JPS60247408A - Method for controlling sheet thickness during passing through continuous hot rolling mill - Google Patents

Method for controlling sheet thickness during passing through continuous hot rolling mill

Info

Publication number
JPS60247408A
JPS60247408A JP59102385A JP10238584A JPS60247408A JP S60247408 A JPS60247408 A JP S60247408A JP 59102385 A JP59102385 A JP 59102385A JP 10238584 A JP10238584 A JP 10238584A JP S60247408 A JPS60247408 A JP S60247408A
Authority
JP
Japan
Prior art keywords
stand
deviation
rolling
screw
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59102385A
Other languages
Japanese (ja)
Other versions
JPH0318965B2 (en
Inventor
Hiroshi Yoshida
博 吉田
Kenji Kataoka
健二 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59102385A priority Critical patent/JPS60247408A/en
Publication of JPS60247408A publication Critical patent/JPS60247408A/en
Publication of JPH0318965B2 publication Critical patent/JPH0318965B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/06Threading
    • B21B2273/08Threading-in or before threading-in

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To execute surely screw-down correction with fast response by detecting the deviation of rolling load and the deviation of screw-down position at the point of the time when the corresponding stand bites the front end of a material to be rolled, determining the screw-down correction rate of the succeeding stage according to the detected deviations and correcting the screw-down before the stand bites the front end. CONSTITUTION:The deviation DELTAPi of the rolling load and the deviation DELTASi of the screw-down position indicating the deviation from a preliminarily given target value are detected by the load cell 14i of the corresponding i-th stand and a screw-down position detector provided to a screw-down position control device 16i right after the rolls 12i of the corresponding i-th stand bites the front end 10A of the material 10 to be rolled. The prescribed calculation is made in a computer 20, etc. by the detected values thereof and the rolling reduction DELTASi+1* of the succeeding (i+1)-th stand is calculated. The screw-down position of the roll 12i+1 is changed by the screw-down position control device 16i+1 of the (i+1)-th stand before said stand bites the front end. As a result the safe control is executed even if there is a detection error in the rolling load and the screw-down position. The titled control of the sheet thickness by which the target sheet thickness is surely obtd. from the front end of the coil is thus executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【#集土の利用分野] 本発明は、熱間連続圧延機における通板時の板厚制御方
法に係り、特に、熱@連続仕上げ圧延機に適用するのに
好適な、熱間連続圧延機に被圧延材を通板する際の板厚
制御方法の改良に関する。 【従来の技術1 熱間連続圧延機、例えば熱間連続仕上げ圧延機の通板時
において、コイルの先端から良好な板厚を得るためには
、予め各スタンドの圧下位置を適正な値に設定(セット
アツプ)する必要がある。 従来、各スタンドの圧下設定は、過去の圧延データから
の類推、作業者の経験等から行われていたが、最近では
圧延理論式(圧延荷重式、変形抵抗式、被圧延材湿度式
等)を駆使して、計算機により行われることが多くなっ
てきている。 しかしながら、理論計算により各スタンドの圧下設定を
行ったとしても、実際にそれらが最適値となっていると
は肖い難く、良好な板厚がコイルの先端から得られると
は限らなかった。それは、セットアツプ計粋に用いる理
論式自体に精度ヒの問題が存在覆ること、及び、計算の
入力条件として必要な、放射温度計等により検出される
仕Fげ圧延機入側の被圧延材の温度、あるいは、ゲージ
メータ式等により算出される板厚に検出誤差が存在(る
ためである。このうち、前者の理論式については、圧延
実績データの集積により改善され得るが、慢者の仕上げ
圧延機入側の被圧延材温度や板厚に関しては、高精度に
測定することは現状では困難である。特に、温度測定は
、被圧延材の表面性状、あるいは水乗り等の問題により
、測定値と実際値が食違うことが多くあるだけでなく、
セットアツプ計算に必要であるのは板厚方向の平均温度
であり、これは実測表面温度から推定する以外に方法が
なかつ1=。 以上の点から、良好な板厚をコイルの先端から得るため
には、通板中に各スタンドの圧下位置を適正な値に修正
づる必要がある。この対策としては、板厚検出に殆ど遅
れのないゲージメータAGC(ΔutomaLic G
auge Control)を通板時から採用すること
が考えられるが、フィードバック1110であるため、
圧下装置の応答性が問題となり、」イルの先端から良好
な板厚を得ることは困難である。 又、その他の方法として、前段スタンドの圧延荷重It
差を検出し、これより変形抵抗偏差を算出し、変形抵抗
偏差が後段スタンドにおいても同一となると仮定して、
後段スタンドの圧下位置を短時間内に修正量る方法(特
公昭5l−2061)が提案されている。しかしながら
、変形抵抗は、被圧延材温度、圧下率、化学成分の複雑
な関数であり、前段スタンドの変形抵抗から後段スタン
ドの変形抵抗を予測することは困難であつlこ。 一方、発明者等は1.E記の問題点を解決するものとし
て、既に、特願昭58−156044において、連続圧
延機に通板する際に、被圧延材の先端が一ト流から1番
目のスタンドに噛み込まれた時点で、当該第1スタンド
の圧延荷重偏差及び圧下位置偏差を検出し、該圧延荷f
f1l差及び圧下位置偏差の検出値により次段第++1
スタンドでの被圧延材の温度偏差及び入側板厚偏差を予
測し、該温度偏差及び入側板厚偏差の予測値により第1
+1スタンドの圧下位置の修正量を算出し、被圧延材の
先端が第i+1スタンドに噛み込まれる前に、該第i+
1スタンドの圧下位置の修正を行うことを特徴とづる、
連続圧延機における通板時の板厚制御方法を提案してい
る。この方法は、被圧延材の先端が第1スタンドに噛ん
だ時の圧延荷重偏差及び圧下位″”Ill偏差のみを使
用して第i+1スタンドの圧下位置を速やかに修正プる
ものであるため、圧延荷重及び圧下位置の検出誤差が無
い場合には非常に有効な制御方法であり、応答が早く、
圧下修正を確実に行うことができ、従って、コイルの先
端から目標の板厚を得ることができるという利点を有す
る。しかしながら、圧延荷重や圧下位置の検出誤差があ
る場合には、制御が不安定になるという問題点を有して
いた。 1発明が解決しようとづる問題京】 本発明は、前記従来の問題点を解決するべくなされたも
ので、応答が早く、圧下修正を確実に行うことができ、
しかも、圧延荷重や圧下位置に検出WA差があっても安
定な制御を行って、コイルの先端から目標の板厚を確実
に得ることができる熱間連続圧延機にお
[Field of Application of Soil Collection] The present invention relates to a method for controlling plate thickness during sheet passing in a hot continuous rolling mill, and in particular, a hot continuous rolling mill suitable for application to a hot @ continuous finishing rolling mill. This invention relates to an improvement in a method for controlling plate thickness when passing a rolled material through the plate. [Conventional technology 1] In order to obtain a good thickness from the tip of the coil during sheet passing in a hot continuous rolling mill, such as a hot continuous finishing rolling mill, the rolling position of each stand must be set to an appropriate value in advance. (setup) is necessary. Traditionally, the rolling reduction setting for each stand was done by analogy with past rolling data, operator experience, etc., but recently rolling theory formulas (rolling load formula, deformation resistance formula, rolled material humidity formula, etc.) have been used. Increasingly, this is done using computers. However, even if the reduction settings for each stand are determined by theoretical calculations, it is difficult to see that they are actually the optimum values, and it is not always possible to obtain a good plate thickness from the tip of the coil. This is due to the fact that there is a problem with the accuracy of the theoretical formula used for setup planning, and the rolled material at the entrance of the finish rolling mill, which is detected by a radiation thermometer, etc., which is necessary as an input condition for calculation. This is because there is a detection error in the temperature of the plate or the plate thickness calculated by the gauge meter formula, etc. Among these, the former theoretical formula can be improved by accumulating rolling performance data, but the arrogant Currently, it is difficult to measure the temperature and thickness of the rolled material at the entrance of the finish rolling mill with high accuracy.In particular, temperature measurement is difficult due to problems such as the surface properties of the rolled material or water riding. Not only are there many discrepancies between measured values and actual values;
What is required for set-up calculations is the average temperature in the plate thickness direction, and there is no other way to estimate this other than from the measured surface temperature. From the above points, in order to obtain a good plate thickness from the tip of the coil, it is necessary to correct the lowering position of each stand to an appropriate value during threading. As a countermeasure for this, a gauge meter AGC (ΔautomaLic G
It is conceivable to adopt the control from the time of sheet threading, but since the feedback is 1110,
The responsiveness of the rolling down device becomes a problem, and it is difficult to obtain a good thickness from the tip of the roll. In addition, as another method, the rolling load It of the front stand
Detect the difference, calculate the deformation resistance deviation from this, and assume that the deformation resistance deviation is the same in the subsequent stand.
A method (Japanese Patent Publication No. 51-2061) has been proposed for correcting the lowering position of the rear stage stand within a short time. However, the deformation resistance is a complex function of the temperature of the rolled material, reduction rate, and chemical composition, and it is difficult to predict the deformation resistance of the rear stand from the deformation resistance of the front stand. On the other hand, the inventors 1. As a solution to the problem described in E, it has already been proposed in Japanese Patent Application No. 58-156044 that the tip of the material to be rolled gets caught in the first stand from the first stream when it is passed through a continuous rolling mill. At this point, the rolling load deviation and rolling position deviation of the first stand are detected, and the rolling load f
The next stage ++1 is determined based on the detected values of f1l difference and rolling position deviation.
The temperature deviation and entry side plate thickness deviation of the rolled material at the stand are predicted, and the first
The amount of correction of the rolling position of the +1 stand is calculated, and before the tip of the material to be rolled is bitten by the i+1 stand, the
It is characterized by correcting the rolling position of one stand.
This paper proposes a method for controlling plate thickness during rolling in a continuous rolling mill. This method quickly corrects the rolling position of the i+1st stand using only the rolling load deviation and the rolling position "Ill deviation" when the tip of the material to be rolled is bitten by the first stand. This is a very effective control method when there is no detection error in the rolling load or rolling position, and the response is quick.
This method has the advantage that the reduction can be reliably corrected, and therefore the target thickness can be obtained from the tip of the coil. However, if there is a detection error in the rolling load or the rolling position, there is a problem in that the control becomes unstable. 1 Problems to be Solved by the Invention The present invention has been made to solve the above-mentioned conventional problems, and has a quick response and can reliably perform reduction correction.
Moreover, even if there is a difference in detected WA in rolling load or rolling position, the continuous hot rolling mill can perform stable control and reliably obtain the target thickness from the tip of the coil.

【プる通板時の板厚制御方法を提供覆ることを目的とづる。 r問題点を解決するための手段】[The purpose is to provide a method for controlling sheet thickness during sheet threading. rMeans for solving problems]

本発明は、熱間連続圧延機に被圧延材を通板するに際し
て、第1図にその要旨を示で如く、被圧jiF、44の
先端が上流から第1番目のスタンドに噛み込まれた時点
で、当該第1スタンドの圧延荷重偏差及び圧下位置偏差
を検出し、該圧延荷重偏差及び圧下位置偏差の検出艙か
ら第1スタンドでの被圧延材の温度偏差及び出側板厚偏
差を算出し、該温度偏差及び出側板厚偏差の算出餠より
次段第i十1スタンドでの被圧延材の湿度偏差及び入側
板厚偏差を予測し、該温度偏差及び入側板厚偏差の予測
値より第1+1スタンドの圧下位置偏差畢を算出し、被
圧延材の先端が第1+1スタンドに噛み込まれる約に、
第i+1スタンドの圧下位置を11るようにして、前記
目的を達成したものである。 [作用1 本発明は、熱間連続仕上げ圧延における板厚変動の主た
る原因が温度変動であり、この温度変動は圧延荷重変動
として認識できることに着目してなされたものである。 本発明においては、第2図に示でように、被圧延材10
の先端10Aが当該第1スタンドのロール12iに噛み
込んだ直後に、予め与えられた目標値からのずれを表わ
す圧延荷重偏差ΔPi、同じく圧下位置@差へ81を、
それぞれ当該第1スタンドのロードセル14+及び圧下
位置制御装置161に備えられた圧下位置検出器(図示
省略)等により検出し、計I’1l1120等において
所定の演算を行い、次段第1+1スタンドの圧下修正−
ΔS、4Ixを輝出し、先端が第1+1スタンドに噛み
込む前に第i+1スタンドの圧下位置制御装置16 i
+1により、そのロール12 i−+の圧下位置を変更
覆る。図において、22はルーバである。 4体的には、被圧li1祠10の先端10Aが当該第1
スタンドに噛み込んだ直後の被圧延材温度偏差Δ−「1
′−は、H′下位置I差Δs+と圧延荷重偏差ΔP1の
検出値から、次式で計締される。 △l’ I′= L△P i −f (aP/aH) 
i×Δ1li−+ ’ + (a P 2” a S 
) ixΔS i、 ) 3 / (aP7”aT’)
 i −(1)ここで、添字iはスタンド番号、iP、
’aH>、(,3P/as)、(a P 、/a T 
) i、t、ツレツレ圧延荷申Pに及ぼす入側板厚H1
圧下位置S、被圧延材温度Tの影−係数、Δh’fはゲ
ージメータ板厚IIjA差である。 圧下條正章ΔS 、、、 Xをめるには、先端が次段第
1+1スタンドに噛み込む時の被圧g材温度偏差ΔT 
N、l’ と入側板J!鍋差ΔH+41″Fを予測(る
心数がある。このうち第1+1スタンドの温度B差Δi
’i!IPは、第1スタンドの湿度S差ΔT、6のみか
らも予測できるが、より以前の、第1スタンド〜第1−
1スタンドに先端が噛み込んだ時に既に計算されている
第1スタンド〜第i −1スタンドの温度@差△r1°
〜ΔT +−1’のそれぞれからも予測可能である。即
ち、第1+1スタンドの温度(II;fJΔI” 1i
vl 1′は、次式で予測できる。 Δ−ri◆1P=α1・rvj・ΔT+’+α2・rT
2・Δ1−26 十・・・+α1・fTi・ΔTi(−・・・(2)rv
+=T+° l・・1゜ r T 2 = T 2 ’ /′−1’+41’ ・
・・(3)f Ti=T+“ /′’r’ +や1゜こ
こで、王7は、基準1モ延スケジユールにおける被圧延
材の温度、αは、α1+α2+・・・十αi=1なる関
係を満足づる明み付は定数である。 例えば圧延荷重偏差△P1及び圧下位置m差△S1の検
出に誤差がない場合は、第1スタンドの温度偏差ΔT+
’ のみを使う方が第i+1スタンドの温度(liil
差ΔTi1l’ の予測N度が高いと考えられ、この場
合には、α1=α2=・・・=α+−+=O1αi=1
とずればよい(特願昭58−156044)。しかしな
がら、圧延荷重偏差ΔP1及び圧下位置偏差ΔS1の検
出誤差の恐れが大きい場合には、第1スタンド〜第1ス
タンドの温度fMlp@ΔT+’〜ΔT−の全てを使っ
て、第i+1スタンドの温度偏差ΔTi。11′を引す
る方が制■1としては安定である。即ち、第1+1スタ
ンドの温度偏差6丁+。IFを予測する際に、@1スタ
ンド〜第1スタンドの温度m差ΔT1〜T+ のどれを
使うかは、対象とする熱間連続仕上げ圧延機の操業条件
(特に圧延荷重偏差ΔPi及び圧下位置偏差ΔS1の検
出精度)によって決められるべきものである。 一方、第i+1スタンドの入側板J?偏差ΔHbl’は
、第1スタンドのゲージメータ出側板厚偏差ΔbicT
 と等しいから、次式でめることができる。 △t−b++’=Δh、t =ΔS1+ΔP l / M i ・・・〈4)ここで
、Mはミル定数である。 このようにして予測される第1+1スタンドの湿度偏差
ΔT1.1 と入側板厚偏差ΔFlb+’により予想さ
れる第1+1スタンドでの出側板厚aXΔh 1やIP
は次式で計算される。 Δ h i41’ = < (a P 7”a T )
 t −Δ T+−+’+ (a P 4a H) !
 ・ΔHb+Pl/Mt−+・・・ (5) 従って、第1+1スタンドの出側板厚偏差Δh i41
’を零にづるための圧下條正章ΔS ill xは、次
式によってめられる。 Δ S is言 ’−−[(Mb+ −(2)P/ah
’、) +や1 )/M+。11×Δhkl?′ ・・
・(6)ここで、(aP、/ah>は、圧延荷重Pに及
ぼす出鋼板厚りの影響係数である。 以上g1するに、本発明は、被圧延材10の先端10A
が当該第1スタンドに噛み込まれた時点で、圧延荷重偏
差ΔP+と圧下位置偏差ΔS1を検出し、次段第1+1
スタンドの被圧延材温度偏差Δ’rt++T′f、ti
ll(1) 〜(3)式、J:す、入m板厚偏差△Hk
l Pを前出く4)式より予測し、次に前出(5)、(
6)式を使って、第1+1スタンドの圧下修正単ΔS 
ill xをめ、先端10Aが第i+1スタンドに噛み
込まれる前に、第i+1スタンドの圧下を修正するもの
である。
In the present invention, when passing a material to be rolled through a continuous hot rolling mill, as shown in FIG. At this point, the rolling load deviation and rolling position deviation of the first stand are detected, and the temperature deviation and outlet side plate thickness deviation of the rolled material at the first stand are calculated from the detection chamber of the rolling load deviation and rolling position deviation. , Calculate the temperature deviation and exit side plate thickness deviation. From this calculation, predict the humidity deviation and entry side plate thickness deviation of the rolled material at the 11th stand of the next stage, and calculate the temperature deviation and the entry side plate thickness deviation from the predicted values. The rolling position deviation of the 1+1 stand is calculated, and when the tip of the material to be rolled is caught in the 1+1 stand,
The above object is achieved by setting the lowering position of the i+1th stand to 11. [Effect 1] The present invention has been made with the focus on the fact that the main cause of plate thickness variation in continuous hot finish rolling is temperature variation, and that this temperature variation can be recognized as rolling load variation. In the present invention, as shown in FIG.
Immediately after the tip 10A of the first stand is bitten by the roll 12i of the first stand, the rolling load deviation ΔPi, which represents the deviation from the predetermined target value, is also changed to the rolling position @ difference 81,
The pressure is detected by the load cell 14+ of the first stand and the pressure-down position detector (not shown) provided in the pressure-down position control device 161, and predetermined calculations are performed at the total I'1l1120, etc., and the pressure of the next stage 1+1 stand is detected. Correction-
ΔS, 4Ix, and before the tip of the i+1st stand is bitten into the 1st+1st stand, the lowering position control device 16 i
+1 changes the rolling position of the roll 12 i-+. In the figure, 22 is a louver. 4 Physically, the tip 10A of the pressurized li1 shrine 10 is the first
Temperature deviation of the rolled material immediately after it is bitten by the stand Δ−“1
'- is measured by the following formula from the detected value of H' lower position I difference Δs+ and rolling load deviation ΔP1. △l'I'= L△P i -f (aP/aH)
i×Δ1li−+ ′ + (a P 2” a S
) ixΔS i, ) 3 / (aP7"aT')
i - (1) where the subscript i is the stand number, iP,
'aH>, (,3P/as), (a P , /a T
) i, t, influence of entrance plate thickness H1 on smooth rolling load P
The shadow coefficient of the rolling position S and the temperature T of the rolled material, Δh'f, is the difference in gauge meter plate thickness IIjA. To set the pressure, Masaaki ΔS,...
N, l' and the entrance board J! Predict the pot difference ΔH + 41″F (there is a number of cores. Among these, the temperature difference Δi
'i! IP can be predicted only from the humidity S difference ΔT, 6 of the first stand, but it can be predicted from the earlier
Temperature difference @difference between the 1st stand and the i-1st stand that has already been calculated when the tip is bitten by the 1st stand △r1°
~ΔT +−1′ can also be predicted. That is, the temperature of the 1st +1st stand (II; fJΔI” 1i
vl 1' can be predicted by the following equation. Δ−ri◆1P=α1・rvj・ΔT+'+α2・rT
2・Δ1−26 10...+α1・fTi・ΔTi(−...(2) rv
+=T+° l・・1゜r T 2 = T 2 '/'-1'+41' ・
...(3)f Ti=T+"/''r' + or 1° Here, King 7 is the temperature of the rolled material in the standard 1-mole rolling schedule, and α is α1+α2+...10αi=1 The brightness that satisfies the relationship is a constant.For example, if there is no error in detecting the rolling load deviation △P1 and the rolling position difference △S1, the temperature deviation △T+ of the first stand
' It is better to use only the temperature of the i+1st stand (liil
It is considered that the prediction N degree of the difference ΔTi1l' is high, and in this case, α1=α2=...=α+-+=O1αi=1
(Japanese Patent Application No. 58-156044). However, if there is a large possibility of a detection error in the rolling load deviation ΔP1 and the rolling position deviation ΔS1, all of the temperatures fMlp@ΔT+' to ΔT− of the first stand to the first stand are used to calculate the temperature deviation of the ΔTi. Pulling 11' is more stable as a control (1). That is, the temperature deviation of the 1st + 1st stand is 6 +. When predicting IF, which of the temperature differences ΔT1 to T+ from @1 stand to 1st stand should be used depends on the operating conditions of the target continuous hot rolling mill (especially rolling load deviation ΔPi and rolling position deviation It should be determined by the detection accuracy of ΔS1). On the other hand, the entrance board J of the i+1st stand? The deviation ΔHbl' is the gauge meter exit plate thickness deviation ΔbicT of the first stand.
Since it is equal to , it can be determined by the following formula. Δt-b++'=Δh, t=ΔS1+ΔPl/Mi...<4) Here, M is Mill's constant. The exit plate thickness aXΔh 1 and IP at the 1+1 stand predicted from the humidity deviation ΔT1.1 of the 1+1 stand and the entry plate thickness deviation ΔFlb+' predicted in this way
is calculated using the following formula. Δ h i41' = < (a P 7"a T )
t −Δ T+−+′+ (a P 4a H)!
・ΔHb+Pl/Mt-+... (5) Therefore, the exit plate thickness deviation of the 1st+1st stand Δh i41
The compression ratio ΔS ill x to reduce ' to zero is determined by the following equation. Δ S is '--[(Mb+ -(2)P/ah
',) + and 1)/M+. 11×Δhkl? '...
-(6) Here, (aP, /ah> is the influence coefficient of the tapped plate thickness on the rolling load P.
When the first stand is caught in the first stand, the rolling load deviation ΔP+ and rolling position deviation ΔS1 are detected, and the next stage 1+1
Temperature deviation of rolled material in stand Δ'rt++T'f, ti
ll (1) ~ (3) formula, J: S, m plate thickness deviation △Hk
Predict lP from equation 4) above, then use equation (5) above, (
6) Using the formula, calculate the reduction correction unit ΔS of the 1st + 1st stand.
Ill x, the lowering of the i+1st stand is corrected before the tip 10A is bitten by the i+1st stand.

【実施例】【Example】

7スタンド熱間連続l上げ圧延機において、前出(2)
式における重み付は定数α1=α2=・・・=σi =
 1 / I として本発明を実施した場合(CI下木
本発法と称する)のコイル先端の板厚精度(最終出側板
厚偏差の標準偏差)を、無11Jlの従来法及びα1=
・・・=αr−+ = O1αi=1.0とおく特願昭
58−156044で提案した方法(以下比較法と称す
る)の」イル先端の板厚精度と比較した結果を下記第1
表に示づ。 第1表から明らかなように、本発明によれば、従来法だ
けでなく、比較法に比べても、特に薄物材に対して有効
であり、コイル先端の厚み不良が大幅に改善され、歩留
りの良好な圧延を実11!することが旬能となる。
In the 7-stand continuous hot rolling mill, the above (2)
The weighting in the formula is constant α1=α2=...=σi=
1 / I When the present invention is implemented (referred to as the CI Shimokimoto method), the plate thickness accuracy (standard deviation of the final exit plate thickness deviation) at the tip of the coil is compared to the conventional method with no 11 Jl and α1 =
... = αr-+ = O1 αi = 1.0 The results of comparing the plate thickness accuracy at the tip of the coil with the method proposed in Japanese Patent Application No. 156044 (hereinafter referred to as the comparative method), where
Shown in the table. As is clear from Table 1, the present invention is particularly effective for thin materials, compared not only with the conventional method but also with comparative methods, and the thickness defect at the tip of the coil is greatly improved, resulting in improved yield. Really good rolling of 11! Doing so becomes Shun Noh.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、応答が早く、圧下
修正を確実に行うことができ、しかも、圧延?1tjl
や汗下位闘に検出誤差がある場合でも安定な制御を行う
ことができる。従って、コイルの先端から目標板厚を確
実に得ることができるという優れた効果を右−4る。
As explained above, according to the present invention, the response is quick, the reduction can be reliably corrected, and the rolling correction is fast. 1tjl
Stable control can be performed even if there is a detection error in the low-level or sweat-related combat. Therefore, the excellent effect of being able to reliably obtain the target thickness from the tip of the coil is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る熱間速続圧延機における通板時
の板1シ制御方法の要旨を示で流れ図、第2図は、本発
明の詳細な説明するための、熱間連続仕上げ圧延機の板
厚制御I装圓の構成を示づブロック線図である。 10・・・被圧延材、 10A・・・先端、14i・・
・ロードセル、 △P1・・・圧延荷重偏差、 16i・・・圧下位−制御装置、 ΔS1・・・圧延荷重偏差、 20・・・計算機、 Δ314. *・・・圧下修正量、 ΔT+’・・・被圧延材温度偏差(算出値)、ΔhΦ・
・・ゲージメータ出側板厚fFl差(算出値)、ΔT 
ill F・・・被圧延材温度偏差(予測値)、ΔH1
,I ’・・・入側板厚偏差(予測lI)。 代理人 高 矢 論 (ほか1名) 第1図 第2図
Fig. 1 is a flowchart showing the gist of the method for controlling one sheet during sheet passing in a hot rapid continuous rolling mill according to the present invention, and Fig. 2 is a flowchart showing the outline of a method for controlling a sheet during rolling in a hot rapid continuous rolling mill according to the present invention. FIG. 2 is a block diagram showing the configuration of a plate thickness control I-ring of a finishing rolling mill. 10... Rolled material, 10A... Tip, 14i...
- Load cell, △P1... Rolling load deviation, 16i... Rolling lower-control device, ΔS1... Rolling load deviation, 20... Calculator, Δ314. *・・・Reduction correction amount, ΔT+'...Temperature deviation of rolled material (calculated value), ΔhΦ・
・Gauge meter outlet side plate thickness fFl difference (calculated value), ΔT
ill F...Temperature deviation of rolled material (predicted value), ΔH1
, I'... entry side plate thickness deviation (predicted lI). Agent Takaya Ron (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)熱間連続圧延機に被圧!fIを過板プるに際して
、 被圧延材の先端が上流から第1番目のスタンドに噛み込
まれた時点で、当DI’!+スタンドの圧延荷[i偏r
e及び圧下位置幅差を検出し、該圧延?Iji重Ill
差及び圧下位置幅差の検出値から第1スタンドでの被圧
延材の淘I¥m差及び出側板厚I5!を算出し、 該濃度偏差及び出側板IIF賜差の算出値より次段@1
+1スタンドでの被圧iI!祠の海崎偏差及び入側板J
9’l¥Fを予測し、 該温Iv鵠差及び入側板厚倦差の予測値より第1+1ス
タンドの圧下汀7置條正−を−出し、被圧延(Aの先端
が第1+1スタンドに噛み込まれる1%+1に、第1+
1スタンドの圧下位置を修正Jることを1する熱間連続
圧延機における通板時の板厚制御方法。
(1) Pressurized by hot continuous rolling mill! When pulling fI overboard, when the tip of the material to be rolled is caught in the first stand from upstream, the current DI'! + Rolling load of stand [i deviation r
e and the rolling position width difference are detected, and the rolling? Iji heavy Ill
From the detected values of the difference and the width difference of the rolling position, the difference in rolling I¥m of the material to be rolled at the first stand and the exit side plate thickness I5! Calculate the concentration deviation and the calculated value of the exit plate IIF difference to the next stage @1
Pressure iI with +1 stand! Kaizaki deviation and entrance board J of the shrine
9'l¥F was predicted, and from the predicted values of the temperature Iv difference and the entry side plate thickness difference, the rolling depth of the 1st + 1st stand was determined to be -, and the tip of the rolled material (the tip of A was placed on the 1st + 1st stand). 1% +1 to be bitten, 1st +
A method for controlling sheet thickness during sheet passing in a continuous hot rolling mill, which involves correcting the rolling position of one stand.
JP59102385A 1984-05-21 1984-05-21 Method for controlling sheet thickness during passing through continuous hot rolling mill Granted JPS60247408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102385A JPS60247408A (en) 1984-05-21 1984-05-21 Method for controlling sheet thickness during passing through continuous hot rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102385A JPS60247408A (en) 1984-05-21 1984-05-21 Method for controlling sheet thickness during passing through continuous hot rolling mill

Publications (2)

Publication Number Publication Date
JPS60247408A true JPS60247408A (en) 1985-12-07
JPH0318965B2 JPH0318965B2 (en) 1991-03-13

Family

ID=14325981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102385A Granted JPS60247408A (en) 1984-05-21 1984-05-21 Method for controlling sheet thickness during passing through continuous hot rolling mill

Country Status (1)

Country Link
JP (1) JPS60247408A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441407A (en) * 1987-07-08 1989-02-13 Rud Ketten Rieger & Dietz Slip preventive device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441407A (en) * 1987-07-08 1989-02-13 Rud Ketten Rieger & Dietz Slip preventive device

Also Published As

Publication number Publication date
JPH0318965B2 (en) 1991-03-13

Similar Documents

Publication Publication Date Title
JPS6289515A (en) Temperature control method and device for hot rolling stock
JPS6061108A (en) Control method of load distribution in continuous rolling mill
JP2005118840A (en) Plate shape control method in cold rolling
JPS60247408A (en) Method for controlling sheet thickness during passing through continuous hot rolling mill
JPH07144211A (en) Method for controlling meandering of tail end of sheet steel in hot finishing roll
JP3826762B2 (en) Thickness control method
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
KR100832974B1 (en) In-line feed backward cooling control method of hot strip
JPH0545325B2 (en)
JP3518504B2 (en) How to set cooling conditions for steel sheets
KR19990052681A (en) Prediction of High-Precision Plate Crown Considering Thickness Profile of Hot-rolled Plate Width
JPS6224809A (en) Method for controlling sheet width in hot rolling
JPS63171211A (en) Shape control method in plate rolling
JP6597565B2 (en) Thickness control method in cold rolling
JP3646622B2 (en) Sheet width control method
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JP2002346616A (en) Method for controlling sheet thickness
JPH08300024A (en) Method for controlling plate width in hot rolling
JPH0763747B2 (en) Thickness control method during strip running in hot continuous rolling mill
JP3152524B2 (en) Method of controlling thickness of rolled material in hot continuous rolling
JPH03285707A (en) Control method of sheet crown at the time of hot rolling
JPH08192210A (en) Method for controlling width in rolling mill
JPH0659492B2 (en) Automatic width control method
JP3107339B2 (en) Continuous annealing method for strip