 (en) Vehicle system
JPS60138245A (en) Fuel injection control device of engine
JP2016037999A (en) Shift control device
JP2830413B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0421060B2 (en)
JPH10159627A (en) Deceleration controller for internal combustion engine
JP2526617B2 (en) Fuel supply control device for internal combustion engine
JP3158824B2 (en) Acceleration slip control device based on engine output and boost pressure
JP2002061528A (en) Fuel injection control device
JP3003468B2 (en) Ignition timing control device
JP2007099225A (en) Vehicular automatic travel control device
JP2643922B2 (en) Fuel supply control device for internal combustion engine
JPH0245631A (en) Fuel feed controller for internal combustion engine
JPS59183039A (en) Fuel control method for engine used in vehicle
JP2873504B2 (en) Engine fuel control device
JP2606246B2 (en) Engine ignition timing control device
JPS597741A (en) Method of controlling air/fuel ratio in internal-combustion engine
JP3596075B2 (en) Fuel supply control device for internal combustion engine for vehicle
JP2754753B2 (en) Control device for internal combustion engine
JPH0719150A (en) Ignition timing control device for engine
JPH0684731B2 (en) Vehicle drive wheel slip control device
JPS6291641A (en) Torque control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806