JPS60245735A - Operating method of installation for flash smelting furnace for smelting of copper - Google Patents

Operating method of installation for flash smelting furnace for smelting of copper

Info

Publication number
JPS60245735A
JPS60245735A JP10069484A JP10069484A JPS60245735A JP S60245735 A JPS60245735 A JP S60245735A JP 10069484 A JP10069484 A JP 10069484A JP 10069484 A JP10069484 A JP 10069484A JP S60245735 A JPS60245735 A JP S60245735A
Authority
JP
Japan
Prior art keywords
heavy oil
combustion
furnace
flash
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10069484A
Other languages
Japanese (ja)
Inventor
Masami Narimatsu
成松 政美
Hiroshi Hidaka
日高 寛
Akira Nakamura
公 中村
Toshio Tachikawa
立川 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP10069484A priority Critical patent/JPS60245735A/en
Publication of JPS60245735A publication Critical patent/JPS60245735A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the operation of a hot stove and to assure stability in a flash smelting furnace operation by providing means for decreasing stepwise the flow rate of the heavy oil to be used so as to optimize the regeneration of the temp. of the hot wind to be blown into flash smelting furnace for smelting of copper in which a solid carbon material is used as essential fuel. CONSTITUTION:The hot wind is fed from the hot wind furnace to the flash smelting furnace for smelting of copper in which at least 80% solid carbonaceous fuel is used as fuel. The relation indicating the optimum quantity of heat regeneration holds between the opening degree of a cold mixing valve for introducing cold wind and the waste gas temp. upon ending of combustion with respect to the temp. of said hot wind. The optimum temp. TF of the regenerative waste gas is determined from said relation and the flow rate of the heavy oil is stepwise changed to meet the increase of the waste gas temp. up to TF. The set temp. for decreasing the heavy oil is made into, for example, 4 stages; T1-T4. X is designated as the initial flow rate of the heavy oil and Y as the weight of the heavy oil to be decreased. The combustion is started at the initial flow rate Xl/hr and is decreased by Yl/hr each at the temps. T1-T4 until the optimum heat regeneration condition is attained at the temp. TF.

Description

【発明の詳細な説明】 本発明は、銅製錬自溶炉設備の操業方法に関するもので
あり、特には安定した高温熱風を使用して自熔炉の一層
安定した操業を行う方法に間係fる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating a flash smelting furnace for copper smelting, and in particular to a method for more stable operation of a flash smelting furnace using stable high-temperature hot air. .

@製錬用自溶炉は、硫化@精鉱(以下銅精鉱という)を
7ラツクス等と共に装入し、陶時に空気或いは酸素富化
空気を吹込み、酸化に際して発生する反応熱を大半の熱
源として銅精鉱の熔解及び酸化製錬を行い、硫化銅及び
硫化鉄を主体とする熔体である鍍(マット)と酸化鉄の
珪酸塩を主体とした熔体である媛(スラグ)を産出する
炉である。この除、反応に伴って発生する亜硫酸ガスを
含有する排ガスは濃硫酸製造の原料とされる。自熔炉は
精鉱の酸化反応熱を利用するため他の型式の炉に比し、
燃料消費率が低く、環境管理も好適に行いうる点で我国
では広く採用されている。
@Flash furnace for smelting is charged with sulfurized @ concentrate (hereinafter referred to as copper concentrate) along with 7 lux, etc., and air or oxygen-enriched air is blown into the pottery to absorb most of the reaction heat generated during oxidation. As a heat source, copper concentrate is melted and smelted by oxidation, and matte, a molten material mainly composed of copper sulfide and iron sulfide, and slag, a molten material mainly composed of silicate of iron oxide, are produced. It is a furnace that produces. Exhaust gas containing sulfur dioxide generated during this reaction is used as a raw material for producing concentrated sulfuric acid. Compared to other types of furnaces, flash-melting furnaces utilize the heat of the oxidation reaction of the concentrate.
It has been widely adopted in Japan because of its low fuel consumption rate and good environmental management.

特に、反ルラ;を高速で行わせる為に、850〜105
0℃の高温空気又は酸素富化空気(熱風)を自熔炉に吹
込む熱風操業法は非常に有利な方法である。熱風操業の
場合必要な熱風を得る為に自溶炉には付帯設備として熱
風炉が設置されている。
In particular, in order to perform anti-Lula at high speed, 850 to 105
A hot-air operation method in which high-temperature air at 0° C. or oxygen-enriched air (hot air) is blown into the flash-melting furnace is a very advantageous method. In order to obtain the necessary hot air for hot air operation, a hot air furnace is installed as ancillary equipment to the flash furnace.

本明細書において銅製錬自溶炉設備とは、自溶炉と熱風
炉とを主体とする設備を云う。
In this specification, copper smelting flash furnace equipment refers to equipment mainly consisting of a flash furnace and a hot blast furnace.

上記のように、自溶炉は原料の酸化反応熱を大半の熱源
としているが、不足熱鍛を補うために旧来重油を燃料と
して燃焼していた。しかしながら、近年重油価格萬騰に
伴い、微粉炭等の代替固体炭素質燃料を使用する燃料転
換策が積極的におし進められている。
As mentioned above, flash furnaces use the heat of the oxidation reaction of raw materials as their heat source, but in the past they burned heavy oil as fuel to compensate for the lack of hot forging. However, as heavy oil prices have skyrocketed in recent years, fuel conversion measures using alternative solid carbonaceous fuels such as pulverized coal are being actively promoted.

自溶炉の熱風操業はこの燃料転換策に特に適合し、本件
出願人は既に80%を越える比率の重油を固体炭素質燃
料に代替することに成功し、更には100%の重油代替
にも成功した〇 こうして、80%以上、好ましくは100%固体炭素質
燃料を使用しての自溶炉操業を継続し、従来実績に較べ
鍍品位も媛中銅品位も実質上変化のない順調な操業を為
しえたが、時として操業に安定性を欠くことが見出され
た。この原因の究明の結果、その−因が熱風にあること
が判明した。
The hot air operation of a flash-smelting furnace is particularly suited to this fuel conversion strategy, and the applicant has already succeeded in replacing more than 80% of heavy oil with solid carbonaceous fuel, and has even achieved 100% replacement with heavy oil. Success 〇Thus, we continued to operate the flash furnace using 80% or more, preferably 100% solid carbonaceous fuel, and the operation went smoothly with virtually no change in the plating grade or the Himenaka copper grade compared to previous results. However, it was found that the operation sometimes lacked stability. As a result of investigating the cause, it was found that the cause was hot air.

熱風炉は、第1及び2図に示すように、燃焼炉人と蓄熱
炉Bとの組合せを1基として2基以上の複数基より構成
される。一つが送風中は他のいずれかが燃焼−蓄熱中で
あるよう一定のサイクルで各基が交互に送風サイクルと
燃焼−蓄熱サイクルとを繰返している。燃焼−蓄熱サイ
クル中、燃焼炉Aの下方の燃焼室1内には、重油ノく−
ナ2を通して重油が吹込まれると共に、溶鉱炉ガス(例
えばBガスと呼ばれるフェロニッケル溶鉱炉からの排ガ
ス)、コークス炉ガス等の燃料ガス及び燃焼空気が吹込
まれ、燃焼ガスは蓄熱炉に流入し、その主体を構成する
蓄熱用チェッカーレンガ3を加熱した後排ガスとして煙
突へ放出される。他方、送風サイクルにおいては、蓄熱
炉下方部から取込まれた冷風がチェッカーレンガ3を通
過中昇温し、燃焼炉から熱風として取出されて自溶炉C
に送られる。熱風温度は、測定熱風温度にj心して自動
的に開度を変える混冷弁4を通して冷風を導入すること
によりほぼ一定値に管理される。希釈空気は炉内のレン
ガ保護の為所定温度以上になると燃焼室に導入される。
As shown in FIGS. 1 and 2, the hot blast furnace is composed of two or more units, each of which is a combination of a combustion furnace person and a heat storage furnace B. Each group alternately repeats the air blowing cycle and the combustion-heat storage cycle in a constant cycle so that while one is blowing air, the other is burning and storing heat. During the combustion-heat storage cycle, there is heavy oil in the lower combustion chamber 1 of the combustion furnace A.
Heavy oil is injected through the furnace 2, and fuel gas such as blast furnace gas (for example, exhaust gas from a ferronickel blast furnace called B gas), coke oven gas, and combustion air are injected, and the combustion gas flows into the regenerative furnace and its After the heat storage checker bricks 3 constituting the main body are heated, they are released into the chimney as exhaust gas. On the other hand, in the air blowing cycle, cold air taken in from the lower part of the regenerative furnace increases in temperature while passing through the checker bricks 3, and is taken out as hot air from the combustion furnace and sent to the flash furnace C.
sent to. The hot air temperature is controlled to a substantially constant value by introducing cold air through the mixed cooling valve 4, which automatically changes its opening depending on the measured hot air temperature. Dilution air is introduced into the combustion chamber when the temperature exceeds a predetermined temperature in order to protect the bricks in the furnace.

第1〜2図には、重油−燃料ガス混焼式として示したが
、重油専焼式の場合もある。
Although FIGS. 1 and 2 show a heavy oil/fuel gas mixed combustion type, a heavy oil only combustion type may also be used.

従来の熱風炉の燃焼管理は左程厳密には行われておらず
、重油或いは重油と燃料ガスの燃焼に必要な燃焼空気量
を定める空燃比制御を行うと共に、せいぜいドーム温度
の上限設定と炉出口排ガス温度に上下限を設けること程
度が実施された程度であった。このうち、ドーム温度制
御は、ドーム温度計(第1図、参照番号5)により測定
したものとしてのドーム温度が設定値以上になると自動
的に希釈空気を導入してレンガ保護を行うものである。
Combustion management in conventional hot-blast stoves is not as strict as shown above, and in addition to controlling the air-fuel ratio to determine the amount of combustion air required for combustion of heavy oil or heavy oil and fuel gas, it is also necessary to set the upper limit of the dome temperature and control the furnace temperature. The extent to which upper and lower limits were set on the outlet exhaust gas temperature was implemented. Among these, dome temperature control automatically introduces dilution air to protect bricks when the dome temperature as measured by a dome thermometer (Figure 1, reference number 5) exceeds a set value. .

炉出口排ガス温度制御は、排ガス温度計(第1図、参照
番号6)により測定した排ガス温度に基いて上限値で燃
料の無取焚きを防止すると共に、下限値で硫醗の結露を
防止するものである。その他、なるたけ、効率的操業を
めざしてオペレータの経験と勘による総合的判断による
管理も行われてはいた。しかしながら、オペレータの判
断に個人差があり、細い管理はなしえないまま、はぼ一
定置の重油を燃焼して負荷の変動に対応できるよう通常
蓄熱過剰気味に操業を行っていたのが実情であった。
Furnace exit exhaust gas temperature control is based on the exhaust gas temperature measured by the exhaust gas thermometer (Fig. 1, reference number 6), and prevents fuel from being burned at the upper limit, and prevents sulfur condensation at the lower limit. It is something. In addition, management was carried out based on comprehensive judgment based on the operator's experience and intuition, aiming for efficient operation. However, due to individual differences in the judgment of operators, detailed management was not possible, and the reality was that operations were usually carried out with excessive heat storage in order to respond to load fluctuations by burning heavy oil at a fixed location. Ta.

この為、熱風炉において発生する熱風の温度及び蓋が安
定せず、また熱風炉の差筋に熱風に変動が生じ、更には
熱風炉のサイクル切換時に操業不安定化が生じ、前述し
た自溶炉操業の安定性を乱していた。また、熱風炉で余
分の重油を無駄に焚くことは、自溶炉の燃料転換策の意
義を減少せしめる。
For this reason, the temperature of the hot air generated in the hot air stove and the lid are not stable, and the hot air fluctuates in the hot air stove, and furthermore, operational instability occurs when changing the cycle of the hot air stove. This was disrupting the stability of furnace operation. Additionally, wasting excess heavy oil in a hot blast furnace reduces the significance of the fuel conversion strategy for flash smelting furnaces.

従って、80%以上、好ましくは100%の固体炭素質
燃料を使用しての安定した自溶炉操業を確保するには熱
風炉操業の安定化を先ず計ることが不可欠である。
Therefore, in order to ensure stable flash furnace operation using 80% or more, preferably 100% solid carbonaceous fuel, it is essential to first stabilize the hot blast furnace operation.

こうした背景のもとで、本発明は、熱風炉操業の適切化
、併せて自動化を計り、最終的に自溶炉設備の操業安定
化及び重油使用量の削減を計ることを目的とする。
Against this background, the present invention aims to optimize and automate the operation of a hot blast furnace, and ultimately to stabilize the operation of flash furnace equipment and reduce the amount of heavy oil used.

この目的のためには熱風炉にお秒る蓄熱量をできるだけ
定量的に把握し、負荷変動にも速やかに対応できるよう
に適正な蓄熱量を絶えず保つための燃焼制御方法を確立
し、熱風炉の個別の制御が必要であり、オペレータの介
入が最小限ですむよう自動制御系統の導入が必要である
To this end, we need to understand as quantitatively as possible the amount of heat stored in the hot-air stove, establish a combustion control method that constantly maintains an appropriate amount of stored heat so that we can quickly respond to load fluctuations, and Individual control is required, and an automatic control system must be introduced to minimize operator intervention.

蓄熱炉における蓄熱部の蓄熱量を定量的にとらえるには
、蓄熱部の温度分布とその変化を測定できれはよいが、
その実施は仲々困難である。しかし、混冷弁の開度と燃
焼時の燃焼排ガス温度から蓄熱量のかなりの程度までの
定量的把握が可能であることが判明した。
In order to quantitatively grasp the amount of heat stored in the heat storage section of a heat storage furnace, it is good to be able to measure the temperature distribution and its changes in the heat storage section.
Its implementation is difficult. However, it has been found that it is possible to quantitatively determine the amount of heat storage to a considerable extent from the opening degree of the mixed cooling valve and the temperature of the flue gas during combustion.

熱風温度は、既述したように、熱風炉冷風入口及び熱風
出口間に冷風バイパスを設け、熱風温度の測定値に応じ
て自動的に開度を設定する混冷弁を通してバイパスを通
過した冷風で希釈することにより設定値になるように制
御されている。
As mentioned above, the hot air temperature is determined by the cold air passing through the bypass, which is installed between the cold air inlet and the hot air outlet of the hot air furnace, and passes through the mixed cooling valve, which automatically sets the opening degree according to the measured value of the hot air temperature. It is controlled to reach the set value by diluting it.

通常操業では、送風初期には蓄熱が十分あるため熱風温
度が尚くそれを設定値まで下けるために、冷風が多く流
れるが、送風が終了に近ずくにつれ熱風温度が低下し、
冷風量もそれに比例して少なくなる(第3図参照)。こ
の熱MMと冷M量をコントロールしているのが、混冷弁
で送風終了時のその開度が蓄熱量の目安となる。すなわ
ち、送風終了時に混冷弁が開いておれば蓄熱にはまだ余
裕があり、開度0で熱風温度が設定値であれば蓄熱量と
放熱艦がバランスしており、開度0で熱風温度が設定値
以下になってしまえば、蓄熱不足ということが言える。
In normal operation, there is sufficient heat storage at the beginning of air blowing, so the hot air temperature can still be lowered to the set value, so a lot of cold air flows, but as air blowing approaches the end, the hot air temperature decreases.
The amount of cold air also decreases proportionally (see Figure 3). The amount of heat MM and cold M is controlled by the mixed cooling valve, and its opening degree at the end of air blowing is a measure of the amount of heat stored. In other words, if the mixed cooling valve is open at the end of air blowing, there is still room for heat storage, and if the opening degree is 0 and the hot air temperature is the set value, the amount of heat storage and the heat sink are balanced, and when the opening degree is 0, the hot air temperature is If it falls below the set value, it can be said that there is insufficient heat storage.

従って、蓄熱量の代表値の一つとして混冷弁開度は有用
な意味を持っている。
Therefore, the mixed cooling valve opening degree has a useful meaning as one of the representative values of the amount of heat storage.

燃焼制御は、所定時間内に所定蓄熱量になるよう蓄熱量
推移をみながら燃料調整を行うのが理想的である。
Ideally, in combustion control, the fuel is adjusted while monitoring the change in heat storage amount so that a predetermined heat storage amount is achieved within a predetermined time.

しかし、前述のように蓄熱量の目安を混冷弁の開度た杖
でみると、送風を終了した時点でしか目安が得られず、
またそれを次の燃焼にフィードバックする方法がない。
However, as mentioned above, if you look at the amount of heat storage as a guide based on the opening of the mixed cooling valve, you can only get an estimate when the air blowing ends.
Also, there is no way to feed it back to the next combustion.

そのため、燃焼中の蓄熱量推移もみるために燃焼排ガス
温度をもう1つの代表値として採用した。
Therefore, the combustion exhaust gas temperature was adopted as another representative value in order to see the change in heat storage amount during combustion.

すなわち燃焼開始直後は蓄熱がないため排ガス温度も低
いか、蓄熱量が増えるにつれて排ガス温度が上昇してい
る。従って排ガス温度の目標値を蓄熱量(送風終了時の
混冷弁開度)から決定してやれはある程度理想的な燃焼
管理に近ずく。
That is, immediately after the start of combustion, there is no heat storage, so the exhaust gas temperature is low, or the exhaust gas temperature increases as the amount of heat storage increases. Therefore, determining the target value of the exhaust gas temperature from the amount of heat storage (opening degree of the mixed cooling valve at the end of air blowing) approaches ideal combustion management to some extent.

混冷弁開度と燃焼終了時排ガス温度との間には、経験的
に、適正蓄熱ラインが確立しうる。第4図のその一例で
ある。適正蓄熱ライン上方では蓄熱不足であり、それよ
り下方では蓄熱過剰である。
An appropriate heat storage line can be established empirically between the opening degree of the mixed cooling valve and the exhaust gas temperature at the end of combustion. An example of this is shown in FIG. Above the appropriate heat storage line, there is insufficient heat storage, and below it there is excess heat storage.

この閾は、送風終了時のバタ弁一度が、0%の詩法の燃
焼で排ガス温度が310℃になるまで蓄熱する必要があ
り、開度60%の場合は、220℃で蓄熱が十分になる
ことを示している。
This threshold requires that heat is stored until the exhaust gas temperature reaches 310°C with 0% poetry combustion at the end of air blowing, and when the opening is 60%, heat storage is sufficient at 220°C. It shows what will happen.

従って、混冷弁開度と適正蓄熱意を示す燃焼終了時排ガ
ス温度は次の式によって表わされる。
Therefore, the exhaust gas temperature at the end of combustion, which indicates the opening degree of the mixed cooling valve and the appropriate stored heat, is expressed by the following equation.

第4図のグラフに基くと、 TF=310℃−(混冷弁開度%)×3°C/1%こう
して、最終目標排ガス温度TFが決定されると、TFま
での排ガス温度の上昇に合せて段階的に重油流量を変え
ることにより、熱風炉個別の効率的な燃焼が可能となる
。この燃焼法を図式的に示すと第5図のようになる。
Based on the graph in Figure 4, TF = 310°C - (mixed cooling valve opening %) x 3°C/1% Once the final target exhaust gas temperature TF is determined in this way, the increase in exhaust gas temperature up to TF is In addition, by changing the flow rate of heavy oil in stages, efficient combustion is possible for each hot blast stove. This combustion method is diagrammatically shown in Figure 5.

第5図において T1−Ta =重油削減設定温度、任意に設定可X =
初期重油流量 、任意に設定可 Y −重油削減量 、任意に設定可 TFまでの温度において適宜の温度T1・・・・・・・
・・−において重油流量の段階的削減が計られる。個数
nは上記のように4に限られるものでなく任意に設定可
能である。Yの量は、特足の熱風炉において、燃焼不足
の状態にならない程度の重油流量を確保する範囲で任意
に設定可能である。
In Figure 5, T1-Ta = heavy oil reduction set temperature, can be set arbitrarily X =
Initial heavy oil flow rate, can be set arbitrarily Y - Heavy oil reduction amount, can be arbitrarily set Appropriate temperature T1 at the temperature up to TF...
A gradual reduction in the flow rate of heavy oil is planned at...-. The number n is not limited to four as described above, but can be set arbitrarily. The amount of Y can be arbitrarily set within a range that ensures a heavy oil flow rate that does not result in insufficient combustion in a special hot stove.

重油は、初期流量XI/Hrで燃焼開始し、排ガス温度
がT1〜T4で各々Yl/Hrずつ減少していき、TF
において最適蓄熱状態を達成する。Tpは前述した通り
、燃焼開始前の送風終了時点の混冷バタ弁の開度から計
算してめた温度である。
The heavy oil starts to burn at an initial flow rate of XI/Hr, and the exhaust gas temperature decreases by Yl/Hr from T1 to T4.
Achieve optimal heat storage conditions. As described above, Tp is the temperature calculated from the opening degree of the mixed cooling butterfly valve at the end of air blowing before the start of combustion.

状況によっては、TFでこれ以上燃焼を継続するか否か
オペレータに判断をあおぐため警報等で知らせるように
することもできる。
Depending on the situation, an alarm or the like may be used to prompt the operator to decide whether or not to continue combustion using TF.

こうして、効率的な燃焼制御方法が達成しりるが、これ
を例えばワンルーズコントローシのような自動制御装置
によって自動制御方式の下で操業することにより前述し
た目的に適う熱風炉操業方法が達成しうる〇 こうして発生する熱風を使用して自熔炉を操業すること
により、一定の安定した品質の熱風がサイクル切換えに
よる不都合を生じることなく連続的に自熔炉に供給され
、それにより銅精鉱及び固体炭素質燃料と一様な、%速
反応を生みだす。
In this way, an efficient combustion control method has been achieved, but by operating it under an automatic control system using an automatic control device such as a one-loose controller, a hot blast furnace operating method that meets the above objectives can be achieved. By operating the flash-melting furnace using the hot air thus generated, hot air of constant and stable quality is continuously supplied to the flash-smelting furnace without the inconvenience caused by cycle changeovers, thereby reducing copper concentrate and solids. Produces a % fast reaction that is consistent with carbonaceous fuels.

斯くして、本発明は、銅精鉱、燃料、7ラツクスその他
の装入物を装入しそして熱風を吹込むことによりマット
及びスラグを産出する自熔炉と、該熱風発生の為燃焼−
蓄熱サイクルと熱風送風サイクルとを交互に行う熱風炉
を備える銅製錬自溶炉設備において、前記自熔炉燃料と
して少くとも80%の固体炭素質燃料を使用し、そして
前記熱風炉において熱風温度を制御する為冷風を導入す
る混冷弁の開度と燃焼終了時排ガス温度との間で適正蓄
熱量を示す関係式から最適蓄熱排ガス温度TF を決定
し、そしてTFまでの複数の排ガス温度T1〜Tnにお
いて重油流量を段階的に削減することを特徴とする銅製
錬自溶炉設備の操業方法を提供する。自熔炉燃料として
100%固体皺素質燃料を使用することが好ましい。
Thus, the present invention provides a flash smelting furnace for producing matte and slag by charging copper concentrate, fuel, 7 lac and other charges and blowing hot air, and for producing matte and slag by blowing hot air.
In a copper smelting flash furnace facility equipped with a hot blast furnace that alternates between a heat storage cycle and a hot air blast cycle, at least 80% solid carbonaceous fuel is used as the flash furnace fuel, and the hot blast temperature is controlled in the hot blast furnace. In order to achieve this, the optimum heat storage exhaust gas temperature TF is determined from the relational expression showing the appropriate amount of heat storage between the opening degree of the mixed cooling valve that introduces cold air and the exhaust gas temperature at the end of combustion, and multiple exhaust gas temperatures T1 to Tn up to TF are determined. Provided is a method for operating a copper smelting flash furnace facility, which is characterized by reducing the flow rate of heavy oil in stages. It is preferable to use 100% solid corrugated fuel as the flash furnace fuel.

自熔炉において重油と代替しうる固体炭素質燃料として
は、各種の等級の石炭、木炭及びコークスを包括する0
特に好ましいものは、粉粒コークス及び塊粒粉低質石戻
である。
Solid carbonaceous fuels that can replace heavy oil in flash furnaces include various grades of coal, charcoal, and coke.
Particularly preferred are pulverulent coke and lump granular low-quality stone recycle.

粉粒コークスとは、粉コークス、粒コークスあるいは両
者の混合物を意味し、通常製鉄用に使用されるような整
粒された塊コークス以外の各種コークスを包含するが、
特に鉄w4製錬用の整粒コークス製造のため原料戻をコ
ークス炉においてコークス化し、取出されたコークスを
消火塔において冷却水にて消火した際副産物として沈殿
ピットにおいて得られる粉粒まじりコークスである沈敞
粉コークスの使用が望ましい。沈殿粉コークスの粒度分
布、成分および発熱量を第1表に示す。
Powdered coke refers to powder coke, granular coke, or a mixture of both, and includes various types of coke other than the sized lump coke normally used for steelmaking.
In particular, it is powdery coke that is obtained in a settling pit as a by-product when raw material return is coked in a coke oven to produce sized coke for iron W4 smelting, and the extracted coke is extinguished with cooling water in a fire extinguishing tower. It is preferable to use sedimentary coke. Table 1 shows the particle size distribution, components and calorific value of the precipitated coke powder.

粉粒コークスとしては、上記沈殿粉コークス以外に、は
ぼ10■アンダーの帥下コークスを単独あるいは混合し
て用いることができる。
As the powder coke, in addition to the above-mentioned precipitated coke powder, 10 cm or less coke can be used alone or in combination.

塊粒物低質石炭とは、整粒された高級石炭以外の石炭類
を意味し、特に褐炭を実例とする。本発明において用い
られた横皺であるワンポー炭(豪州産)について粒度分
布、成分および発熱量を第1表に示す。
Lump-grained low-grade coal refers to coals other than sized high-grade coal, and lignite is an example. Table 1 shows the particle size distribution, components, and calorific value of Wanpo coal (produced in Australia), which is the horizontally corrugated charcoal used in the present invention.

第 1 表 沈殿粉コークスとワンポー炭の粒度分布、成分および発
熱量 第6図は本発明を具体化した熱風炉操業制御系統の一例
を示す。第1〜2図と対比すれば理解されるように、冷
風は蓄熱炉Bを燃焼炉Aを通って熱風となって使用場所
へと送られる。冷風の一部は混冷弁4を経由して燃焼炉
Aの下流の熱風通路にバイパスしている。熱風温度計8
は熱風温度を測定し、その測定信号に基いて弁作動器1
0は例えばバタフライ弁構造の混冷弁4の開度を自動設
定する。燃焼−蓄熱サイクル中の排ガスの温度は排ガス
温度計6により計測されている。また、燃焼室Aに社、
重油、燃料ガス、燃焼空気及び希釈空気が制御下で導入
される。このうち、希釈ガスは、ドーム温度計5の温度
が設定以上になると、レンガ保護の為希釈ガス制御器1
1及び弁12により自動的に導入される。
Table 1 Particle size distribution, components and calorific value of precipitated coke powder and Wanpo coal FIG. 6 shows an example of a hot stove operation control system embodying the present invention. As can be understood by comparing FIGS. 1 and 2, the cold air passes through the regenerator B, the combustion furnace A, and is turned into hot air and sent to the place of use. A portion of the cold air is bypassed to the hot air passage downstream of the combustion furnace A via the mixed cooling valve 4. hot air thermometer 8
measures the hot air temperature and operates the valve actuator 1 based on the measurement signal.
0 automatically sets the opening degree of the mixed cooling valve 4 having a butterfly valve structure, for example. The temperature of the exhaust gas during the combustion-heat storage cycle is measured by an exhaust gas thermometer 6. Also, in the combustion chamber A,
Heavy oil, fuel gas, combustion air and dilution air are introduced in a controlled manner. Among these, when the temperature of the dome thermometer 5 exceeds the setting, the dilution gas is supplied to the dilution gas controller 1 to protect the bricks.
1 and valve 12.

熱風炉の操業には、重油専焼方式と重油−燃料ガス混焼
方式とがあるが、本発明はそれらのいずれにも適応しう
る。燃料ガスとしては、例えば溶鉱炉排ガスが使用され
るが、その濃度が変動する可能性がある。そこで、燃料
ガスの濃度に応じてその発熱量を計算して、重油相当量
に換算し、重油量制御器からその燃料ガス量を差引いた
分を正味重油社とする。いずれの方式を採るにせよ、本
発明はいずれにも等しく応用しうる。第6図において、
重油量制御器12及び燃料ガス量制御器14には、■混
焼信号及び■重油専焼信号が入力され、操業方式に応じ
て制御様式が決定される。
There are two ways to operate a hot stove: a heavy oil-only combustion system and a heavy oil-fuel gas mixed combustion system, and the present invention can be applied to either of them. For example, blast furnace exhaust gas is used as the fuel gas, but its concentration may vary. Therefore, the calorific value of the fuel gas is calculated according to the concentration of the fuel gas, converted to the equivalent amount of heavy oil, and the amount obtained by subtracting the amount of fuel gas from the heavy oil amount controller is determined as the net heavy oil value. Whichever method is adopted, the present invention is equally applicable to either method. In Figure 6,
The heavy oil quantity controller 12 and the fuel gas quantity controller 14 are input with (1) a co-firing signal and (2) a heavy oil exclusive combustion signal, and a control style is determined according to the operating system.

重油流量は、流量計16により重油量制御器12に伝達
される。燃料ガス流量は流量計18により燃料ガス量制
御器14に伝達される。燃料ガスの濃度及び発熱iを計
算して、それを重油等何分に変換した信号が燃量ガス量
制御器14から重油量制御器12に入力される。方式■
及び■に応じて、重油+燃料ガスの重油相当分或いは重
油単独分の信号が、重油量制御器12から燃焼空気量制
御器20へと入力され、それに基いて所要燃焼空気量が
計算され、弁21を介して所要燃焼空気を燃焼室人に導
入する。番号23及び30は、燃料ガス及び重油調節弁
をそれぞれ示す。 。
The heavy oil flow rate is transmitted to the heavy oil amount controller 12 by a flow meter 16 . The fuel gas flow rate is transmitted to the fuel gas amount controller 14 by a flow meter 18 . The fuel gas concentration and heat generation i are calculated, and a signal obtained by converting the calculated values into heavy oil, etc. is input from the fuel gas amount controller 14 to the heavy oil amount controller 12 . Method■
According to (1) and (2), a signal for the heavy oil equivalent of heavy oil + fuel gas or for heavy oil alone is input from the heavy oil amount controller 12 to the combustion air amount controller 20, and the required amount of combustion air is calculated based on it. The required combustion air is introduced into the combustion chamber via the valve 21. Numbers 23 and 30 indicate fuel gas and heavy oil control valves, respectively. .

本発明に従う自動制御系を実現する為に、混冷弁4−排
ガス温度計6−重油量制御器12の間に、例えばマイク
ロブ四セッサーを内蔵しそして演算を行いながら制御を
行うワンループコントローラが設置される。
In order to realize the automatic control system according to the present invention, a one-loop controller is installed between the mixed cooling valve 4, the exhaust gas thermometer 6, and the heavy oil amount controller 12, which has a built-in microb 4 processor and performs control while performing calculations. be done.

排ガス温度調節計28は次の機能を行う二〇 排ガス温
度を排ガス温度計6から入力として取込む。
The exhaust gas temperature controller 28 performs the following functions.20 Takes the exhaust gas temperature from the exhaust gas thermometer 6 as an input.

■ 混冷弁4の開度を読取器29を介して入力として取
込訃。
■ The opening degree of the mixed cooling valve 4 is taken in as input via the reader 29.

■ 読取りタイミング信号により混冷弁開度を読取り、
前述した式に従い終点燃焼温度Tp を演算する。
■ Read the mixed cooling valve opening degree using the reading timing signal,
The end point combustion temperature Tp is calculated according to the above-mentioned formula.

■ これら信号を重油量制御器へ出力する。■ Output these signals to the heavy oil amount controller.

■ 必要に応じ、排ガス温度が終点温度に達した時貴報
を発生する。
■ If necessary, generate a notification when the exhaust gas temperature reaches the end point temperature.

重油量制御器12は次の機能を行う: ■ 排ガス温度調節計28より重油量設定信号を入力す
る。
The heavy oil amount controller 12 performs the following functions: ■ Inputs a heavy oil amount setting signal from the exhaust gas temperature controller 28;

■ 重油流童祖16より重油流量を入力する。■ Input the heavy oil flow rate from the heavy oil flow Doso 16.

■ 燃料ガス組成及び流値信号(流量計14から)を入
力して、重油量設定信号からそれを差引いた分を調節信
号として出力し、□調節弁30に伝達する。(方式■の
混焼式の場合) ■ 重油量段階制御を行うべく重油量を演算する。
(2) Input the fuel gas composition and flow value signal (from the flow meter 14), and output the amount obtained by subtracting it from the heavy oil amount setting signal as a control signal, and transmit it to the control valve 30. (In case of co-firing method (method ①)) ■ Calculate the amount of heavy oil to perform stepwise control of the amount of heavy oil.

■ 燃焼空気比率を演算し、燃焼空気制御器20にカス
ケード出力する。
(2) Compute the combustion air ratio and cascade output to the combustion air controller 20.

こうして、本発明に基いての自動化熱風炉操業が実現さ
れる。
In this way, automated hot blast stove operation according to the present invention is realized.

従来の燃焼方法は、任意の重油流量を決め排ガス温度の
上昇傾向をみながら途中で重油をしばり目標排ガス温度
になるように手動でコントロールしていた。重油をしば
るタイミング、鼠についてハ、オペレーターの経験に基
く感で行っていた。
In the conventional combustion method, an arbitrary flow rate of heavy oil was determined, and the fuel oil was manually controlled to reach the target exhaust gas temperature by tightening the fuel midway through the combustion process while monitoring the rising trend of exhaust gas temperature. The timing of tightening the heavy oil was based on the operator's experience.

しかし、実際には、頻ばんに調整を行うのは不可能であ
り、はぼ一定量の重油を燃焼させていた。
However, in reality, it was impossible to make frequent adjustments, and a fixed amount of heavy oil was burned.

また、二基の熱風炉は、各々送風量れ量、チェッカーレ
ンガの有効面積の相違等があり、同じ操業条件でも蓄熱
量に大きな違いがあった。従って、目標排ガス温度も蓄
熱蓋の少い一方の熱風炉に合わせて調整するため(前述
のように両差での〜切換え毎に重油設定量を変更するの
は無理であった)他方の熱風炉は蓄熱過剰で操業を行っ
ていた。
In addition, the two hot air stoves had differences in air flow rate, effective area of checker bricks, etc., and even under the same operating conditions, there was a large difference in heat storage amount. Therefore, in order to adjust the target exhaust gas temperature to match the one hot air furnace with less heat storage lid (as mentioned above, it was impossible to change the heavy oil setting amount every time the two were switched), the other hot air The furnace was operating with excess heat storage.

本発明の熱風炉操業実施により次のような効果が得られ
る: (イ)排ガス温度上昇速度を下げ、ムダ焚きを少くし、
重油使用量を節約しうる。
By implementing the hot stove operation of the present invention, the following effects can be obtained: (a) Reducing the rate of increase in exhaust gas temperature and reducing wasteful combustion;
The amount of heavy oil used can be saved.

(ロ)基部に重油使用量が変えられるため、蓄熱量の差
がなくなるので、これまで一方の基で余分に焚いていた
重油を減らすことができる。
(b) Since the amount of heavy oil used at the base can be changed, there is no difference in the amount of heat storage, so the amount of heavy oil that was previously burned in one base can be reduced.

(ハ)送風量、熱風温度等の変更に対してスムーズに対
応できる。
(c) It can smoothly respond to changes in air flow rate, hot air temperature, etc.

に) オペレータの判断の介入を最小限とし、操業が自
動化できる。
) Operation can be automated with minimal intervention from operators.

以下、従来操業法と本発明操業法とを比較した操業実際
例を示す。操業は、熱風炉2基(A1及びA2)を使用
して銅製錬自溶炉に990〜1000℃の熱風を供給し
たものである。
Hereinafter, actual operation examples comparing the conventional operation method and the operation method of the present invention will be shown. In operation, hot air at 990 to 1000°C was supplied to the copper smelting flash furnace using two hot blast furnaces (A1 and A2).

第7及び8図は、従来の燃焼方法と本発明方法の重油流
量の変化様相を示している。従来は、特に人手で流量を
変更しないかぎり、一定流量で操業を行っていたが、本
発明では排ガス温度が設定位置に達したところで、自動
的に減少していくのがわかる。第9図は従来の一定流量
での燃焼方法と燃焼制御した場合の重油使用量を排ガス
温度を等しくして比較したもめである。
FIGS. 7 and 8 show changes in heavy oil flow rate between the conventional combustion method and the method of the present invention. Conventionally, operation was performed at a constant flow rate unless the flow rate was changed manually, but in the present invention, it can be seen that the exhaust gas temperature automatically decreases when it reaches the set position. FIG. 9 shows a comparison of the amount of heavy oil used when the conventional constant flow rate combustion method and combustion control are used with the exhaust gas temperature being the same.

これから、従来15607/Hr程度焚いていた重油が
自動制御することにより149al/Hrと約7017
Hr減少している。また、第10図は、バーナーの仕様
能力いっばいで燃焼開始した時の従来法と本発明自動制
御法との比較である。これから、重油使用量差1701
/Hr 、排ガス温度差で65℃あることがわかる。
From now on, the heavy oil that conventionally burns at about 15,607 al/Hr will now be heated to 149 al/Hr, approximately 7,017 al/Hr, through automatic control.
Hr is decreasing. Moreover, FIG. 10 is a comparison between the conventional method and the automatic control method of the present invention when combustion starts at the full specified capacity of the burner. From now on, heavy oil usage difference 1701
/Hr, and the exhaust gas temperature difference is 65°C.

なお、これらのデータをまとめると下表のようになる。The table below summarizes these data.

ここで、排ガス温度上昇速度とは、燃焼開始20分から
の温度上昇速度のことで、いずれの場合も自勉制御した
方が速度が遅くムダ焚きを少なくできることがわかる。
Here, the rate of increase in exhaust gas temperature refers to the rate of temperature increase from 20 minutes after the start of combustion, and it can be seen that in any case, self-study control is slower and can reduce wasteful combustion.

第11及び12図は、操業が安定している時点の燃焼制
御する以前と制御開始してからの燃焼排ガス温度の違い
を表わしている。
FIGS. 11 and 12 show the difference in combustion exhaust gas temperature before combustion control is started when the operation is stable and after combustion control is started.

制御開始以前は、燃焼終了時点の排ガス温度(排ガス温
度のピーク)が燃焼毎にまちまちで、更にA1とA2熱
風炉で違っていることがわかる。
It can be seen that before the start of control, the exhaust gas temperature at the end of combustion (the peak of exhaust gas temperature) varies from combustion to combustion, and is also different between the A1 and A2 hot blast furnaces.

それが今回の改善でピーク温度の変動が少なくなるとと
もにA1とA2の間での差もなくなっている。
However, with this improvement, the fluctuation in peak temperature has been reduced and the difference between A1 and A2 has also disappeared.

こうして、非常に安定した650℃以上、望ましくは8
50〜1050℃の温度の熱風が自熔炉に供給される。
In this way, a very stable temperature of 650°C or above, preferably 8
Hot air at a temperature of 50 to 1050°C is supplied to the flash furnace.

固体炭素質燃料の添加は、自熔炉に直接装入してもよい
が、好ましい添加方法は、IN精鉱ホッパーと並列に固
体炭素質燃料ホッパーを設置し、連続的に抜出すことに
よって搬上コンベア上において銅精鉱・フラックスなど
に添加する方式が、以後のすべての装入系統諸設備を共
用することができる点で、最も望ましい態様である。こ
れにより、燃料の混合均一性も良くなり、反応性が向上
する。
The solid carbonaceous fuel may be added directly to the flash melting furnace, but the preferred method of addition is to install a solid carbonaceous fuel hopper in parallel with the IN concentrate hopper and carry it out by continuously extracting it. The method of adding copper concentrate, flux, etc. on a conveyor is the most desirable mode since all subsequent charging system equipment can be shared. This improves fuel mixing uniformity and improves reactivity.

約3ケ月にわたり自熔炉において重油を使用せず、沈殿
粉コークスそして改善熱風炉からの熱風を使用して操業
を行った。下表はその操業成績である。
For about three months, the flash melting furnace was operated without using heavy oil, using precipitated coke powder and hot air from an improved hot blast furnace. The table below shows the operational results.

右欄の従来実績に較べ鍍品位も鉄中銅品位も実質上変化
なく、安定した自熔炉操業が確保でき九〇熱風炉サイク
ルの切換えに伴う支障も生じなかった。
Compared to the conventional results shown in the right column, there was virtually no change in the plating quality or copper content in iron, and stable flash furnace operation was ensured, with no problems associated with switching to the 90 hot stove cycle.

以上説明した通り、熱風炉操業の安定化を通して、自熔
炉操業の安定化と固体炭素燃料への転換策の確立に成功
したものである。こうして、銅精錬自溶炉設備全体とし
て、(1)自熔炉におけるM油の80%以上、好ましく
は100%の節減及び(11)熱風熔における無駄焚き
の最小限化を通して大巾の重油使用量削減を可能ならし
めたのである。
As explained above, by stabilizing the operation of the hot blast furnace, we succeeded in stabilizing the operation of the flash furnace and establishing a plan for switching to solid carbon fuel. In this way, for the entire copper smelting flash furnace equipment, the amount of heavy oil used can be greatly reduced by (1) saving 80% or more, preferably 100%, of M oil in the flash furnace and (11) minimizing wasteful combustion in hot air melting. This made reduction possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱風炉及び自溶炉の作動原理を示す説明図、第
2図は2基の熱風炉の操業状態を示す説明図、第3図は
送風開始から終了までの熱風温度と熱風及び冷風送風量
との関係を示すグラフ、第4図は混冷弁開度と燃焼終了
時排ガス温度との関係を示すグラフ、第5図は本発明に
従う重油段階制御を表すグラフ、第6図は本発明の制御
系統の一例を示す制御系統図、第7及び8図は従来法と
本発明法の重油温飯変化の実例を示すグラフ、第9及び
10図は従来法と本発明法の制御態様の差異を示すグラ
フ、そして第11及び12図は従来法と本発明法の排ガ
ス温度の貧化様相を示すグラフである。 A:燃焼炉 B:蓄熱炉 C:自溶炉 1:燃焼室 2:重油バーナ 5:蓄熱用レンガ 4:混冷弁 5:ドーム温度計 6:排ガス温度計 8:熱風温度計 10:弁作動器 11:希釈ガス制御器 12:重油量制御器 14:燃料ガス量制御器 16:重油流量計 18二燃料ガス流量計 20:燃焼空気…制御器 21:燃焼空気調節弁 23二燃料ガス調節弁 60:重油調節弁 28:排ガス温度調節計 29:混冷弁開度読取器 tT″“−一 代理人の氏名 倉 内 基 弘シ、′、j・−2,、−
二。 第7図 31度 第8図 温友 第11図 第12 口 手続袖正書 昭和59年6J1251コ 特許庁長官 志 賀 学 殿 事件の表示 昭和59イ「 特 願第100694−号
発明の名称 鋼製錬自溶炉設備の操業方法補正をする者 事件との関係 特許用1順人 名称 日本鉱業株式会社 代理人 〒103 一ゞ−1′−8二旧 高 2− = −叩11 −・ ・し ρノ1 補正の対象 、−1− 明細書の ;。 ′ −発明の詳細な説明の欄( 障 補正の内容 別紙の通り 特願昭59−100694号明細書を以下の通り補正し
ます。 1 第18頁、下から3行「従来の燃焼方法」と「と」
との間にr(第7図)」を挿入し、そして「本発明方法
」の後に「(第8図)」を挿入します。 2、 提出図面第7図及び第8図を添付のものと差替え
ます。
Figure 1 is an explanatory diagram showing the operating principle of a hot blast furnace and a flash furnace, Figure 2 is an explanatory diagram showing the operating status of two hot blast furnaces, and Figure 3 is an explanatory diagram showing the operating state of two hot blast furnaces. FIG. 4 is a graph showing the relationship between the amount of cold air blown, FIG. 4 is a graph showing the relationship between the opening degree of the mixed cooling valve and the exhaust gas temperature at the end of combustion, FIG. 5 is a graph showing the heavy oil stage control according to the present invention, and FIG. A control system diagram showing an example of the control system of the present invention, Figures 7 and 8 are graphs showing examples of changes in heavy oil heated rice between the conventional method and the present invention, and Figures 9 and 10 are control system diagrams of the conventional method and the present invention. 11 and 12 are graphs showing the differences in the embodiments, and graphs showing the deterioration of the exhaust gas temperature between the conventional method and the method of the present invention. A: Combustion furnace B: Regenerative furnace C: Flash furnace 1: Combustion chamber 2: Heavy oil burner 5: Heat storage brick 4: Mixed cooling valve 5: Dome thermometer 6: Exhaust gas thermometer 8: Hot air thermometer 10: Valve operation Controller 11: Dilution gas controller 12: Heavy oil amount controller 14: Fuel gas amount controller 16: Heavy oil flow meter 18 Two fuel gas flow meters 20: Combustion air...Controller 21: Combustion air control valve 23 Two fuel gas control valves 60: Heavy oil control valve 28: Exhaust gas temperature controller 29: Mixed cooling valve opening degree reader tT"" - Name of one agent Motohiro Kurauchi, ', j・-2,, -
two. Figure 7 31 degrees Figure 8 Ontomo Figure 11 Figure 12 Indication of the case of Manabu Shiga, Director General of the Japan Patent Office, 1981, 6J1251, Title of the invention of Patent Application No. 100694 Steel Relationship with the case of a person who amends the operating method of flash smelting furnace equipment Patent 1 Junjin name Nippon Mining Co., Ltd. Agent 〒103 Izu-1'-82 Former High 2- = -Taku11-・・shi ρNo. 1 Subject of amendment, -1- In the specification ;.' - Detailed description of the invention column (Contents of amendment The specification of Japanese Patent Application No. 1983-100694 is amended as shown in the attached sheet as follows. 1 Page 18, 3 lines from the bottom: “Conventional combustion method” and “to”
Insert ``r (Figure 7)'' between ``(Figure 7)'' and ``(Figure 8)'' after ``method of the present invention''. 2. Replace the submitted drawings Figures 7 and 8 with the attached ones.

Claims (1)

【特許請求の範囲】[Claims] 1)#6精鉱、燃料、7ラツクスその他の装入物を装入
しそして熱風を吹込むことによりマット及びスラグを産
出する自熔炉と、該熱風発生の為燃焼−蓄熱サイクルと
熱風送風サイクルとを交互に行う熱風炉を備える銅製錬
自溶炉設備において、前記自溶炉燃料として少くとも8
0%の固体炭素質燃料を使用し、そして前記熱風炉にお
いて熱風温度を制御する為冷風を導入する混冷弁の開度
と燃焼終了時排ガス温度との間で適正蓄熱鰍を示す関係
式から最適蓄熱排ガス温度Tpを決定し、そしてTPま
での複数の排ガス温W Tl −Tnにおいて重油温飯
を段階的に削減することを特徴とする銅製錬自溶炉設備
の操業方法・
1) A flash-melting furnace that produces matte and slag by charging #6 concentrate, fuel, 7 lux and other charges and blowing hot air, and a combustion-heat storage cycle and hot air blowing cycle to generate the hot air. In a copper smelting flash furnace equipment equipped with a hot blast furnace that alternately performs
0% solid carbonaceous fuel is used, and from the relational expression showing the appropriate heat storage between the opening degree of the mixed cooling valve that introduces cold air to control the hot air temperature in the hot blast furnace and the exhaust gas temperature at the end of combustion. A method for operating a copper smelting and flash-smelting furnace equipment, characterized by determining the optimum heat storage exhaust gas temperature Tp, and gradually reducing heavy oil heating at a plurality of exhaust gas temperatures W Tl - Tn up to TP.
JP10069484A 1984-05-21 1984-05-21 Operating method of installation for flash smelting furnace for smelting of copper Pending JPS60245735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10069484A JPS60245735A (en) 1984-05-21 1984-05-21 Operating method of installation for flash smelting furnace for smelting of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10069484A JPS60245735A (en) 1984-05-21 1984-05-21 Operating method of installation for flash smelting furnace for smelting of copper

Publications (1)

Publication Number Publication Date
JPS60245735A true JPS60245735A (en) 1985-12-05

Family

ID=14280831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10069484A Pending JPS60245735A (en) 1984-05-21 1984-05-21 Operating method of installation for flash smelting furnace for smelting of copper

Country Status (1)

Country Link
JP (1) JPS60245735A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950132A (en) * 1982-09-16 1984-03-23 Nippon Mining Co Ltd Method for operating flash smelting furnace for smelting copper
JPS5956508A (en) * 1982-09-27 1984-04-02 Nippon Steel Corp Method for controlling combustion in hot stove for blast furnace
JPS5976807A (en) * 1982-10-26 1984-05-02 Ishikawajima Harima Heavy Ind Co Ltd Controlling method of combustion in hot stove

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950132A (en) * 1982-09-16 1984-03-23 Nippon Mining Co Ltd Method for operating flash smelting furnace for smelting copper
JPS5956508A (en) * 1982-09-27 1984-04-02 Nippon Steel Corp Method for controlling combustion in hot stove for blast furnace
JPS5976807A (en) * 1982-10-26 1984-05-02 Ishikawajima Harima Heavy Ind Co Ltd Controlling method of combustion in hot stove

Similar Documents

Publication Publication Date Title
CN1037528C (en) A converter process for the production of iron
WO2023134369A1 (en) Oxygen enrichment blast-furnace blow in method
KR100661878B1 (en) Process for producing molten iron
KR920004676B1 (en) Process and apparatus for producing steel from scrap
CN86107778A (en) Apparatus for producing ferrous or non-ferrous metals from self-fluxing or non-self-fluxing, self-reducing agglomerates or ores
CN105084361B (en) A kind of gas heating multistage calcium carbide reactor and its technique
CN204752780U (en) Melting reduction iron -smelting device
CN109477152A (en) Step roasts melting reduction iron smelting method and equipment
SK147397A3 (en) Process for melting of metal materials in a shaft furnace
KR20010067195A (en) Method and apparatus for dry quenching of coke
CN100336915C (en) One and half step melting deacidizing iron-smelting method
JPS60245735A (en) Operating method of installation for flash smelting furnace for smelting of copper
JPS5858206A (en) Controlling method for temperature of reducing gas in production of pig iron
JPH11294969A (en) Preheating/melting method for scrap
AU722145B2 (en) The production of hot metal by the melting down of scrap as an iron source.
JP3742441B2 (en) Method for adjusting combustion temperature in shaft furnace type waste melting furnace
JP2000129369A (en) Method for controlling reducing degree in copper flash smelting furnace
JP4038287B2 (en) How to operate a copper smelting flash furnace
CN1056887C (en) Control method of oxygen concentration for vertical quick melting furnace
CN115595399B (en) Process and system for hot charging of scrap steel by cooperation of preheating and direct reduction of iron
JPH02124996A (en) Method for heating high-temperature carbonization gas in continuous coking installation
WO2016123666A1 (en) Processing of low heating value off-gas
US2832681A (en) Blast furnace and heater combination
JPS59167627A (en) Automatic control procedure for industrial waste material melting furnace
CN203758288U (en) Flue gas waste heat utilization system of preheating furnaces