JPS60251511A - Vertically magnetized recording medium - Google Patents

Vertically magnetized recording medium

Info

Publication number
JPS60251511A
JPS60251511A JP10818284A JP10818284A JPS60251511A JP S60251511 A JPS60251511 A JP S60251511A JP 10818284 A JP10818284 A JP 10818284A JP 10818284 A JP10818284 A JP 10818284A JP S60251511 A JPS60251511 A JP S60251511A
Authority
JP
Japan
Prior art keywords
layer
magnetic
thin film
recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10818284A
Other languages
Japanese (ja)
Inventor
Riichi Tanaka
田中 利一
Etsuko Nakamura
悦子 中村
Tetsuo Samoto
哲雄 佐本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10818284A priority Critical patent/JPS60251511A/en
Publication of JPS60251511A publication Critical patent/JPS60251511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a recording medium suitable for recording and reproduction at high density by providing a high permeability thin film layer consisting of an Fe-Ni alloy in such a manner that the direction of the axis of easy magnetization in said layer coincides approximately with the direction of the magnetic lines of force within the film layer and providing a vertically magnetized recording layer consisting of Co-Cr on said layer. CONSTITUTION:The high permeability magnetic thin film layer 2 consisting of an Fe-Ni alloy (''Permalloy(R)'') is so formed on a non-magnetic substrate 1 that the direction of the axis of easy magnetization in the film 2 coincides approximately with the direction of the magnetic lines of force (the longitudinal direction of the vertically magnetized recording medium 10) in the layer 2. The vertically magnetized recording layer 3 consisting of Co-Cr is then formed on the layer 2. A thin Ti film 4 may be formed if necessary on the layer 2 within a 100-500Angstrom thickness range in order to increase the film growing speed for formation of the layer 3 by vapor deposition. The temp. at which the film 4 and the layer 3 are formed by vapor deposition is enough at <=180 deg.C and therefore the high-density recording medium 10 having an excellent surface characteristic and excellent recording and reproducing efficiency is obtd. by using polyimide, polyester, etc. for the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Co−Cr合金により形成される垂直磁化記
録層とF”e−Ni合金(所謂パーマロイ)により形成
される高透磁率磁性薄膜層(面内磁化層)の2層膜を有
し、記録媒体磁性面に対して垂直方向の残留磁化を用い
て情報の記録を行なうための垂直磁化記録媒体に関する
ものであり、さらに詳細には高透磁率磁性薄膜層の改良
に関するものであZ、 〔背景技術とその問題点] 従来、例えばオーティオテーブレコーダやビテオテーブ
レコーダ等の磁気記録再生装置においては、一般に基体
上に被着形成される磁気記録層に対して水平方向の磁化
(面内方向磁化)を行なってその記録を行なっている。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a perpendicular magnetic recording layer formed of a Co-Cr alloy and a high permeability magnetic thin film formed of an F"e-Ni alloy (so-called permalloy). The present invention relates to a perpendicular magnetization recording medium that has a two-layer film (in-plane magnetization layer) and records information using residual magnetization perpendicular to the magnetic surface of the recording medium. This relates to the improvement of high magnetic permeability magnetic thin film layers. [Background technology and problems thereof] Conventionally, in magnetic recording and reproducing devices such as audio table recorders and video table recorders, magnetic thin film layers are generally deposited on a substrate. Recording is performed by magnetizing the magnetic recording layer in the horizontal direction (in-plane direction magnetization).

ところが、この面内方向磁化によ乞記録の場合、記録信
号が短波長になるにつれ、すなわち記録密度が高まるに
つれ、媒体内の反磁界が増して残留磁束密度が減衰し、
再生出力が減少するという欠点を有している。
However, in the case of recording using in-plane direction magnetization, as the wavelength of the recording signal becomes shorter, that is, as the recording density increases, the demagnetizing field within the medium increases and the residual magnetic flux density attenuates.
This has the disadvantage that the reproduction output decreases.

そこでさらに従来、磁気記録媒体の記録層の厚さ方向の
磁化により記録を行なう垂直磁化記録方式が提案されて
おり、この垂直磁化記録方式によれば記録波長が短波長
になるにしたがい減磁界が小さくなることから、特に短
波長記録、高密度記録において上述した面内方向磁化に
よる記録より有利であることが知られている。
Therefore, a perpendicular magnetization recording method has been proposed in which recording is performed by magnetization in the thickness direction of the recording layer of a magnetic recording medium. According to this perpendicular magnetization recording method, the demagnetizing field decreases as the recording wavelength becomes shorter. It is known that it is more advantageous than the above-mentioned recording using in-plane direction magnetization, especially in short wavelength recording and high-density recording, because it is smaller.

そして、この種の記録方式に用いられる垂直磁化記録媒
体としては、高分子フィルム等の非磁性基鈑上に直接C
o−Cr合金により垂直磁化記録層を形成した単層膜垂
直磁化記録媒体や、上記非磁性基板と垂直磁化記録層の
間にFe”Ni合金からなる高透磁率磁性薄膜層を設け
た2層膜垂直磁化記録媒体等が考えられているが、特に
記録効率、再生効率共に優れた2層膜垂直磁化記録媒体
が注目されている。
The perpendicular magnetization recording medium used in this type of recording method is a C
A single-layer perpendicular magnetic recording medium in which a perpendicular magnetic recording layer is formed using an o-Cr alloy, or a two-layer perpendicular magnetic recording medium in which a high permeability magnetic thin film layer made of a Fe''Ni alloy is provided between the nonmagnetic substrate and the perpendicular magnetic recording layer. Film perpendicular magnetization recording media have been considered, but two-layer film perpendicular magnetization recording media are attracting particular attention because of their excellent recording efficiency and reproduction efficiency.

ところで、この2層膜垂直磁化記録媒体においては、上
記高透磁率磁性薄膜の磁気特性が重要で、例えば上記高
透磁率磁性薄膜の透磁率が低くなるとこの高透磁率磁性
薄膜が磁化され難くなり、記録効率や再生効率が低下し
てしまう。そこで、上記高透磁率磁性薄膜の材質として
高透磁率を有するF”c−Ni合金が使用されているが
、さらにこのFe−Ni合金膜がどのような磁気的性質
を示すのが好ましいかは未だ解明されていない。例えば
、特開昭58−68226号明細書には、上記高透磁率
磁性薄膜の磁化容易軸が面内になく、のぞましくは面に
ほぼ垂直方向をむいているか、あるいは面内でも高透磁
率磁性薄膜層に流れる磁力線に対しほぼ直角方向をむい
ている場合に高周波領域で高効率な垂直磁化記録が可能
となる旨の記載があるが、本発明者等の実験によれば1
0〜1001!viT(z 程度の実用周波数領域では
このような効果が期待できないことが判明した。
By the way, in this two-layer film perpendicular magnetization recording medium, the magnetic properties of the high permeability magnetic thin film are important; for example, if the permeability of the high permeability magnetic thin film decreases, it becomes difficult to magnetize the high permeability magnetic thin film. , the recording efficiency and reproduction efficiency will decrease. Therefore, F''c-Ni alloy having high magnetic permeability is used as the material of the above-mentioned high magnetic permeability magnetic thin film, but it is still unclear what kind of magnetic properties this Fe-Ni alloy film should exhibit. For example, in Japanese Patent Application Laid-Open No. 58-68226, it is stated that the axis of easy magnetization of the above-mentioned high permeability magnetic thin film is not in the plane, but is preferably oriented almost perpendicular to the plane. There is a description that highly efficient perpendicular magnetization recording is possible in the high frequency region when the direction is almost perpendicular to the magnetic field lines flowing in the high permeability magnetic thin film layer even in the plane. According to experiments 1
0~1001! It has been found that such an effect cannot be expected in the practical frequency range of about viT(z).

〔発明の目的〕[Purpose of the invention]

そこで本発明は、上述の従来のものの有する欠点を解消
するために提案されたものであって、2層膜垂直磁化記
録媒体の高透磁率磁性薄膜層として優れた磁気的性質を
示すFe−Ni合金薄膜を提供し、もって記録効率や再
生効率の大きな垂直磁化記録媒体を提供することを目的
とする。
Therefore, the present invention has been proposed in order to eliminate the drawbacks of the above-mentioned conventional ones, and uses Fe-Ni, which exhibits excellent magnetic properties, as a high permeability magnetic thin film layer of a two-layer perpendicular magnetization recording medium. The present invention aims to provide a perpendicular magnetization recording medium with high recording efficiency and high reproduction efficiency by providing an alloy thin film.

〔発明の概要〕[Summary of the invention]

すなわち、本発明に係る垂直磁化記録媒体は基体上にF
e−Ni合金よりなる高透磁率磁性薄膜層及びCo−C
r合金よりなる垂直磁化記録層をそれぞれ蒸着形成して
なる垂直磁化記録媒体において、上記高透磁率磁性薄膜
層の磁化容易軸の方向がこの高透磁率磁性薄膜層内の磁
力線の方向と略一致することを特徴とするものであって
、垂直磁化記録層体の長手方向に磁化され易いFe−N
i 合金薄膜を形成することにより、記録効率及び再生
効率の向上を図ろうとするものである。
That is, the perpendicular magnetization recording medium according to the present invention has F on the substrate.
High permeability magnetic thin film layer made of e-Ni alloy and Co-C
In a perpendicular magnetic recording medium formed by vapor-depositing perpendicular magnetic recording layers made of r alloy, the direction of the axis of easy magnetization of the high magnetic permeability magnetic thin film layer substantially coincides with the direction of the magnetic force lines in the high magnetic permeability magnetic thin film layer. Fe-N which is easily magnetized in the longitudinal direction of the perpendicular magnetization recording layer body.
i By forming an alloy thin film, it is intended to improve recording efficiency and reproduction efficiency.

本発明に係る垂直磁化記録媒体10は、第1図に示すよ
うに、非磁性基板1上にFe−Ni合金からなる高透磁
率磁性薄膜2とCo−Cr合金からなる垂直磁化記録層
3とをTi薄膜4を介して積層形成して構成されるが、
ここで重要なことは、上記高透磁率磁性薄膜層2を構成
するFe−Ni合金薄膜の磁化容易軸の方向をこの高透
磁率磁性薄膜層2内の磁力線の向き(通常は垂直磁化記
録媒体10の長手方向)と一致させておくことである。
As shown in FIG. 1, a perpendicular magnetization recording medium 10 according to the present invention includes a high permeability magnetic thin film 2 made of an Fe-Ni alloy and a perpendicular magnetization recording layer 3 made of a Co-Cr alloy on a nonmagnetic substrate 1. It is constructed by laminating layers with a Ti thin film 4 interposed therebetween.
What is important here is that the direction of the easy axis of magnetization of the Fe-Ni alloy thin film constituting the high permeability magnetic thin film layer 2 is determined by the direction of the magnetic force lines within this high permeability magnetic thin film layer 2 (normally perpendicular magnetic recording medium). 10).

すなイつち、上記垂直磁化記録媒体10におし)では、
第2図に示すように、主磁極5と補磁極6とを備えてな
る垂直磁気ヘッド20を図中矢印X方向(垂直磁化記録
媒体10の長手方向)に摺接移動し、上記主磁極5から
出る磁力線(図中、破線で示す。)により上記垂直磁化
記録層3を厚さ方向に磁化するとともに、上記磁力線を
面内磁化層である高透磁率磁性薄膜層2を経て補助磁極
6に流すことにより記録・再生を行なうわけであるが、
上記Fe−Ni合金薄膜では主に磁壁移動によって磁化
が行なわれるために印加される磁場の方向と磁化容易軸
が平行であるときに最も磁化され易くなり、したがって
上記高速磁率磁性薄膜層2に磁力線が流れ易くなるので
ある。本発明者等の実験によれば、第3図に示すように
、実用周波数領域である1 00h打−1z以下の周波
数領域では、Pe−Ni合金薄膜の抗磁力Hcが小さい
磁化容易軸方向の透磁率(図中、曲線a)のほうが抗磁
力Hcが大きい磁化困難軸方向の透磁率(図中、曲線b
)よりも大きく、磁化され易いことが分かった。
In other words, in the perpendicular magnetization recording medium 10),
As shown in FIG. 2, a perpendicular magnetic head 20 comprising a main magnetic pole 5 and a complementary magnetic pole 6 is slid in the direction of the arrow X in the figure (the longitudinal direction of the perpendicular magnetization recording medium 10), and the main magnetic pole 5 is The perpendicular magnetization recording layer 3 is magnetized in the thickness direction by magnetic lines of force (indicated by broken lines in the figure) emanating from the magnetic field, and the lines of magnetic force are passed through the high permeability magnetic thin film layer 2, which is an in-plane magnetization layer, to the auxiliary magnetic pole 6. Recording and playback are performed by streaming,
Since the Fe-Ni alloy thin film is magnetized mainly by domain wall movement, it is most easily magnetized when the direction of the applied magnetic field and the axis of easy magnetization are parallel. This makes it easier to flow. According to the experiments conducted by the present inventors, as shown in Fig. 3, in the practical frequency range of 100h-1z or less, the coercive force Hc of the Pe-Ni alloy thin film is small in the direction of the easy axis of magnetization. The magnetic permeability (curve a in the figure) is higher in the direction of the hard magnetization axis where the coercive force Hc is larger (the curve b in the figure).
) and was found to be easily magnetized.

上記高透磁率磁性薄膜層2を構成するFe−Ni合金薄
膜に一軸磁気異方性を生じさせ磁化容易軸を上述の磁力
線の流れる方向、すなわち垂直磁化記録媒体10の長手
方向に設定するためには、上記Fe−Ni合金薄膜をス
パック法や蒸着法等の真空蒸着技術によって作製する際
に、垂直磁化記録媒体10の長手方向に数エルステッド
程度の磁場を印加しておけばよい。あるいは、磁場偏向
型電子銃による電子ビーム加熱方式の真空蒸着装置では
、電子ビームと直交する方向に磁場がかかつているので
、基板1の位置を適当に選定し、この磁場を利用して磁
化容易軸の方向を設定してもよい。
In order to produce uniaxial magnetic anisotropy in the Fe-Ni alloy thin film constituting the high permeability magnetic thin film layer 2 and to set the axis of easy magnetization in the direction in which the above-mentioned lines of magnetic force flow, that is, in the longitudinal direction of the perpendicular magnetization recording medium 10. When producing the Fe--Ni alloy thin film using a vacuum deposition technique such as a spuck method or an evaporation method, a magnetic field of approximately several oersteds may be applied in the longitudinal direction of the perpendicular magnetization recording medium 10. Alternatively, in a vacuum evaporation apparatus using an electron beam heating method using a magnetic field deflection type electron gun, a magnetic field is applied in a direction perpendicular to the electron beam, so the position of the substrate 1 is appropriately selected and this magnetic field is used to facilitate magnetization. The direction of the axis may also be set.

上記高透磁率磁性薄膜層2は、例えばIi”e−Ni合
金インゴットを蒸発源として用い、スパック法や蒸着法
等によって形成されるが、その膜厚は通常0.2〜1.
0μ程度に設定される。
The high permeability magnetic thin film layer 2 is formed, for example, by using an Ii''e-Ni alloy ingot as an evaporation source and by a spuck method, a vapor deposition method, etc., and its film thickness is usually 0.2 to 1.
It is set to about 0μ.

一方、上記垂直磁化記録層3は、Crを10〜z5原子
係を含み残部CoからなるCo−Cr 合金をスパッタ
法や蒸着法等により被着することにより作製きれるもの
であって、これによって垂直方向の配向に優れたものが
得られる。
On the other hand, the perpendicular magnetization recording layer 3 can be fabricated by depositing a Co-Cr alloy consisting of 10 to z5 atoms of Cr and the remainder Co by sputtering or vapor deposition. A product with excellent orientation can be obtained.

また、上記Ti薄膜4は、上記垂直磁化記録層3の膜成
長速度を向上し優れたCo−Cr合金膜を形成するため
に設けられるものであって、その膜厚は]00〜500
λに選定される。上記Ti薄膜4の膜厚カ月00λ未満
では、T1 の連続膜が形成しにくく、Tiの下地膜と
しての効果が不光分となる虞れがあり、また上記膜厚が
500Aを越えてもCo−Cr合金膜の磁気的特性や機
械的特性にこれ以上の効果が認められない。なお、この
Ti 薄膜4は、場合によっては無くともよい。
The Ti thin film 4 is provided to improve the film growth rate of the perpendicular magnetization recording layer 3 and form an excellent Co-Cr alloy film, and has a thickness of ]00 to 500.
λ is selected. If the film thickness of the Ti thin film 4 is less than 00 λ, it will be difficult to form a continuous film of T1, and the effect of Ti as a base film may become opaque. No further effects were observed on the magnetic properties or mechanical properties of the Cr alloy film. Note that this Ti thin film 4 may be omitted depending on the case.

さらに、上記Ti薄膜4や垂直磁化記録層3等を蒸着形
成する際の基板1温度としては、180°C以下で充分
であり、また基板1の材質としてはポリイミドや安価で
表面性に優れたポリエチレンテレフタレート等が使用可
能である。
Furthermore, the temperature of the substrate 1 when depositing the Ti thin film 4, the perpendicular magnetic recording layer 3, etc. is sufficient to be 180°C or less, and the material of the substrate 1 may be polyimide or other materials that are inexpensive and have excellent surface properties. Polyethylene terephthalate, etc. can be used.

このように構成される垂直磁化記録媒体10においては
、面内磁化層である高透磁率磁性薄膜層2が長手方向に
磁化されやすくなっており、したがって記録効率や再生
効率が大きくなっている。
In the perpendicular magnetization recording medium 10 configured in this manner, the high permeability magnetic thin film layer 2, which is an in-plane magnetization layer, is easily magnetized in the longitudinal direction, and therefore recording efficiency and reproduction efficiency are increased.

ところで、例えば回転ヘッド型の記録再生装置等のよう
に垂直磁気ヘッド20の移動方向が垂直磁化記録媒体1
0の長手方向と一致しない場合もあるが、この場合にも
高透磁率磁性薄膜層2の磁化容易軸方向を磁力線の方向
と平行になるようにすれば良いことは言うまでもない。
By the way, for example, in a rotary head type recording/reproducing device, the moving direction of the perpendicular magnetic head 20 is set to the perpendicular magnetization recording medium 1.
In some cases, the axis of easy magnetization of the high permeability magnetic thin film layer 2 may not coincide with the longitudinal direction of 0, but it goes without saying that the direction of the easy axis of magnetization of the high permeability magnetic thin film layer 2 may be set parallel to the direction of the lines of magnetic force.

以下、本発明の具体的な実施例について説明する。Hereinafter, specific examples of the present invention will be described.

〔実施例〕〔Example〕

ポリイミド基板上に、F”e−Ni合金インコツト(F
e 21.5%、Ni 7 L5%)ヲ蒸発源トシ、真
空度2.OX 10−6Torr 、基板温度260°
C5蒸着速度39A/(8)の条件で、基板の長手方向
Oこ2エルステツドの磁場を印加しなから膜厚0.39
μmのFe−Ni合金薄膜を蒸着形成した。
On the polyimide substrate, F”e-Ni alloy Inkotsuto (F
e21.5%, Ni7L5%) evaporation source, vacuum degree 2. OX 10-6 Torr, substrate temperature 260°
At a C5 deposition rate of 39A/(8), a film thickness of 0.39 was obtained without applying a magnetic field of 0 O in the longitudinal direction of the substrate.
A Fe-Ni alloy thin film of μm thickness was formed by vapor deposition.

次いて、このFe−Ni合金簿膜上に、真空度2゜Q 
X ] ]Q−6Torr基板温度180°C1蒸着速
度14λ/就の条件て膜厚3ooiのTi薄膜を形成し
た。
Next, on this Fe-Ni alloy film, a vacuum degree of 2°Q was applied.
A Ti thin film having a film thickness of 30 oi was formed under the following conditions: X ] ] Q-6 Torr substrate temperature 180° C1 evaporation rate 14 λ/.

さらに、上記’pi薄膜上に、真空度2.0X10−6
”、rorr、基板温度180°C1蒸着速度32A/
eecの条件て膜厚0.1μmのCo−Cr合金膜を蒸
着形成してサンプルテープを作製した。
Furthermore, on the above 'pi thin film, vacuum degree 2.0X10-6
”, rorr, substrate temperature 180°C1 deposition rate 32A/
A sample tape was prepared by depositing a Co--Cr alloy film with a thickness of 0.1 μm under eec conditions.

得られたサンプルテープの抗磁力Hcや磁化するに要す
る磁場の大きさを、テープ長手方向及びテープ幅方向に
ついてそれぞれ調べた。結果を次表に示す。なお、表中
H(0,8Is)は飽和磁化の80%まで磁化するに要
する磁場の大きさであり、H(0,9Is )は飽和磁
化の90係まで磁化するに要する磁場の大きさである。
The coercive force Hc of the obtained sample tape and the magnitude of the magnetic field required for magnetization were examined in the tape longitudinal direction and tape width direction. The results are shown in the table below. In addition, in the table, H(0,8Is) is the magnitude of the magnetic field required to magnetize to 80% of the saturation magnetization, and H(0,9Is) is the magnitude of the magnetic field required to magnetize to the 90th factor of the saturation magnetization. be.

表 この表より、得られたサンプルテープにおいである場合
に記録効率、再生効率が大きいことが分かる。
From this table, it can be seen that the recording efficiency and reproduction efficiency of the obtained sample tapes are high.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明においては面内磁化層である
高透磁率磁性薄膜層の磁化容易軸の方向をこの薄膜層内
の磁力線の向きと一致させているので、上記高透磁率磁
性薄膜層が優れた磁気特性を示し、記録効率や再生効率
の大きな垂直磁化記録媒体が得られる。
As described above, in the present invention, the direction of the axis of easy magnetization of the high permeability magnetic thin film layer, which is an in-plane magnetization layer, is made to match the direction of the magnetic lines of force within this thin film layer. A perpendicular magnetization recording medium in which the layer exhibits excellent magnetic properties and high recording efficiency and high reproduction efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る垂直磁化記録媒体の構成を概略的
に示す要部断面図であり、第2図は垂直磁化記録方式を
説明する模式図である。 第3図はFe−Ni合金薄膜の透磁率周波数特性を磁化
容易軸方向と磁化困難軸方向について示す特性図である
。 1・・・・・・・・・・・・基板 2・・・・・・・・・・・・高透磁率磁性薄膜層3・・
・・・・・・・・・・垂直磁化記録層特許出願人 ソニ
ー株式会社 代理人 弁理士 小 池 晃 同 1) 村 榮 − 第1図 1凸 第2図 第3図 ↑
FIG. 1 is a sectional view of a main part schematically showing the configuration of a perpendicular magnetization recording medium according to the present invention, and FIG. 2 is a schematic diagram illustrating a perpendicular magnetization recording method. FIG. 3 is a characteristic diagram showing the magnetic permeability frequency characteristics of the Fe--Ni alloy thin film in the easy axis direction and the hard axis direction. 1...Substrate 2...High permeability magnetic thin film layer 3...
...... Perpendicular magnetization recording layer patent applicant Sony Corporation representative Patent attorney Kodo Koike 1) Sakae Mura - Figure 1 1 Convex Figure 2 Figure 3 ↑

Claims (1)

【特許請求の範囲】[Claims] 基体上にFe−Ni 合金よりなる高透磁率磁性薄膜層
及びCo−Cr合金よりなる垂直磁化記録層をそれぞれ
蒸着形成してなる垂直磁化記録媒体において、上記高透
磁率磁性薄膜層の磁化容易軸の方向がこの高透磁率磁性
薄膜層内の磁力線の方向と略一致することを特徴とする
垂直磁化記録媒体。
In a perpendicular magnetization recording medium in which a high permeability magnetic thin film layer made of an Fe-Ni alloy and a perpendicular magnetization recording layer made of a Co-Cr alloy are formed on a substrate by vapor deposition, the easy axis of magnetization of the high permeability magnetic thin film layer is A perpendicular magnetization recording medium characterized in that the direction of the magnetic field lines substantially coincides with the direction of the magnetic lines of force within the high permeability magnetic thin film layer.
JP10818284A 1984-05-28 1984-05-28 Vertically magnetized recording medium Pending JPS60251511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10818284A JPS60251511A (en) 1984-05-28 1984-05-28 Vertically magnetized recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10818284A JPS60251511A (en) 1984-05-28 1984-05-28 Vertically magnetized recording medium

Publications (1)

Publication Number Publication Date
JPS60251511A true JPS60251511A (en) 1985-12-12

Family

ID=14478070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10818284A Pending JPS60251511A (en) 1984-05-28 1984-05-28 Vertically magnetized recording medium

Country Status (1)

Country Link
JP (1) JPS60251511A (en)

Similar Documents

Publication Publication Date Title
US5815342A (en) Perpendicular magnetic recording/reproducing apparatus
JPH01158618A (en) Magnetic recording medium
JPH07503337A (en) Magnetic recording media using soft magnetic materials
EP1324317B1 (en) Perpendicular magnetic recording medium and information storing device
JPS60251511A (en) Vertically magnetized recording medium
JPH09298114A (en) Vertical magnetic recording medium and magnetic recording device using it
JP3050421B2 (en) Magnetic recording media
OUCHI Review on recent developments of perpendicular recording media
JPS6029927A (en) Vertical magnetic recording medium
US4859501A (en) Method for providing a perpendicular recording medium for use with a ring-shaped recording and reproducing head
JPS5987612A (en) Vertical magnetic recording system
JPH0250309A (en) Magnetic head core
JPH0532809B2 (en)
JP2715783B2 (en) Magnetic recording media
JP2508639B2 (en) Perpendicular magnetic recording media
JPS61104431A (en) Production of vertical recording magnetic medium
JPH0570205B2 (en)
JPH01173312A (en) Magnetic recording medium
JPH0224815A (en) Magnetic recording medium
JPS58171717A (en) Magnetic recording medium
JPS61122919A (en) Vertical magnetic recording medium
JPH0532808B2 (en)
JPH0836714A (en) Magnetoresistance effect element, magnetic head and magnetic recording apparatus
JPH07122931B2 (en) Perpendicular magnetic recording medium
JP2001266325A (en) Perpendicular magnetic recording medium