JPS5950132A - Method for operating flash smelting furnace for smelting copper - Google Patents

Method for operating flash smelting furnace for smelting copper

Info

Publication number
JPS5950132A
JPS5950132A JP15947882A JP15947882A JPS5950132A JP S5950132 A JPS5950132 A JP S5950132A JP 15947882 A JP15947882 A JP 15947882A JP 15947882 A JP15947882 A JP 15947882A JP S5950132 A JPS5950132 A JP S5950132A
Authority
JP
Japan
Prior art keywords
furnace
flash
coke
smelting
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15947882A
Other languages
Japanese (ja)
Other versions
JPH0224898B2 (en
Inventor
Koichi Takeda
武田 宏一
Kazuto Fukuda
和人 福田
Hiroshi Hidaka
日高 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP15947882A priority Critical patent/JPS5950132A/en
Publication of JPS5950132A publication Critical patent/JPS5950132A/en
Publication of JPH0224898B2 publication Critical patent/JPH0224898B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the changeover of mineral oil to other fuel in a flash smelting furnace for smelting copper when a copper concentrate, etc. are charged into the furnace to produce matte and slag, by adding fine-grained coke and/or low- grade coal of a prescribed size to a prescribed position of the furnace as auxiliary fuel. CONSTITUTION:Fine-grained coke (precipitated coke breeze) and/or low-grade lump or fine coal of <=40mm. size is prepared. The solid fuel is added to a system for charging a copper concentrate, a flux, etc. on the upper stream side of a flash smelting furnace with respect to a copper concentrate dryer kiln and a flash transporter. The solid fuel is used as auxiliary fuel to maintain the operation temp. of the furnace.

Description

【発明の詳細な説明】 本発明は、丙精鉱を溶錬するf!3製錬自熔炉の燃料を
従来の鉱油から固体炭素質燃料に転換する技術に関する
ものである□ 銅製錬用自溶炉は、硫化飼精欽(以下銅精鉱という)を
フラックス等と共に装入し、同時に空気或いは酸素富化
空気を吹込み、酸化に際して発生する反応熱を大手の熱
源として銅精鉱の熔解及び酸化製錬を行い、硫化銅及び
硫化鉄を主体とする熔体である彼(マット)と酸化鉄の
珪酸塩を主体とした熔体である濶(スラグ)を産出する
炉である。この際、反応に伴って発生する亜硫酸ガスを
含有する排ガスは濃硫酸製造の原料とされる。自溶炉は
精鉱の酸化反応熱を利用するため他の型式の炉に比し、
燃料消費率が低く、環境管理も好適に行いつる点で我国
では広く採用されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides f! 3 This relates to technology for converting the fuel in the smelting flash smelting furnace from conventional mineral oil to solid carbonaceous fuel.□ The flash smelting furnace for copper smelting is charged with sulfurized copper concentrate (hereinafter referred to as copper concentrate) along with flux, etc. At the same time, air or oxygen-enriched air is blown in, and the reaction heat generated during oxidation is used as the main heat source to melt and oxidize the copper concentrate. This furnace produces slag, which is a molten material mainly composed of (matte) and silicate of iron oxide. At this time, the exhaust gas containing sulfur dioxide gas generated during the reaction is used as a raw material for producing concentrated sulfuric acid. Compared to other types of furnaces, flash furnaces utilize the heat of the oxidation reaction of concentrate,
It is widely used in Japan because of its low fuel consumption rate and good environmental management.

上記のように、自溶炉は原料の酸化反応熱を大半の熱源
としているが、不足M量を補うために旧来重油を燃焼し
ていた。しかしながら、近年重油側路高騰に伴い、微粉
炭等の代替燃料を使用する燃料転換策が積極的におし進
められている。
As mentioned above, flash furnaces use the heat of the oxidation reaction of raw materials as their heat source, but in the past they burned heavy oil to make up for the insufficient amount of M. However, in recent years, as the price of heavy oil has soared, fuel conversion measures using alternative fuels such as pulverized coal are being actively promoted.

これまで使用された代替燃料の例としては(1)粉炭、
(2)古タイヤを砕いたもの(古タイヤチップ)、(3
)微粉炭(−200メツシユが80〜90%以上)等が
あるが、これらを使用して燃料代替を行った従来例は次
のように不W)足な点が多い:(i)重油代替率が低い
。粉炭な使用する場合重油代替率は30%である。微粉
炭を使用する場合、電気加熱を併用する特殊な自溶炉で
80%以下、その他の一般自溶炉においては50%以下
である。
Examples of alternative fuels used so far are (1) pulverized coal;
(2) Crushed old tires (old tire chips), (3
) Pulverized coal (-200 mesh is 80-90% or more), etc., but conventional examples of using these as fuel substitutes have many disadvantages as follows: (i) Substitution of heavy oil rate is low. When using powdered coal, the heavy oil substitution rate is 30%. When using pulverized coal, it is less than 80% in special flash-smelting furnaces that use electric heating, and less than 50% in other general flash-smelting furnaces.

(2)微粉炭を使用する場合石炭を乾燥粉砕して微粉体
を製造するので、そのための粉砕設備を必要としまたコ
ストもかかる。更に、粉砕に伴う作業環境悪化の弊害が
大きい。微粉炭の製造及び輸送を含めての取扱いの際に
は爆発防止という安全上の特別の配慮を要する。
(2) When using pulverized coal, the coal is dried and pulverized to produce fine powder, which requires pulverization equipment and is costly. Furthermore, the negative effect of deterioration of the working environment caused by the crushing is significant. When handling pulverized coal, including manufacturing and transporting it, special safety considerations must be taken to prevent explosions.

(3)これら代替燃料特に微粉炭の炉内装入の為の気流
輸送は銅精鉱と別系統で実施しているため設備及びコス
トを要する。
(3) Air flow transportation for introducing these alternative fuels, especially pulverized coal, into the furnace is carried out in a separate system from that of copper concentrate, which requires equipment and costs.

このように、銅製錬自溶炉に関しては実質的に重油の全
量を代替することがいまだ実施されておらず代替率は不
責足な数値に止まり、また附帯股備及びコストをかなり
必要とし、これでは重油代替の意^が少ない。
As described above, substantially all of the heavy oil in copper smelting flash smelting furnaces has not yet been replaced, and the replacement rate remains at an unsatisfactory value, and a considerable amount of incidental equipment and costs are required. This has little purpose as a substitute for heavy oil.

本発明者等は本テーマにつき、可能な限り合理的、経済
的かつ効果的な重油代替方法を追求した結果、次のよう
な発’J’Jにいたった。
The inventors of the present invention have pursued the most rational, economical, and effective method of replacing heavy oil with respect to this theme, and as a result, have arrived at the following development.

(1)粉粒コークスを自溶炉に装入することを特徴とす
る銅製錬自溶炉の操業方法。
(1) A method for operating a flash smelting furnace for copper smelting, characterized by charging granular coke into the flash furnace.

(2)粉粒コークスおよび/あるいはサイズ40m以下
の塊粒粉低質石炭を銅精鉱ドライヤーギルンおよび気流
輸送機より上流において銅精鉱・フラックスなどの装入
系統に添加して、銅精鉱・フラックスなどと共に自溶炉
内に装入することを特徴とする銅製錬自溶炉の操業方法
(2) Powder coke and/or lump powder low-quality coal with a size of 40 m or less are added to the copper concentrate/flux charging system upstream from the copper concentrate dryer gill and the pneumatic conveyor. A method for operating a flash smelting furnace for copper smelting, which is characterized by charging the flash furnace together with flux and the like.

(3)高屈反応条件を備えた自溶炉内に、固体炭素質燃
料を装入することによって、80%を越える比率の鉱油
を代替することを特徴とする銅製錬自溶炉の操業方法。
(3) A method for operating a copper smelting flash smelting furnace characterized by replacing mineral oil at a ratio of over 80% by charging solid carbonaceous fuel into the flash smelting furnace equipped with high reflux reaction conditions. .

更に本発明者等は上記の発明を押し進めることによって
重油を使用せずして固体炭素質燃1)のみを補助燃料と
して定常的に自溶炉を操業することに成功するにいたっ
た。
Further, by further advancing the above-described invention, the present inventors succeeded in regularly operating a flash-smelting furnace using only solid carbonaceous fuel 1) as an auxiliary fuel without using heavy oil.

帽製錬用自溶炉において重油から固体炭ヲそ質燃料への
100%燃料転換を実現したのは、本発明者等の知る1
(μす、先例がない。
The inventors are aware of the fact that 100% fuel conversion from heavy oil to solid coal-based fuel was achieved in a flash smelting furnace for smelting.
(There is no precedent.

不発1!IJを借成する各要件について、以丁に8?1
!明する。
Misfire 1! Regarding each requirement for renting IJ, please refer to 8-1 below.
! I will clarify.

(1)固体炭素質燃料とは、各種の等級の石炭、木炭お
よびコークスを包含する。
(1) Solid carbonaceous fuels include various grades of coal, charcoal, and coke.

(2)粉粒コークスとは、粉コークス、粒コークスある
いは両者の混合物を意味し、通常製鉄用に使用されるよ
うな呉粒された塊コークス以外の各種コークスを包含す
るが、特にコークス炉からコークスを取出す際の冷却工
程で副産する粉粒まじりコークスである沈殿粉コークス
の使用が望ましい。沈殿粉コークスの粒度分布、成分お
よび発熱量を第1表に示す。又、沈戸粉コークス生成の
フルーシートを第1図に示す。
(2) Powdered coke refers to powder coke, granular coke, or a mixture of both, and includes various types of coke other than the lump coke normally used in steelmaking, but especially coke from coke ovens. It is desirable to use precipitated coke powder, which is coke mixed with powder particles that is a by-product during the cooling process when taking out coke. Table 1 shows the particle size distribution, components and calorific value of the precipitated coke powder. Furthermore, a flow sheet for producing coke powder is shown in Fig. 1.

粉粒コークスとしては、上記沈殿粉コークス以外に、は
ぼ10日アンダーの篩下コークスを単独あるいは混合し
て用いることかで亡る。
As the powder coke, in addition to the above-mentioned precipitated coke powder, subsieve coke with about 10 days under sieve may be used alone or in combination.

(3)塊粒粉低質石炭とは、整粒された高級石炭以外の
石炭弊1を意味し、特に褐炭を実例とする。
(3) Lump-grain powder low-quality coal refers to coal other than sized high-grade coal, and lignite is a particular example.

本発明において用いられた褐炭であるワンポー炭(僚州
産)について粒度分布、成分および発熱量を第1畳に示
す。
The particle size distribution, components, and calorific value of Wang Po coal (produced in Lishu), which is the lignite used in the present invention, are shown in the first tatami mat.

第1表 沈殿粉コークスとワンポー炭の粒度 分布、成分および発熱量 (4)銅精鉱ドライヤーキルンおよび気流輸送機より上
流とは1下記を意味する。
Table 1: Particle size distribution, components, and calorific value of precipitated coke powder and Wanpo coal (4) Upstream of the copper concentrate dryer kiln and pneumatic conveyor means 1:

我が国における各所の銅自熔製錬設備の装入系統は為大
略第2図のとおりであり、第2図において、ドライヤー
キルンは12・気流輸送機は14.15である。粉粒ま
しりコークス類の添加は、ドライヤーキルン12よりも
上流ならばどこで行われても良いが、p(r、2図に示
すように鍋精鉱ホッパー2と並列に粉粒まじりコークス
ホッパー3を設置し、連続的に抜出すことによって搬上
コンベア8上において銅精鉱・フラックスなどに瀞加す
る方式が、以後のすべての装入系統緒設O:qを共用す
ることができる点で、最も望ましい態様である。
The charging system of copper self-melting smelting equipment in various places in Japan is roughly shown in Figure 2. In Figure 2, the dryer kiln is number 12 and the pneumatic transporter is number 14.15. The powdered coke may be added anywhere upstream of the dryer kiln 12, but as shown in Figure 2, the powdered coke hopper 3 is placed in parallel with the pot concentrate hopper 2. The method of adding copper concentrate, flux, etc. on the carrying conveyor 8 by installing and continuously extracting it is advantageous in that the charging system O:q can be shared by all subsequent charging systems. , is the most desirable aspect.

(5)高速反応条件を備えた自溶炉とは、粉粒コークス
・塊粒粉低質石炭を粉砕などの子4t:f処理すること
なしに装入した場合にも、あるいは種類を限定しない固
体炭素質燃料を鉱油代替率が80%を越えるような大量
に装入した場合にも、支障なく燃焼するのに十分な高速
反応条件をOHIえた自溶炉という意味であり、具体的
には1(1)自溶炉に吹込む酸化反応用気体を酸素ある
いは酸素富化空気とする (ii)自溶炉に吹込む酸化反応用気体を予熱する(i
ii)固体炭素質燃料の燃焼速度を促進する物質(触媒
物質、助燃剤など)を酸化反応用気体とともに、装入物
とともに、あるいは単独で自借炉シャフト中に装入する ことが考えられるが、最も効果的な態様は、自溶炉に吹
き込む空気又は酸素富化空気を650℃以上望ましくは
900〜1000℃の高温熱風とすることである。
(5) A flash-smelting furnace equipped with high-speed reaction conditions can be used even when granular coke, lump granular powder, and low-quality coal are charged without any 4t:f treatment such as pulverization, or when solids of any type are charged. This refers to a flash smelting furnace that has OHI conditions for high-speed reaction that are sufficient to burn it without any problems even when carbonaceous fuel is charged in large quantities with a mineral oil substitution rate of over 80%. (1) Use oxygen or oxygen-enriched air as the oxidation gas to be blown into the flash furnace. (ii) Preheat the oxidation gas to be blown into the flash furnace. (i)
ii) It is possible to charge substances that accelerate the combustion rate of solid carbonaceous fuel (catalyst materials, combustion improvers, etc.) into the furnace shaft together with the oxidation reaction gas, together with the charge, or alone. The most effective aspect is to use the air or oxygen-enriched air blown into the flash furnace as high-temperature hot air of 650°C or higher, preferably 900 to 1000°C.

以下、本出願の各発明について具体的に説明する。Each invention of the present application will be specifically explained below.

第1の発明(特許請求の範囲第1項)について、(1)
  コークスは、従来から揮発分が低く着火点が高い故
に高速燃焼用には用いられないものと思われていた。又
、自溶炉は装入物がシャフト内を降下する間に反応を終
了すべき炉であるといわれていた。従って、従来は自溶
炉の鉱油溶焼の代替用としてGJIら微粉E1燃t9が
短絡的に考慮された。しかし、本発明者等は、粉粒コー
クスであれば、又、炉内反応速度がある程度大きい条件
にあれば、自溶炉の補助熱源として十分に用いることが
できること、粉粒コークス装入により、炉内セトラーの
湯面には、粉粒コークスが佇遊することになるが、汀遊
量が増傾向とならないように炉内条fT=と、粉粒コー
クスの装入量を制御すれば、安定した操梨が続けられる
ことを′S昭した。もちろん、炉内反応速度の小さい条
件において無理に大量の鉱油を粉粒コークスによって代
替すれば、炉内ヒープの発達、タッピングの困蕪などの
現象が起るが、炉内各所の温度、排ガス湿度、マット温
度、スラグ温度などを監視しつつ徐々に代替率を増して
行けば1その炉に適応した多作において許される範囲ま
で鉱油を粉粒コークスに代替することができることを見
出した。更には、スラグ湛Jy、マット温度は、従来の
鉱油燃焼の場合に比しgfj7干低目でもタッピングに
は差支えないこと(これけ炉内のマグネタイト量減少に
よると思われる)又、粉粒コークスがセトラーの沿面に
汀遊していても朱#1:コークスのDr出は殆どなく、
十分に高い熱効率を維持できることを確認した。
Regarding the first invention (Claim 1), (1)
It has been thought that coke cannot be used for high-speed combustion because it has a low volatile content and a high ignition point. A flash-smelting furnace was also said to be a furnace in which the reaction must be completed while the charge is descending within the shaft. Therefore, in the past, GJI et al.'s fine powder E1 combustion t9 was briefly considered as a substitute for mineral oil combustion in flash furnaces. However, the present inventors have discovered that granular coke can be sufficiently used as an auxiliary heat source for flash-smelting furnaces as long as the in-furnace reaction rate is high to a certain extent, and that by charging granular coke, Powdered coke will remain on the hot water surface of the furnace settler, but if the furnace condition fT= and the amount of pulverized coke charged are controlled so that the amount of stagnation does not tend to increase, I hope he can continue his stable performance. Of course, if a large amount of mineral oil is forcibly replaced by granular coke under conditions where the reaction rate in the furnace is low, phenomena such as the development of a heap in the furnace and difficulty in tapping will occur, but the temperature at various parts in the furnace and the humidity of the exhaust gas It has been found that by gradually increasing the substitution rate while monitoring the matte temperature, slag temperature, etc.1, it is possible to replace mineral oil with pulverized coke to the extent that is permissible in the high yield adapted to the furnace. Furthermore, compared to conventional mineral oil combustion, the slag filling Jy and matte temperature do not pose a problem for tapping even at gfj7 low point (this seems to be due to a decrease in the amount of magnetite in the furnace). Even if the coke floats along the settler surface, there is almost no dredging of red #1 coke,
It was confirmed that a sufficiently high thermal efficiency could be maintained.

本発明においでは最も望ましい態様としては、自溶炉へ
のfn精鉱・フラックス装入系統の最も上流仰げ粉%ま
じりコークスを所定調合比で添加することで力)す、そ
の場合は銅程j鉱・フラックスと共に搬送および乾燥さ
れ、炉頂の精鉱バーナーを通U7て自溶炉内に装入され
るが、不発tJ1の範囲はそれのみには限定されず、別
系統の粉粒コークスミt送装入設(Wfiを径由したり
、−v焼バーナーで炉内に吹込む場合も包含する。
In the present invention, the most desirable embodiment is to add coke mixed with powder at a predetermined mixing ratio at the most upstream part of the fn concentrate/flux charging system to the flash furnace. It is transported and dried together with the ore and flux, and charged into the flash furnace through the concentrate burner U7 at the top of the furnace. Feeding and loading (this also includes the case of blowing into the furnace via Wfi or using a -V burner).

また、粉粒コークスとしては、第1図に生成フローシー
トもS示ず沈殿粉:1−クスが最も好ましい例T′ある
が、これのみにFHられるものではない。
Further, as for the pulverulent coke, although the production flow sheet in FIG. 1 does not show S and the most preferable example is 1-coke (sedimented powder) T', FH is not limited to this only.

第2の発明(q’Jr許計イ才の朗J、囲第28’i 
)について、(1)粉粒コークス及び/あるいはボイス
40剛以下の塊粒物低質石炭であれは、ドライヤーキル
ンおよび気流輸送機の上流において精鉱・フラックスな
どの装入系統に添加し7て装入することができ゛る。
Second invention (q' Jr.
) Regarding (1) Powdered coke and/or lumpy low-quality coal with a voice of 40 or less should be added to the charging system for concentrates, fluxes, etc. upstream of the dryer kiln and pneumatic conveyor. You can enter.

−4なわぢこれらの固体炭デく質燃料は微粉炭と具なり
、精鉱・フラックス川ドライヤーキルンおよび気流輸送
機を危[f1!性tCL、に通すことが°Cきる。
-4 These solid coals become pulverized coal and endanger the concentrate/flux river dryer kiln and pneumatic transport equipment. It can be passed to temperature tCL, °C.

(2)粉粒コークス及び/あるいはサイズ40?以Fの
塊粒物低質石炭なドライヤーキルンおよび気流輸送機の
上流において11σ精鉱・7ランクスなどの装入系統に
添加することにより、以後炉に入るまでの間に多数の混
合チートンスがあるため、炉に入るときは炉内燃焼の良
好な硫化物である銅精剣、と完全に混合ざ゛れた状態と
なり、単独装入では迅速に燃焼し秤い上記固体炭素質燃
料を迅速に炉内燃焼することができるようになったもの
と思われる。後述の実施例の場合には上記の条件に更に
高温熱風の条イ・(・が加わり、反応?ft度を一層迅
速化している。この場合、硫化物である銅精鉱が固体炭
素質燃料の燃炊t1・を促進する助燃効果あるいは反応
促進の触媒効果を果していることも考えられる。
(2) Coke powder and/or size 40? By adding low-quality coal to the charging system such as 11σ concentrate and 7 ranks upstream of the dryer kiln and pneumatic conveyor, there will be a large number of mixed cheatons before entering the furnace. When it enters the furnace, it is in a completely mixed state with sulfide, which is a sulfide that burns well in the furnace, and when charged alone, it burns quickly and weighs the solid carbonaceous fuel quickly into the furnace. It is thought that internal combustion became possible. In the case of the example described later, a stream of high-temperature hot air is added to the above conditions to further speed up the reaction. It is also thought that it has an auxiliary combustion effect that promotes the combustion of t1· or a catalytic effect that promotes the reaction.

第3の発明(特許請求の範囲第3項)について、(1)
高速反応条件を備えた自溶炉においては、固体炭素質燃
料は、その質を問わず、又、専焼、混焼(精鉱との)を
問わず、80%を越える重油代替率を達成できる。中で
も、亮涙fA夙自溶炉の場合、とりわけ反応速度が大き
いので、実質的に重油の炉内燃焼をしなくてすむだけの
代替率を達成することができた。
Regarding the third invention (Claim 3), (1)
In a flash furnace equipped with fast reaction conditions, solid carbonaceous fuel can achieve a heavy oil substitution rate of over 80% regardless of its quality and regardless of whether it is fired exclusively or co-fired (with concentrate). Among these, in the case of the Ryoichi fA flash-smelting furnace, the reaction rate is especially high, so it was possible to achieve a replacement rate that was substantially sufficient to eliminate the need for in-furnace combustion of heavy oil.

もちろん、粉粒コークスを精鉱・フラックスの装入系統
に最初から添加してやることがコスト面からも反応面か
らも作業面がらも最良の方法である。
Of course, the best method is to add coke granules to the concentrate/flux charging system from the beginning in terms of cost, reaction, and workability.

本発明の具体例について、以下に説明する。Specific examples of the present invention will be described below.

第2図は、銅精鉱及び固体炭素質燃料を一緒に自溶炉に
装入するまでのフローを示す。調合ホッパn1として、
銅精鉱ホッパ2、固体炭素質燃料の代表としての粉粒コ
ークス用ホッパ3、及びフラックスホッパ4が並置され
、それぞれ適当な源から搬入される。例えば粉粒コーク
スは粉粒コークス鉄台5からパケットクレーンM Kよ
りホッパ3内に搬入される。各ホッパの下側には、コン
スタントフィードコンベアのような切出装置6が設けら
れており、各ホッパから所定Rづつの原料切出を行う。
FIG. 2 shows the flow up to charging copper concentrate and solid carbonaceous fuel together into a flash furnace. As the formulation hopper n1,
A copper concentrate hopper 2, a hopper 3 for granular coke as a representative of solid carbonaceous fuel, and a flux hopper 4 are arranged side by side, and each is brought in from an appropriate source. For example, granular coke is carried into the hopper 3 from a granular coke iron table 5 by a packet crane MK. A cutting device 6 such as a constant feed conveyor is provided below each hopper, and raw material is cut out from each hopper in a predetermined radius.

切出された原料成分は搬上コンベア8によって受入ビン
10に送入される。搬上コンベアの代りにシュート、振
動コンベア等の搬送設備が使用されうる。受入ビンから
装入原料はドライヤーキルン12に投入されそしてケー
ジミル14により導管15を通して気流輸送される。気
流輸送より上流の段階で固体炭素質燃料と銅精鉱等とを
混合することにより、非常に均一に混合された装入原料
混合物が生成される。気流輸送された混合物は、チャン
バ16及びサイクロン群18を経てヘット°ビン20に
供給される。ヘッドビン20の底から例えばビューラー
コンベアによって装入物は自溶炉精鉱バーナー22を通
して装入される。
The cut raw material components are sent to a receiving bin 10 by a carrying conveyor 8. Conveying equipment such as a chute or a vibrating conveyor may be used instead of the carrying conveyor. From the receiving bin, the feedstock is introduced into the dryer kiln 12 and pneumatically transported by the cage mill 14 through the conduit 15. By mixing the solid carbonaceous fuel with the copper concentrate or the like at a stage upstream of pneumatic transport, a very uniformly mixed charge mixture is produced. The pneumatically transported mixture is supplied to a heating bin 20 via a chamber 16 and a group of cyclones 18. From the bottom of the head bin 20, the charge is passed through the flash furnace concentrate burner 22, for example by means of a Buehler conveyor.

サイクロンからドライヤーコットレルを経ての捕集ダス
トも装入される。自溶炉30は、シャフト31、セラト
ラ−32及びアップテーク33を具備する周知の借造の
もので、熱風吹送手段(図示なし)をも装備している。
Collected dust from the cyclone via the dryer Cottrell is also charged. The flash-smelting furnace 30 is a well-known borrowed type equipped with a shaft 31, a ceratra 32, and an uptake 33, and is also equipped with hot air blowing means (not shown).

こうして、自溶炉において所定の閃合比にある銅精鉱、
t、1体炭素質燃料、フラックス等がきわめて均一に混
合された状態で装入され、自りδ炉内での熱風によって
きわめて効率的に且つ効果的に反応し、所要の発熱量が
錦保される。
In this way, the copper concentrate at a predetermined flashing ratio in the flash furnace,
t, one-body carbonaceous fuel, flux, etc. are charged in a very uniformly mixed state, and they react very efficiently and effectively by the hot air in the δ furnace, and the required calorific value is be done.

自溶炉においては、本件出願人により先に開発された高
温熱風による酸化反応が遂行される。これは、従来の自
溶炉においては吹込空気乃至酸紫富化空気の湿度は35
0〜650℃であったのを、650℃以上、好ましくは
900〜10oO℃に維持することにより銅生産能力を
大巾に高めることに成功したものであり、本発明(Cお
いては暇油燃料転換策としての100%固体炭宏質燃狙
の使用にもきわ?))で適応1′1.を示ずことが見出
されたものである。高温熱風は、例えば、鉄或いはフェ
ロアロイIH!錬用熔鉱炉から発生ずるCOを主体とし
たBガス等の炉;焼;:’、’5を利用する蓄熱式熱風
炉にょつて容易に得られる。
In the flash-smelting furnace, the oxidation reaction using high-temperature hot air, which was previously developed by the applicant, is carried out. This means that in a conventional flash furnace, the humidity of the blown air or acid-purple enriched air is 35%.
By maintaining the copper production capacity at 650°C or higher, preferably 900 to 10°C, the copper production capacity was successfully increased from 0 to 650°C. It is also suitable for the use of 100% solid carbon as a fuel conversion measure. It was found that there was no High-temperature hot air is, for example, iron or ferroalloy IH! It can be easily obtained by using a regenerative hot-blast furnace that uses B gas mainly composed of CO generated from a smelting furnace.

本発明により従来不可能であった全” ?’lll L
rの実質的な代替を達成することができた。わ)粒コー
クスおよび/あるいは塊粒粉低質石膚は、何の予(’i
if処理も特別な装入設(r2も必2yとぜず6・! 
4)’?鉱と共に自溶炉内に装入され、きわめて良好な
肢−鍔形成反応を生じそして必貿な温Jqを維持する。
With the present invention, everything that was previously impossible has been achieved.
It was possible to achieve a substantial replacement of r. I) Granular coke and/or agglomerated powder and low-quality stone skin are
If processing is also a special charging setup (r2 must also be 2y and 6.!
4)'? It is charged into a flash furnace together with ore to produce a very good limb-flange formation reaction and maintain the required temperature.

これは、固体炭素質燃料とζ;1♀11鉱とを正F1’
nな調合比の下で均一に混合し、り1モに650 ”C
以上の高温熱風を(1用する自4N炉において何ら支障
を起さず達成することができたものであり、本臼熔炉が
高温熱風使用により反応辻1r5をきわめて迅速化する
雰[7)気であるため塊粉まじりの同体炭ゼζ質燵V1
を特別の附加設(4:Iなしにまた附加処理も要せず、
きわめてスムーズに自d3ff#炉内で完全に燃焼でき
たことはむしろ贅くべき効果であっA−6、]すU烈− 約3ケ月にわたり自りで9炉において11泊を使用仕ず
、沈殿粉コークスを使用してf’、’ご)二を行った。
This means that the solid carbonaceous fuel and ζ;1♀11 ore are directly
Mix uniformly under a mixing ratio of 650 ”C
The above high-temperature hot air could be achieved without any problems in the 4N furnace used in (1), and the present mortar melting furnace has an atmosphere [7] that extremely speeds up the reaction stage 1r5 by using high-temperature hot air. Because of this, it is a homogeneous charcoal zeta mixture with lump powder V1
(4: No special addition, no additional processing required,
The fact that it was able to burn completely smoothly and completely in the furnace itself was a rather luxurious effect. f','go)2 was carried out using coke powder.

最右欄の従来実績に較べ鍍品位も蚊巾釧品位も実質上変
化なく、安定した自溶炉操業が確保できた。
Compared to the previous results shown in the far right column, there was virtually no change in the slag quality or the smelt quality, and stable operation of the flash furnace was ensured.

以上、本発明について説明したが、最後に本発明の効果
をまとめると次の通りとなる:(1)実質的に全重油量
を代替でき、エネルギーコストの削減及び将来のエネル
ギー事情への対処に成功した。
The present invention has been explained above, and the effects of the present invention can be summarized as follows: (1) Substantially all heavy oil can be replaced, reducing energy costs and coping with future energy situations. Successful.

(2)固体炭素質燃料の粉砕等の前処理が不要であり、
固体炭素質燃料用の別途の装入股(r’+Ifを設ける
必要性を排除しうる。
(2) Pretreatment such as crushing of solid carbonaceous fuel is not required;
The need to provide a separate charging crotch (r'+If) for solid carbonaceous fuel can be eliminated.

(3)微粉炭に比べ安全性が大きく且つ作業環境が衛生
的である。
(3) It is safer than pulverized coal and provides a sanitary working environment.

(4)沈殿粉コークス等の使用によりコストが安価であ
る。
(4) The cost is low due to the use of precipitated coke powder.

(5)沈殿粉コークスは石炭や石油に較べ揮発分が少な
く、同−発熱量当りの燃焼用空気量及びHPガス量が少
くてすむ。
(5) Precipitated coke powder has less volatile content than coal or petroleum, and requires less air and HP gas for combustion per unit calorific value.

(6)操業中に自溶炉セトラーの?、5面に若干の21
1体炭素質燃料が浮遊するのがへ察されるが、その浮遊
量が増大しない程度に諸条件を管理すれば支障はなく、
却ってスラグ層に対して定・出前に還元作用を及ぼすこ
とに、1:リスラグ中ので!ス含イf率の低減効果を与
えることが期待される。
(6) Is the flash furnace settler during operation? , some 21 on the 5th side
It is expected that carbonaceous fuel will float, but if the conditions are controlled to the extent that the floating amount does not increase, there will be no problem.
On the contrary, it has a reducing effect on the slag layer, and 1: Because it is in the slag phase! It is expected that this will have the effect of reducing the carbon content and f-ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沈1?夕粉コークスの生成過程の70−シート
であり、ぞして、KS2図は銅精鉱と固体炭素質燃料を
混合下で自溶炉に装入する過程の■]、略流れ図である
。 1 ; :’、1.1 合ホンー’:群   2 :M
mMホッパ3:粉粒コークスホッパ4:7ラックスホン
バ5:粉粒コークス畝舎 6:切出秤量装置8:捜上コ
ンベア  10:受入ビン 12:ドライヤキルン 14:ケージミル15:気流軸
送導管  16:ブーヤンバ18:−リーイクロン  
 22:精鉱バーナ30:自)前炉      31:
シャフト32ニセツトラー    33:アップテーフ
゛□°゛を 代Jllj人の氏名  倉 内 基 仏間      
 倉  橋     暎 、   ′轢−程コークス
Is Figure 1 Shen 1? 70-sheet of the process of producing evening coke, and Figure KS2 is a schematic flowchart of the process of charging copper concentrate and solid carbonaceous fuel into a flash furnace under mixing. 1; :', 1.1 Gohon-': Group 2: M
mm hopper 3: Powdered coke hopper 4: 7 Lux honba 5: Powdered coke ridge 6: Cutting and weighing device 8: Search conveyor 10: Receiving bin 12: Dryer kiln 14: Cage mill 15: Air flow axial conduit 16: Booyamba 18:-Lee Ikron
22: Concentrate burner 30: Forehearth 31:
Shaft 32 Fake Settler 33:Uptape ゛□°゛Jllj person's name Motoi Kurauchi Butsuma
Aki Kurahashi, ``Coke''

Claims (1)

【特許請求の範囲】 1)@精鉱、7ラツクスその他の装入物を装入されマッ
トとスラグを産出する銅製錬自溶炉において、炉内操9
温度維持のための補助燃料として、粉粒コークスを装入
することを特徴とする銅製錬自溶炉の操業方法。 2)粉粒コークスが沈殿粉コークスである特許請求の範
囲第1項記載の方法。 3)粉粒コークスおよび/あるいはサイズ40w以下の
塊粒粉低質石炭を銅精鉱ドライヤーキルンおよび気流輸
送機より上流において銅精鉱・フラックスなどの装入系
統に添加して銅精鉱・フラックスなどと共に自熔炉内に
装入することを特徴とする銅製錬自溶炉の操業方法。 4)粉粒コークスが沈殿粉コークスであるかあるいは低
質石炭が褐炭である特許請求の範囲第3項記載の方法。 5)空気あるいは酸素富化空気を650℃以上に予熱し
て炉内に吹き込むようにした高温M照自熔炉に、粉粒コ
ークスおよび/あるいはサイズ401以下の塊粒粉低質
石炭を装入することによって実質的に全量の鉱油を代替
する特許請求の範囲第3項記載の方法。 6)高速反応条件を備えた自熔炉内に、固体炭素質燃料
を装入する、ことによって80%を越える比率の鉱油を
代替することを特徴とする銅製錬自溶炉の操業方法。 7)高速反応条件を備えた自溶炉が空気あるいは酸素富
化空気を650℃以上に予熱して炉内に吹き込むように
した高温熱風自溶炉である特許請求の範囲第6項記載の
方法。
[Claims] 1) In a copper smelting flash-smelting furnace charged with concentrate, 7 lux and other charges to produce matte and slag, the furnace operation 9
A method for operating a copper smelting flash-smelting furnace characterized by charging granular coke as auxiliary fuel for temperature maintenance. 2) The method according to claim 1, wherein the coke powder is precipitated coke powder. 3) Powder coke and/or lump powder low quality coal of size 40w or less is added to the charging system for copper concentrate/flux etc. upstream from the copper concentrate dryer kiln and pneumatic transport machine to produce copper concentrate/flux etc. A method for operating a copper smelting flash smelting furnace characterized by charging the same into the flash smelting furnace. 4) The method according to claim 3, wherein the coke powder is precipitated coke powder, or the low quality coal is lignite. 5) Charge granular coke and/or lump powder low-quality coal of size 401 or less into a high-temperature M-smelting furnace in which air or oxygen-enriched air is preheated to 650°C or higher and blown into the furnace. 4. The method of claim 3, wherein substantially the entire amount of mineral oil is replaced by. 6) A method for operating a flash smelting furnace for copper smelting, characterized in that a solid carbonaceous fuel is charged into a flash smelting furnace equipped with fast reaction conditions, thereby replacing mineral oil in a proportion of more than 80%. 7) The method according to claim 6, wherein the flash-smelting furnace equipped with high-speed reaction conditions is a high-temperature hot air flash-smelting furnace in which air or oxygen-enriched air is preheated to 650° C. or higher and blown into the furnace. .
JP15947882A 1982-09-16 1982-09-16 Method for operating flash smelting furnace for smelting copper Granted JPS5950132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15947882A JPS5950132A (en) 1982-09-16 1982-09-16 Method for operating flash smelting furnace for smelting copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15947882A JPS5950132A (en) 1982-09-16 1982-09-16 Method for operating flash smelting furnace for smelting copper

Publications (2)

Publication Number Publication Date
JPS5950132A true JPS5950132A (en) 1984-03-23
JPH0224898B2 JPH0224898B2 (en) 1990-05-31

Family

ID=15694645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15947882A Granted JPS5950132A (en) 1982-09-16 1982-09-16 Method for operating flash smelting furnace for smelting copper

Country Status (1)

Country Link
JP (1) JPS5950132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245735A (en) * 1984-05-21 1985-12-05 Nippon Mining Co Ltd Operating method of installation for flash smelting furnace for smelting of copper
JPH01275721A (en) * 1988-04-27 1989-11-06 Mitsubishi Metal Corp Method for smelting metal sulfide ore
US6755890B1 (en) 1999-05-14 2004-06-29 Outokumpu Oyj Method for reducing non-ferrous metal content in slag in the production of non-ferrous metals occurring in suspension smelting furnace
US6887298B1 (en) 1999-05-14 2005-05-03 Outokumpu Oyj Method and equipment for smelting non-ferrous metal sulphides in a suspension smelting furnace in order to produce matte of a high non-ferrous metal content and disposable slag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569794U (en) * 1991-11-14 1993-09-21 康勝 丹羽 Guitar support

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245735A (en) * 1984-05-21 1985-12-05 Nippon Mining Co Ltd Operating method of installation for flash smelting furnace for smelting of copper
JPH01275721A (en) * 1988-04-27 1989-11-06 Mitsubishi Metal Corp Method for smelting metal sulfide ore
US6755890B1 (en) 1999-05-14 2004-06-29 Outokumpu Oyj Method for reducing non-ferrous metal content in slag in the production of non-ferrous metals occurring in suspension smelting furnace
US6887298B1 (en) 1999-05-14 2005-05-03 Outokumpu Oyj Method and equipment for smelting non-ferrous metal sulphides in a suspension smelting furnace in order to produce matte of a high non-ferrous metal content and disposable slag

Also Published As

Publication number Publication date
JPH0224898B2 (en) 1990-05-31

Similar Documents

Publication Publication Date Title
US8632622B2 (en) Process and device for producing pig iron or liquid steel precursors
CN103757152B (en) Method and device for treating steel slag
RU2095423C1 (en) Method for production of liquid iron or steel melt from lumpy iron-containing material and plant for its embodiment
WO1999016913A1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
US4729786A (en) Process for the direct reduction of iron-oxide-containing materials
KR20150010997A (en) Method and device for introducing fine particle-shaped material into the fluidised bed of a fluidised bed reduction unit
CN1940092A (en) Fuse reducing iron-smelting process for rotating furnace
CZ200975A3 (en) Refining technology of metalline zinc-containing waste in revolving furnace
RU2549027C2 (en) Steel making facility and method of steel making
JP2005500233A (en) Mineral fiber manufacturing method and manufacturing apparatus
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
RU2669653C2 (en) Method of producing granular metallic iron
JP5103802B2 (en) Method for treating wet dust and method for producing sintered ore
JPS5950132A (en) Method for operating flash smelting furnace for smelting copper
US3918958A (en) Method for the production of sponge iron
US3326670A (en) Steelmaking process
KR101607254B1 (en) Combiner Ironmaking facilities
RU2465336C2 (en) Iron commercial manufacturing method
CZ325598A3 (en) Process for producing liquid pig iron of liquid steel half-finished product
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPH0130888B2 (en)
KR850001505B1 (en) System for recycling char in iron oxide reducing kilns
JPS62227022A (en) Preheating and reducing device for iron ore
JP3451901B2 (en) Operating method of mobile hearth furnace
AU2013380646B2 (en) System for the treatment of pellet fines and/or lump ore and/or indurated pellets