JPH03285707A - Control method of sheet crown at the time of hot rolling - Google Patents
Control method of sheet crown at the time of hot rollingInfo
- Publication number
- JPH03285707A JPH03285707A JP2081176A JP8117690A JPH03285707A JP H03285707 A JPH03285707 A JP H03285707A JP 2081176 A JP2081176 A JP 2081176A JP 8117690 A JP8117690 A JP 8117690A JP H03285707 A JPH03285707 A JP H03285707A
- Authority
- JP
- Japan
- Prior art keywords
- crown
- rolling
- amount
- plate
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000005098 hot rolling Methods 0.000 title claims description 17
- 238000005096 rolling process Methods 0.000 claims abstract description 56
- 230000009466 transformation Effects 0.000 claims abstract description 26
- 230000007246 mechanism Effects 0.000 claims abstract description 16
- 238000012937 correction Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 28
- 239000002436 steel type Substances 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 9
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/20—Temperature
- B21B2261/21—Temperature profile
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野]
本発明は、熱間圧延における板クラウンの、特に計算機
制御による制御方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the crown of a plate in hot rolling, particularly by computer control.
[従来の技術]
圧延材の長手方向全長にわたって目標とする板クラウン
を得るためには、圧延開始前に、クラウン制御機構の制
御量を適切に設定することに加えて、実際の圧延条件と
設定計算時に予測した圧延条件との差によって生じる板
クラウンの目標値からの偏差量を低減するように、圧延
中にクラウン制御機構の制御量を修正することが必要で
ある。[Prior Art] In order to obtain the target plate crown over the entire length of the rolled material in the longitudinal direction, in addition to appropriately setting the control amount of the crown control mechanism before starting rolling, it is necessary to adjust the actual rolling conditions and settings. It is necessary to correct the control amount of the crown control mechanism during rolling so as to reduce the amount of deviation of the sheet crown from the target value caused by the difference from the rolling conditions predicted during calculation.
これに関しては、−数的には、熱間圧延機列の最終スタ
ンド出側に板クラウン検出器を設置し、板クラウンの実
測値と目標値との差に基づいたフィードバック制御が行
なわれている。Regarding this, - numerically, a plate crown detector is installed at the exit side of the final stand of the hot rolling mill row, and feedback control is performed based on the difference between the actual value and target value of the plate crown. .
しかしながら、上記フィードバック制御では、最初に板
クラウンが測定されて制御が開始されるまでに圧延され
る部分については、板クラウンの目標値からの偏差量に
対して何ら修正が施されないという欠点がある。しかも
、板クラウンの測定としては、厚さ計を板幅方向に走査
させて板幅方向各位置の板厚測定結果がら板クラウンを
演算する手段が一般的であり、この場合、圧延材先端か
ら最初に板クラウンの測定が完了するまでの部分は、か
なりの長さに及ぶことになる。従って、この部分の板ク
ラウンが目標値から大きく外れて板幅端部の板厚が公差
内に入らない場合、この部分の切り捨てによる歩留まり
の低下は非常に大きい。However, the feedback control described above has the disadvantage that no correction is made to the deviation amount of the plate crown from the target value for the part that is rolled before the plate crown is first measured and the control is started. . Moreover, the common method for measuring the plate crown is to scan a thickness gauge in the width direction of the plate and calculate the plate crown based on the plate thickness measurement results at each position in the width direction. The initial measurement of the plate crown will take a considerable amount of time. Therefore, if the plate crown in this area deviates significantly from the target value and the plate thickness at the edge of the plate width does not fall within the tolerance, the yield will drop significantly due to the cutting of this area.
この問題に対する解決策の−っとしては、圧延材先端か
ら連続的に板クラウンを測定できるタイプの板クラウン
測定装置を導入することが考えられる。One possible solution to this problem is to introduce a type of plate crown measuring device that can continuously measure the plate crown from the tip of the rolled material.
また、特開昭60−5 /1.216号では、圧延荷重
やワークロールクラウン量の予測値と実測値(または圧
延中の推定値)との差に基づいてワークロールペンディ
ングカを修正する手段が提案されている。この手段であ
れば、圧延椙が各スタンドに噛み込んだ直後から制御を
行なうことができる。Furthermore, JP-A-60-5/1.216 discloses means for correcting work roll pending force based on the difference between predicted values and actual measured values (or estimated values during rolling) of rolling load and work roll crown amount. is proposed. With this means, control can be performed immediately after the rolling mill is caught in each stand.
[発明が解決しようとする課題]
しかしながら、前者の連続的に板クラウンを測定できる
板クラウン測定装置を導入する手段では、多額の設備コ
ストを必要とするという難点がある。[Problems to be Solved by the Invention] However, the former method of introducing a plate crown measuring device that can continuously measure the plate crown has a drawback in that it requires a large amount of equipment cost.
また、後者(特開昭60−5421.6号)の手段では
、圧延荷重およびワークロールクラウン量以外の圧延条
件については考慮しておらず、これだけでは十分とは言
えない。特に、圧延材の鋼種によっては、圧延温度の実
測値が予測値からずれると、板クラウンが目標値から大
きく外れるという問題がある。Furthermore, the latter method (JP-A-60-5421.6) does not consider rolling conditions other than rolling load and work roll crown amount, and this alone cannot be said to be sufficient. In particular, depending on the steel type of the rolled material, if the actual value of the rolling temperature deviates from the predicted value, there is a problem that the plate crown deviates significantly from the target value.
本発明は、このような課題を解決しようとするもので、
圧延温度の実測値と予測値との差に起因する板クラウン
の目標値からの偏差量を低減して、低コス1〜で圧延材
全長にわたる板クラウン制御精度の向」二をはかった、
熱間圧延時の板クラウンの制御方法を提供することを目
的とする。The present invention aims to solve such problems,
The deviation amount of the plate crown from the target value due to the difference between the measured value and the predicted value of the rolling temperature is reduced, and the accuracy of plate crown control over the entire length of the rolled material is improved at a low cost.
The object of the present invention is to provide a method for controlling plate crown during hot rolling.
[課題を解決するための手段]
上記目的を達成するために、本発明の熱間圧延時の板ク
ラウンの制御方法(請求項1−)は、クラウン制御機構
の制御量の設定計算に用いた圧延温度の予測値と実測値
との差に起因する板クラウンの目標値からの偏差量を、
圧延材の鋼種により決まる該圧延材の変態点と圧延材幅
方向各位置の圧延温度の大小を考慮して求め、該板クラ
ウンの偏差量に応じて前記クラウン制御機構の制御量を
圧延中に修正することを特徴としている。[Means for Solving the Problems] In order to achieve the above object, the method for controlling the plate crown during hot rolling of the present invention (Claim 1) includes a method for controlling the crown of a plate during hot rolling according to the present invention. The amount of deviation from the target value of the plate crown due to the difference between the predicted rolling temperature value and the measured value is calculated as follows:
The transformation point of the rolled material determined by the steel type of the rolled material and the magnitude of the rolling temperature at each position in the width direction of the rolled material are determined, and the control amount of the crown control mechanism is determined during rolling according to the amount of deviation of the plate crown. It is characterized by correction.
また、本発明の熱間圧延時の板クラウンの制御方法(請
求項2)は、各圧延パスごとに圧延温度の予測値と実測
値とから板クラウンの偏差量を求め、該各パスごどの偏
差量から板クラウン推定モデルを用いて前記クラウン制
御機構の制御量の修正量を演算することを特徴としてい
る。Further, the method for controlling the plate crown during hot rolling of the present invention (claim 2) calculates the deviation amount of the plate crown from the predicted value and the actual measurement value of the rolling temperature for each rolling pass, and The present invention is characterized in that a correction amount of the control amount of the crown control mechanism is calculated from the deviation amount using a plate crown estimation model.
さらに、本発明の熱間圧延時の板クラウンの制御方法(
請求項3)は、少なくとも1つのパスの圧延温度の予測
値と実測値とから最終パス後の板クラウンの偏差量を求
め、該最終パス後の偏差量がら板クラウン推定モデルを
用いて少なくとも2つの下流パスの前記クラウン制御機
構の制御量の修正量を演算することを特徴としている。Furthermore, the method for controlling plate crown during hot rolling of the present invention (
Claim 3) calculates the deviation amount of the sheet crown after the final pass from the predicted value and the actual measurement value of the rolling temperature of at least one pass, and calculates the deviation amount of the sheet crown after the final pass by using a sheet crown estimation model. The present invention is characterized in that a correction amount of the control amount of the crown control mechanism of the two downstream paths is calculated.
[作 用]
上述した本発明の熱間圧延時の板クラウンの制御方法で
は、圧延材の鋼種すなわち含有炭素量やその他の含有元
素により決まる該圧延利の変態点と圧延材幅方向各位置
の圧延温度の大小を考慮し。[Function] In the above-described method for controlling plate crown during hot rolling of the present invention, the transformation point of the rolling margin determined by the steel type of the rolled material, that is, the amount of carbon contained and other contained elements, and each position in the width direction of the rolled material are determined. Considering the size of rolling temperature.
なから、圧延温度の実測値と予測値との差に起因する板
クラウンの目標値からの偏差量が求められ、これに応じ
た制御量修正が圧延中に行なわれるので、圧延温度の実
測値と予測値との差に起因する板クラウンの目標値から
の偏差量を小さくして、圧延材全長にわたる板クラウン
の制御精度向上を実現できる。Therefore, the amount of deviation from the target value of the plate crown due to the difference between the measured value and the predicted value of the rolling temperature is calculated, and the control amount is corrected accordingly during rolling, so that the actual measured value of the rolling temperature By reducing the amount of deviation of the plate crown from the target value due to the difference between the calculated value and the predicted value, it is possible to improve the control accuracy of the plate crown over the entire length of the rolled material.
[発明の実施例]
第5図(a)は、本発明者等による実験結果を示したも
ので、圧延材の仕上げ出側温度に列する板クラウン推定
誤差(実績値と推定値との差)の関係を示しており、あ
る鋼種については、圧延温度が低い程、板クラウン実績
値が推定値に比べて大ぎくなる傾向にあり、この傾向は
含有炭素量と顕著な相関があり、含有炭素量が少ない程
、板クラウン推定誤差が大きくなっている。この傾向は
、また、他の添加元素や、第5図(b)に示すように、
圧延機入側における板@端部の加熱の有無等によっても
異なってくる。[Embodiment of the Invention] Fig. 5(a) shows the experimental results by the present inventors, and shows the plate crown estimation error (difference between the actual value and the estimated value) in line with the finish exit temperature of the rolled material. ), and for a certain steel type, the lower the rolling temperature, the larger the actual sheet crown value compared to the estimated value, and this tendency has a significant correlation with the amount of carbon content; The smaller the amount of carbon, the larger the plate crown estimation error. This tendency also occurs with other additive elements and as shown in Figure 5(b).
It also varies depending on whether or not the end of the plate is heated on the entry side of the rolling mill.
熱間圧延においては、圧延材の幅方向に関して部分的な
加熱あるいは冷却を積極的に加えることのない通常の圧
延条件下では、板幅中央部よりも板幅端部の方が板温度
が低くなる温度分布となる。In hot rolling, under normal rolling conditions where local heating or cooling is not actively applied in the width direction of the rolled material, the strip temperature is lower at the strip width edges than at the strip width center. The temperature distribution becomes as follows.
この結果、第4図(a)に示すように、板温度が板幅方
向全領域にわたって圧延材のA、3変態点以」二の場合
、圧延材の変形抵抗の板幅方向の分布は急激に変化する
ことばなく、板幅中央部から板幅端部へわずかに増加す
る分布となる。しかしながら、第4図(b)に示すごと
く、板幅中央部の温度がA、3変態点以」二で板幅端部
の温度がA r s変態点以下となる場合、板幅端部近
傍では圧延材の変態による結晶構造の変化によって変形
抵抗が著しく小さくなる。従って、この場合には、板幅
端部近傍の板厚が著しく薄くなり、板クラウンが大きく
なる。As a result, as shown in Fig. 4(a), when the plate temperature is at or above the A3 transformation point of the rolled material over the entire region in the width direction, the distribution of the deformation resistance of the rolled material in the width direction is abrupt. The distribution increases slightly from the center of the sheet width to the ends of the sheet width without any change. However, as shown in Fig. 4(b), if the temperature at the center of the plate width is above the A3 transformation point and the temperature at the edge of the plate is below the A rs transformation point, the temperature near the edge of the plate In this case, the deformation resistance becomes significantly smaller due to changes in the crystal structure due to transformation of the rolled material. Therefore, in this case, the plate thickness near the plate width ends becomes significantly thinner, and the plate crown becomes larger.
板クラウン制御の主たる対象となる仕上げ圧延において
は、板温度分布が圧延条件によって大きく変化しないこ
とから、従来の板クラウン推定モデルでは、圧延材の変
形抵抗を一定と仮定するか、もしくは、特公昭58−4
7245号のごとく湿度分布から変形抵抗分布を求める
場合でも、圧延材の変態は考慮していない。従って、板
幅方向の温度分布と圧延材の変態点が第4図(b)に示
すような関係にある場合に板クラウン推定誤差が大きく
なる。即ち、同一鋼種の圧延材であっても、圧延温度が
低い程、また、同一圧延温度であっても変態点が高い程
、板クラウン推定誤差が大きくなる傾向にある。In finish rolling, which is the main target of plate crown control, the plate temperature distribution does not change significantly depending on the rolling conditions, so conventional plate crown estimation models either assume that the deformation resistance of the rolled material is constant or 58-4
Even when determining the deformation resistance distribution from the humidity distribution as in No. 7245, the transformation of the rolled material is not taken into account. Therefore, when the temperature distribution in the width direction of the plate and the transformation point of the rolled material have a relationship as shown in FIG. 4(b), the plate crown estimation error increases. That is, even for rolled materials of the same steel type, the lower the rolling temperature is, or even at the same rolling temperature, the higher the transformation point, the larger the plate crown estimation error tends to be.
前記第5図(a)は、成分系がほぼ同じで含有炭一
素層だけが異なる3鋼種A、BおよびCについて、仕」
二げ出側温度と従来モデルによる板クラウン推定誤差の
関係をN数100以上のデータについて直線回帰した結
果を示しており、鋼種AとBとでは仕−Lげ出側温度が
低い程、板クラウン推定誤差は大きくなり、この傾向は
含有炭素量の少ない鋼種Aの方が顕著である。含有炭素
量の多い鋼種にはこの傾向は見られない。これは、含有
炭素量が少ない程、A、a変態点が高く、板幅端部で圧
延材の変態が発生しやすいからで、含有炭素量の最も多
い鋼種Cでは、仕上げ出側温度が通常の操業条件の範囲
内であれば板幅端部の変態は生じないと考えられる。同
様に、A、3変態点の上下に影響を及ぼす添加元素を含
有する鋼種は、その変態点によって仕上げ出側温度と板
クラウン推定誤差の関係が異なることは容易に推定され
る。Figure 5(a) shows the properties of three steel types A, B, and C, which have almost the same compositional system but differ only in the carbon layer.
The results show the results of linear regression of the relationship between the exit side temperature and the plate crown estimation error using the conventional model on data of N number 100 or more. The crown estimation error increases, and this tendency is more pronounced for steel type A, which has a lower carbon content. This tendency is not seen in steel types with a high carbon content. This is because the lower the carbon content, the higher the A, a transformation point, and the easier the transformation of the rolled material to occur at the edge of the plate width.For steel type C, which has the highest carbon content, the finishing exit temperature is normal. It is considered that transformation at the edge of the plate width does not occur within the range of operating conditions. Similarly, for steel types that contain additive elements that affect above and below the A, 3 transformation point, it is easily assumed that the relationship between the finish exit temperature and plate crown estimation error differs depending on the transformation point.
前記第5図(b)は、前記鋼種Bについて、圧延機入側
での板幅端部加熱の影響を示すもので、板幅端部加熱の
場合(符号B′参照)、板クラウン推定誤差は仕上げ出
側温度との間に相関はない。こ一
れは、板幅方向の温度分布がほぼ一様になることにより
仕上げ出側温度が低くても板幅端部のみが変態すること
はなく、変形抵抗分布は温度に関係なく一定となるから
である。FIG. 5(b) shows the influence of sheet width end heating on the entry side of the rolling mill for the steel type B. In the case of sheet width end heating (see symbol B'), the sheet crown estimation error There is no correlation between the temperature and the finishing outlet temperature. This is because the temperature distribution in the sheet width direction is almost uniform, so even if the finished exit temperature is low, only the sheet width edges do not undergo transformation, and the deformation resistance distribution remains constant regardless of temperature. It is from.
本発明者等は、以上の考察に基づいて、圧延材の温度分
布と変態点との関係を推定し、圧延材の板幅方向の部分
的な変態による変形抵抗分布の変化を考慮した板クラウ
ン推定モデルを用いることにより、板クラウン制御精度
を大幅に向上し得るとの知見を得た。Based on the above considerations, the present inventors estimated the relationship between the temperature distribution of the rolled material and the transformation point, and developed a plate crown that takes into account changes in the deformation resistance distribution due to partial transformation in the width direction of the rolled material. We found that the accuracy of plate crown control can be significantly improved by using the estimation model.
本発明においては、板クラウン補正方法として、下記(
1)式で表現される方法をとる。In the present invention, as a plate crown correction method, the following (
1) Use the method expressed by Eq.
CR=CR”+ΔCR・・・(1)
ここで、CR”は従来の板クラウン推定モデルによる板
クラウン推定値、ΔCRは変態の影響による板クラウン
補正量である。CR=CR''+ΔCR (1) Here, CR'' is the plate crown estimated value based on the conventional plate crown estimation model, and ΔCR is the plate crown correction amount due to the influence of metamorphosis.
この板クラウン補正量ΔCRは、各添加元素から求めら
れるAra変態点と圧延温度の関数として、予め実験あ
るいはオフラインで理論的解析により求めておく。簡便
には、鋼種ごとに圧延温度の関数として求めておく。The plate crown correction amount ΔCR is determined in advance through experiments or off-line theoretical analysis as a function of the Ara transformation point determined from each additive element and the rolling temperature. For convenience, it is calculated as a function of rolling temperature for each steel type.
本発明では、上記(1)式に基づいて、クラウン制御機
構の制御量の設定計算における板温度の予測値から計算
される板クラウン補正量と、圧延中の板温度の実測値か
ら計算される板クラウン補正量とを求め、両者の差に応
じてクラウン制御機構の制御量を修正する。In the present invention, based on the above formula (1), the plate crown correction amount is calculated from the predicted value of the plate temperature in the calculation of setting the control amount of the crown control mechanism, and the plate crown correction amount is calculated from the actual value of the plate temperature during rolling. and the plate crown correction amount, and the control amount of the crown control mechanism is corrected according to the difference between the two.
板クラウン補正量の計算は、厳密には、第1図に示すご
とく、各パスごとに行なうことが望まし7い。Strictly speaking, it is desirable to calculate the plate crown correction amount for each pass, as shown in FIG.
即ち、鋼種、成分の少なくとも一方と、設定計算に用い
た各パスの圧延温度(板幅中央部)の予測値とを読み込
み(ステップSl)、鋼種、成分の少なくとも一方から
A、8変態点を推定する(ステップS2)。各パスの板
幅中央部の圧延温度の予測値から、板幅方向の温度分布
を推定する(ステップS3)。That is, at least one of the steel type and composition and the predicted value of the rolling temperature (center of the sheet width) of each pass used in the setting calculation are read (step Sl), and the A, 8 transformation point is determined from at least one of the steel type and composition. Estimate (step S2). The temperature distribution in the width direction of the strip is estimated from the predicted rolling temperature at the center of the strip width in each pass (step S3).
このステップS3での推定には、板幅方向温度分布を表
現できる式であれば、経験に基づく式も含めてどのよう
な式を用いてもよい。例えば、伝熱理論によれば、板幅
方向の温度分布は次式(2)のような2次曲線で近似で
きることが知られている。For the estimation in step S3, any formula may be used, including formulas based on experience, as long as the formula can express the temperature distribution in the board width direction. For example, according to heat transfer theory, it is known that the temperature distribution in the plate width direction can be approximated by a quadratic curve such as the following equation (2).
T=To−a −x −42)
ここで、Tは板幅中央位置の温度、Toは板幅中央位置
の温度、aは係数、Xは板幅中央からの距離である。T=To-a-x-42)
Here, T is the temperature at the center of the board width, To is the temperature at the center of the board width, a is the coefficient, and X is the distance from the center of the board width.
ステップS3にて推定された板幅端部温度と、ステップ
S2にて推定されたA、3変態点とを各パスごとに比較
し、各パスの板クラウン補正量(予測値)ΔCR,を求
める(ステップS 4. )。The plate width end temperature estimated in step S3 and the A, 3 transformation point estimated in step S2 are compared for each pass, and the plate crown correction amount (predicted value) ΔCR of each pass is determined. (Step S4.).
次に、圧延温度の実測値を読み込み(ステップS5)、
各パスの板幅方向の温度分布く実績値)を推定する(ス
テップS6)。ステップS5では、各パスの板幅方向温
度分布を実測することが望ましいが、少なくとも1つの
パスの板幅中央の温度を実測し、それに基づき、ステッ
プS6において他のパスの板幅中央の温度および各パス
の板幅方向温度分布を推定してもよい。板幅中央の温度
の推定手段は、例えば、日本鉄鋼協会編特別報告書1−
Nα36「板圧延の理論と実際」第156へ・159頁
(昭和59年9月1日発行)に開示されている。つまり
、ロールとの接触による冷却、水冷、圧延による加工発
熱等を考慮して、既知のパスの温度から順次その前後の
パスの温度を求めていけばよい。板幅方向温度分布の推
定手段は、ステップS3にて行なわれるものと同じであ
る。Next, read the actual measurement value of the rolling temperature (step S5),
The temperature distribution in the board width direction for each pass (actual value) is estimated (step S6). In step S5, it is desirable to actually measure the temperature distribution in the board width direction for each pass, but the temperature at the center of the board width in at least one pass is actually measured, and based on that, in step S6, the temperature distribution in the board width center of the other passes is measured. The temperature distribution in the board width direction for each pass may be estimated. A method for estimating the temperature at the center of the strip width is disclosed, for example, in Special Report 1-Nα36 "Theory and Practice of Plate Rolling" edited by the Japan Iron and Steel Institute, pages 156 and 159 (published September 1, 1980). There is. In other words, the temperatures of the passes before and after the known pass temperatures can be found in sequence, taking into consideration cooling due to contact with rolls, water cooling, processing heat generation due to rolling, etc. The means for estimating the temperature distribution in the board width direction is the same as that used in step S3.
そして、ステップS6にて推定された板幅方向温度分布
とステップS2にて推定されたA、3変態点とから、ス
テップS4と同様にして、各パスの板クラウン補正量(
実績値)八CR)を求める(ステップS7)。Then, from the plate width direction temperature distribution estimated in step S6 and the A, 3 transformation point estimated in step S2, the plate crown correction amount (
The actual value) (8CR) is calculated (step S7).
各パスの板クラウン補正量の予測値と実績値が求まれば
、各パスのクラウン制御機構の制御量の修正量は容易に
求めることができる(ステップS8)。例えば、ワーク
ロールベンダーを用いて板クラウン制御を行なう場合、
各パス(第1番目のパス)の板クラウンCJは、前記(
2)式における従来の板クラウン推定モデルとして、日
本塑性加工学会誌[塑性と加工J vol、、25 N
(1286第1034−=12−
1041頁(昭和59年11月20日発行)に提案され
るモデルを用いれば、次式(3)で表される。Once the predicted value and actual value of the plate crown correction amount for each pass are determined, the amount of correction of the control amount of the crown control mechanism for each pass can be easily determined (step S8). For example, when performing plate crown control using a work roll bender,
The plate crown CJ of each pass (first pass) is
As a conventional plate crown estimation model in equation 2), the Japanese Journal of Plastic Processing [Plasticity and Processing J vol, 25
(1286 No. 1034-=12-1041 pages (issued November 20, 1980)), if the model proposed is used, it is expressed by the following equation (3).
CR4=(]−5b)(ati4’i+azi°CW1
+a3rF、i+(その他の影響項))+9Ir (1
−r i) ・CRj−++ΔcRj −(
3)ここで、9!3はクラウン遺伝係数、rlは圧下率
、Pjは圧延荷重、CWiは板幅光たりのロールクラウ
ン、F□はワークロールペンディング力、aii+a2
□+ a3iは影響係数である。CR4=(]-5b)(ati4'i+azi°CW1
+a3rF, i+ (other influencing terms)) +9Ir (1
−r i) ・CRj−++ΔcRj −(
3) Here, 9!3 is the crown genetic coefficient, rl is the rolling reduction rate, Pj is the rolling load, CWi is the roll crown of the strip width, F□ is the work roll pending force, aii + a2
□+a3i is the influence coefficient.
」−2(3)式において、ペンディング力Fjと板クラ
ウン補正量へCRjとに着目して設定計算からの変化を
考えると、
δCR1=(]、−’74.)’ a3j、’δF、刊
ΔCR)−ΔcRs)−(4)と表される。ここで、δ
は設定計算からの偏差を表す。'-2 In formula (3), considering the change from the setting calculation by focusing on the pending force Fj and CRj to the plate crown correction amount, δCR1 = (], -'74.)' a3j, 'δF, published It is expressed as ΔCR)−ΔcRs)−(4). Here, δ
represents the deviation from the set calculation.
従って、各パスのペンディング力の修正量は、(4)式
において、板クラウンの設定計算からの変化δCRjを
零とおいて次式(5)のように求めることができる。Therefore, the amount of correction of the pending force for each pass can be determined as shown in the following equation (5) by setting the change δCRj from the plate crown setting calculation to zero in equation (4).
より簡便には、第2図に示す如く、鋼種別あるいはA、
3変態点と圧延温度との関数として経験的に求められる
全パスを通しての板クラウン補正量(△CRPおよびΔ
CR,)を、圧延温度の予測値と実測値とに対して求め
(ステップA1〜A 5 )、その差に基づいて各パス
のクラウン制御機構の制御量の修正量を求めてもよい(
ステップA6)。More simply, as shown in Figure 2, the steel type or A,
3. Sheet crown correction amount (ΔCRP and Δ
CR,) may be determined for the predicted value and the measured value of the rolling temperature (steps A1 to A5), and based on the difference, the amount of correction of the control amount of the crown control mechanism for each pass may be determined (
Step A6).
各パスの制御量の修正量を求める方法について、ワーク
ロールベンダーを用いて板クラウン制御を行なう場合を
例にとって以下に説明する。A method for determining the correction amount of the control amount for each pass will be described below, taking as an example the case where plate crown control is performed using a work roll bender.
最終パス後の板クラウンおよび板形状に対する各パスの
ベンディング力修正の影響は、板クラウン推定モデルか
ら次式(6)、(7)で表される。The influence of the bending force modification of each pass on the plate crown and plate shape after the final pass is expressed by the following equations (6) and (7) from the plate crown estimation model.
δCRN=AN5 FN+AN−1δFN−□+・・・
+A□δF、・・・(6)δλ、=]3NδF N +
B N −1δFN−1+・十B1δF1 ・・・
(7)ここで、A4. Bj(i = 1〜N)は影響
係数で、前述の’J j、+ rj+ a3iを用い
て表すことができる。δCRN=AN5 FN+AN-1δFN-□+...
+A□δF, ... (6) δλ, =]3NδF N +
B N -1δFN-1+・10B1δF1...
(7) Here, A4. Bj (i = 1 to N) is an influence coefficient, which can be expressed using the above-mentioned 'J j, + rj + a3i.
一方、板クラウンの目標値からの偏差量を修正する条件
は次式(8)となる。On the other hand, the condition for correcting the amount of deviation of the plate crown from the target value is the following equation (8).
δCRN+ (ΔCRニーΔCR,:) = O・(8
)また本発明方法では、板クラウンの修正によって最終
パス後の板形状を乱さないことを考慮して、次式(9)
の条件を加える。δCRN+ (ΔCR knee ΔCR,:) = O・(8
) Furthermore, in the method of the present invention, the following equation (9) is used, taking into consideration that the plate shape after the final pass is not disturbed by the correction of the plate crown.
Add the condition.
δλ1=0 ・(9)(8)、(9)
式を(6L(7)式に代入することにより、本発明方法
での必要条件である2つの方程式(1,0)。δλ1=0 ・(9)(8),(9)
By substituting the equation (6L(7) into the equation), the two equations (1, 0) which are necessary conditions in the method of the present invention.
(11)が得られる。(11) is obtained.
(ΔCRニーΔCRY)=A、δF2+・・・十A1δ
F1・・・(10)0=BN8FN+・・・十B、δF
1 ・・・(11)従って、未知数の数、
即ちペンディング力の修正を行なうパス数は少なくとも
2パスが必要であり、2〜Nの範囲で任意に選ぶことが
できる。ただし、3パス以上で修正を行なう場合は、修
正パス数をmとすればm−2個の独立な条件を与える必
要がある。例えば、第N−2パスから最終の第Nパスま
での3パスで修正を行なう場合、次式(12)のような
条件を与える。(ΔCR knee ΔCRY) = A, δF2+...ten A1δ
F1...(10)0=BN8FN+...10B, δF
1...(11) Therefore, the number of unknowns,
That is, the number of passes for modifying the pending force requires at least two passes, and can be arbitrarily selected from 2 to N. However, if the correction is performed in three or more passes, it is necessary to provide m-2 independent conditions, where m is the number of correction passes. For example, when correction is performed in three passes from the N-2nd pass to the final Nth pass, conditions such as the following equation (12) are given.
δF N−1= d・δFN2 ・・(
12)ここで、dは定数である。δF N-1= d・δFN2...(
12) Here, d is a constant.
(]O)、(11)、(]2)およびδpN−3=・・
・δF、=Oの15
条件より、各パスのペンディングカ修正量δFjを求め
ることができる。(]O), (11), (]2) and δpN-3=...
- From the 15 conditions of δF, =O, the pending force correction amount δFj of each pass can be obtained.
また、m個の修正パスは第1パスから第Nパスのうちで
任意に選ぶことができるが、実際には、上流パスでの修
正は最終パス後の板クラウン、板形状への影響が小さい
ため、求まった修正量が設備能力を超える場合が発生し
やすい。従って、本発明方法は、少なくとも下流パスを
含めて実施することが望ましい。In addition, the m correction passes can be arbitrarily selected from the 1st pass to the Nth pass, but in reality, corrections made in the upstream pass have little effect on the plate crown and plate shape after the final pass. Therefore, it is likely that the determined correction amount will exceed the equipment capacity. Therefore, it is desirable to implement the method of the present invention including at least the downstream path.
第3図は、本発明の方法を7スタンド熱間仕」二げ圧延
の板クラウン制御に適用した場合の効果を示すもので、
圧延材先端部の仕」二げ出側温度の実測値と予測値との
差を7つの区分に分類し、それぞれの区分における板ク
ラウンの実績値(クラウンメータによる1−回目の測定
値)と目標値との差の平均値をプロットしたものである
。この第3図に示すように、本発明の方法を実施しない
場合には、圧延温度の実測値と予測値との差が大きい程
、板クラウンの目標値からの偏差量が大きくなる傾向が
あったが、本発明の実施により、圧延温度の=16−
予測誤差によらず、はぼ目標通りの板クラウンが得られ
ている。FIG. 3 shows the effect when the method of the present invention is applied to the crown control of a 7-stand hot rolling sheet.
The difference between the actual measured value and the predicted value of the finish side temperature at the tip of the rolled material is classified into seven categories, and the actual value of the plate crown in each category (1st measurement value with a crown meter) is calculated. This is a plot of the average value of the difference from the target value. As shown in FIG. 3, when the method of the present invention is not implemented, the larger the difference between the measured rolling temperature value and the predicted value, the greater the deviation of the sheet crown from the target value tends to be. However, by implementing the present invention, a plate crown that was exactly as expected was obtained regardless of the prediction error of the rolling temperature.
[発明の効果コ
以上詳述したように、本発明の熱間圧延時の板クラウン
の制御方法(請求項]−〜3)によれば、圧延材の変態
点と圧延温度の予測値および実測値との関係を考慮して
圧延中にクラウン制御機構の制御量を修正するように構
成し、だので、圧延温度の予測値と実測値との差に起因
する板クラウンの目標値からの偏差量を減少させること
ができ、低コス1へで圧延材全長にわたる板クラウン制
御精度を大幅に向上することができる。[Effects of the Invention] As detailed above, according to the method for controlling plate crown during hot rolling of the present invention (claims - to 3), predicted values and actual measurements of the transformation point and rolling temperature of the rolled material can be improved. The control amount of the crown control mechanism is corrected during rolling by taking into account the relationship between the rolling temperature and the actual value. It is possible to reduce the amount of steel and greatly improve plate crown control accuracy over the entire length of the rolled material at a low cost.
第1図および第2図はいずれも本発明の実施例としての
熱間圧延時の板クラウンの制御方法を説明するためのフ
ローチャーl〜、第3図は本実施例の方法による効果を
説明するためのグラフ、第4図(a)、(b)は板幅方
向温度分布とA、3変態点との関係に起因する変形抵抗
の変化を示すグラフ、第5図(a)、(b)は仕」二げ
出側温度と板クラウン推定誤差との関係を示すグラフで
ある。Figures 1 and 2 are flowcharts for explaining a method for controlling plate crown during hot rolling as an embodiment of the present invention, and Figure 3 is a flowchart for explaining the effect of the method of this embodiment. Figures 4 (a) and (b) are graphs showing changes in deformation resistance due to the relationship between the temperature distribution in the sheet width direction and the A and 3 transformation points, and Figures 5 (a) and (b). ) is a graph showing the relationship between the finish side temperature and the plate crown estimation error.
Claims (3)
法において、クラウン制御機構の制御量の設定計算に用
いた圧延温度の予測値と実測値との差に起因する板クラ
ウンの目標値からの偏差量を、圧延材の鋼種により決ま
る該圧延材の変態点と圧延材幅方向各位置の圧延温度の
大小を考慮して求め、該板クラウンの偏差量に応じて前
記クラウン制御機構の制御量を圧延中に修正することを
特徴とする熱間圧延時の板クラウンの制御方法。(1) In the sheet crown control method during hot rolling using computer control, the difference in the sheet crown from the target value due to the difference between the predicted value of the rolling temperature and the actual value used for calculation of the control amount of the crown control mechanism is The amount of deviation is determined by considering the transformation point of the rolled material determined by the steel type of the rolled material and the magnitude of the rolling temperature at each position in the width direction of the rolled material, and the control amount of the crown control mechanism is determined according to the amount of deviation of the sheet crown. A method for controlling plate crown during hot rolling, characterized by correcting the crown during rolling.
ら板クラウンの偏差量を求め、該各パスごとの偏差量か
ら板クラウン推定モデルを用いて前記クラウン制御機構
の制御量の修正量を演算することを特徴とする請求項1
記載の熱間圧延時の板クラウンの制御方法。(2) Calculate the deviation amount of the plate crown from the predicted value and the measured value of the rolling temperature for each rolling pass, and correct the control amount of the crown control mechanism using the plate crown estimation model from the deviation amount for each pass. Claim 1 characterized in that the amount is calculated.
The described method for controlling sheet crown during hot rolling.
値とから最終パス後の板クラウンの偏差量を求め、該最
終パス後の偏差量から板クラウン推定モデルを用いて少
なくとも2つの下流パスの前記クラウン制御機構の制御
量の修正量を演算することを特徴とする請求項1記載の
熱間圧延時の板クラウンの制御方法。(3) Calculate the deviation amount of the plate crown after the final pass from the predicted rolling temperature value and the measured value of at least one pass, and use the plate crown estimation model from the deviation amount after the final pass to calculate at least two downstream passes. 2. The method of controlling a sheet crown during hot rolling according to claim 1, further comprising calculating a correction amount of a control amount of said crown control mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2081176A JPH03285707A (en) | 1990-03-30 | 1990-03-30 | Control method of sheet crown at the time of hot rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2081176A JPH03285707A (en) | 1990-03-30 | 1990-03-30 | Control method of sheet crown at the time of hot rolling |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03285707A true JPH03285707A (en) | 1991-12-16 |
Family
ID=13739158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2081176A Pending JPH03285707A (en) | 1990-03-30 | 1990-03-30 | Control method of sheet crown at the time of hot rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03285707A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06179006A (en) * | 1992-12-10 | 1994-06-28 | Nkk Corp | Method for changing and rolling sheet thickness of running hot rolled strip |
WO2000054900A1 (en) * | 1999-03-15 | 2000-09-21 | Sms Demag Ag | Control of surface evenness for obtaining even cold strip |
-
1990
- 1990-03-30 JP JP2081176A patent/JPH03285707A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06179006A (en) * | 1992-12-10 | 1994-06-28 | Nkk Corp | Method for changing and rolling sheet thickness of running hot rolled strip |
WO2000054900A1 (en) * | 1999-03-15 | 2000-09-21 | Sms Demag Ag | Control of surface evenness for obtaining even cold strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI744739B (en) | Thick steel plate cooling control method, cooling control device, and thick steel plate manufacturing method | |
JPH03285707A (en) | Control method of sheet crown at the time of hot rolling | |
KR19990047916A (en) | Cooling control method of hot-rolled steel sheet | |
CN114042760B (en) | Method for improving wedge-shaped section of strip steel through lower working roll shifting compensation value | |
JP2001252709A (en) | Method for temperature on outlet side of finishing mill for hot rolling | |
JPH0890021A (en) | Estimating method of rolling load | |
JPS6224809A (en) | Method for controlling sheet width in hot rolling | |
JP4086120B2 (en) | Cold rolling method for hot rolled steel strip before pickling | |
JP4227686B2 (en) | Edge drop control method during cold rolling | |
JP3341622B2 (en) | Strip width control method in hot rolling line | |
JPH0636930B2 (en) | Hot rolling equipment | |
JP7323799B2 (en) | Hot-rolled steel plate manufacturing method and rolling mill | |
WO2024142253A1 (en) | Plate thickness control device of rolling mill | |
JP2628965B2 (en) | Rolling control method in hot strip finishing mill | |
US20240226978A1 (en) | Plate crown control device | |
JPH08300024A (en) | Method for controlling plate width in hot rolling | |
JPH07227611A (en) | Board wave shape control method for continuous hot rolling mill | |
JP2587173B2 (en) | Rolling control method in hot strip finishing mill | |
JPH0763747B2 (en) | Thickness control method during strip running in hot continuous rolling mill | |
JP3646622B2 (en) | Sheet width control method | |
JPS6024728B2 (en) | Rolling mill plate thickness control method | |
JP3152524B2 (en) | Method of controlling thickness of rolled material in hot continuous rolling | |
JP2661497B2 (en) | Strip crown control device and strip crown control method during hot rolling | |
JPH11267727A (en) | Method for controlling shape of hot rolled band-shaped sheet before pickling in cold rolling | |
JP2950182B2 (en) | Manufacturing method of tapered steel plate |