JPS60244339A - Catalyst for high temperature catalytic combustion - Google Patents

Catalyst for high temperature catalytic combustion

Info

Publication number
JPS60244339A
JPS60244339A JP59100564A JP10056484A JPS60244339A JP S60244339 A JPS60244339 A JP S60244339A JP 59100564 A JP59100564 A JP 59100564A JP 10056484 A JP10056484 A JP 10056484A JP S60244339 A JPS60244339 A JP S60244339A
Authority
JP
Japan
Prior art keywords
catalyst
rare earth
palladium
combustion
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59100564A
Other languages
Japanese (ja)
Inventor
Kiminobu Sawabiraki
澤開 公宣
Masatoshi Ono
昌利 小野
Minoru Tanaka
実 田中
Takashi Sakata
阪田 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP59100564A priority Critical patent/JPS60244339A/en
Publication of JPS60244339A publication Critical patent/JPS60244339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To enhance heat resistance and to enable clean combustion reduced in the discharge of NOX, by containing oxide of one or more of a rare earth element selected from Pr, Nd, Sm, Eu, Gd, Tb or the like and Pd. CONSTITUTION:The titled catalyst is formed by supporting the catalyst, which consists of oxide of one or more of a rare earth element selected from Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu, and palladium, by a carrier comprising a refractory material. This catalyst is excellent in heat resistance and, by using this catalyst, combustion exhausting no NOX is performed.

Description

【発明の詳細な説明】 〔発明の目的〕 本発明は800〜1600℃の温度で使用する高温接触
燃焼用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a catalyst for high-temperature catalytic combustion used at temperatures of 800 to 1600°C.

接触酸化用触媒は、大気汚染防止の目的で、オスセット
輪転印刷や金属印刷等の印刷工場、塗装工場および化学
プラント等の固定発生源からの有機溶剤系の排ガス処理
(脱臭)触媒として利用されている。さらに、酸化触媒
に還元作用を合わせ持たせた触媒が、自動車から排出さ
れる炭化水素、−酸化炭素および窒素酸化物(ノックス
)を同時処理する三元触媒として使用されている。また
、酸化触媒は民生用関係でも石油ストーブの脱臭フィル
ターとして市販されている。
Catalytic oxidation catalysts are used as catalysts for treating (deodorizing) organic solvent-based exhaust gases from stationary sources such as printing factories such as Osset rotary printing and metal printing, painting factories, and chemical plants for the purpose of preventing air pollution. ing. Furthermore, a catalyst that combines an oxidation catalyst with a reduction action is used as a three-way catalyst for simultaneously treating hydrocarbons, carbon oxides, and nitrogen oxides (NOx) discharged from automobiles. Oxidation catalysts are also commercially available as deodorizing filters for kerosene stoves for consumer use.

近年、これらの酸化触媒に関する技術を発展させて、加
熱を目的とする接触燃焼触媒の開発が行なわれている。
In recent years, technologies related to these oxidation catalysts have been developed to develop catalytic combustion catalysts for the purpose of heating.

燃焼器あるいは暖房器への応用が試みられており、例え
ば、ガスコンロ、ガス湯沸し器あるいはストーブ等のバ
ーナ一部分を接触燃焼触媒に置き換えることによって効
率の高い安定した無炎燃焼を行なわせることが可能で、
その上、従来のバーナーによる炎燃焼に比べると一酸化
炭素や未燃焼炭化水素の排出が少ない。
Attempts have been made to apply it to combustors or heaters. For example, by replacing part of the burner of a gas stove, gas water heater, or stove with a catalytic combustion catalyst, it is possible to achieve highly efficient and stable flameless combustion. ,
Moreover, compared to flame combustion in traditional burners, it emits less carbon monoxide and unburned hydrocarbons.

また、窒素酸化物の低減を目的とした接触燃焼が注目さ
れてきている。ボイラーやガスタービンでは燃焼室内に
2000℃を越える高温部分があるため、空気中の窒素
が酸化されて数百pIxlもの高濃度の窒素酸化物が排
出される。窒素酸化物はその排出量が大気汚染防止法で
規制されている。窒素酸化物の低減対策としては、低ノ
ックスバーナーを用いたり二段燃焼を行なって燃焼方法
を改善するものと、アンモニア接触還元法による脱硝を
行なうものがあり、それぞれ有効である。しかしながら
、今後ますますノックス規制は強化される方向にあり、
これに対応していくためにはより有効な方法が必要とな
ってくる。そこで、接触燃焼法の応用が試みられるよう
になってきた。この方法によれば安定で均一な燃焼を行
なわせることが可能で、局所的に高温になることはなく
、サーマル(Thermaりノックスの発生を抑えるこ
とができる。この場合、触媒の温度は10DD℃以上の
高温となるため、耐熱性に優れた触媒が必要とされる。
In addition, catalytic combustion for the purpose of reducing nitrogen oxides has been attracting attention. In boilers and gas turbines, there is a high temperature part in the combustion chamber that exceeds 2000°C, so nitrogen in the air is oxidized and nitrogen oxides with a high concentration of several hundred pIxl are emitted. Emissions of nitrogen oxides are regulated under the Air Pollution Control Law. Measures to reduce nitrogen oxides include improving the combustion method by using a low-nox burner or performing two-stage combustion, and denitration by ammonia catalytic reduction, each of which is effective. However, Knox regulations are likely to become increasingly strict in the future.
In order to deal with this, more effective methods are needed. Therefore, attempts have been made to apply the catalytic combustion method. This method makes it possible to perform stable and uniform combustion, without causing local high temperatures, and suppressing the occurrence of thermal nox.In this case, the catalyst temperature is 10DD℃. Because of the high temperatures above, a catalyst with excellent heat resistance is required.

本発明の目的は、800〜1600℃の高温下での接触
燃焼を行なわせる耐熱性に優れた触媒な提供するもので
ある。
An object of the present invention is to provide a catalyst with excellent heat resistance that allows catalytic combustion to occur at high temperatures of 800 to 1,600°C.

比較的耐熱性の良好な触媒には自動車用の排ガス浄化用
触媒が知られている。これらの触媒は、基本的には活性
アルミナからなる球状の担体あるいはセラミックスから
なるハニカム状の担体に油性アルミナを被覆したものに
貴金属を担持したものであり、担体の耐熱性乞向上させ
るため、活性アルミナのアルファ・アルミナへの転移を
防ぐための方法が開発されてきている。
Catalysts for purifying automobile exhaust gas are known as catalysts that have relatively good heat resistance. These catalysts are basically spherical carriers made of activated alumina or honeycomb-shaped carriers made of ceramics coated with oil-based alumina, on which noble metals are supported. Methods have been developed to prevent the transformation of alumina to alpha alumina.

このような中で、活性アルミナへ希土類酸化物を添加す
ることによって耐熱性を向上させる方法が提案されてい
る。例えば、特開昭48−14600号公報には活性ア
ルミナに希土類酸化物を添加して熱安定化した担体に触
媒金属成分を含浸して触媒とする方法が記載されて℃・
る。また特開昭58−156349号公報には活性アル
ミナへ希土類酸化物とペロブスカイト型複合酸化物を添
加して安定化した担体ヘパラジウムを担持した触媒につ
いて開示されている。特開昭57−19036号公報に
はアルミナへ希土類元素を含むペロブスカイト型複合酸
化物を添加して安定化した担体について示されている。
Under these circumstances, a method has been proposed to improve heat resistance by adding rare earth oxides to activated alumina. For example, JP-A-48-14600 describes a method of preparing a catalyst by impregnating a catalytic metal component into a thermally stabilized carrier by adding a rare earth oxide to activated alumina.
Ru. Further, JP-A-58-156349 discloses a catalyst in which hepalladium is supported on a stabilized carrier by adding a rare earth oxide and a perovskite type composite oxide to activated alumina. JP-A-57-19036 discloses a support stabilized by adding a perovskite type composite oxide containing a rare earth element to alumina.

しかしながら、これらの方法′は単に下地のアルミナの
耐熱性を向上させるだけであり、貴金属を担持した場合
、アルミナに添加した希土類酸化物や希土類ペロブスカ
イト酸化物は熱安定性に関して直接貴金属に作用するも
の雀1ないと考えられる。したがって、以上の例におい
ては800℃以上の高温下での貴金属のシンタリングを
抑制子る効果はあまり望めない。
However, these methods only improve the heat resistance of the underlying alumina, and when noble metals are supported, rare earth oxides and rare earth perovskite oxides added to alumina act directly on the noble metals in terms of thermal stability. It is thought that there is no sparrow. Therefore, in the above example, it cannot be expected to have much of an effect of suppressing sintering of the noble metal at high temperatures of 800° C. or higher.

これらと同様の系で希土類酸化物を添加して主に触媒効
果をねらいとしているものもある。例えば、特開昭58
−36634号公報には、多孔質担体に酸化ネオジウム
あるいは酸化ネオジウムと酸化セリウムを担持したもの
に白金、パラジウムを担持すると従来の三元触媒のよう
に高価なロジウムを含まなくてもノックスを除去するこ
とができると記載されている。また、特開昭58−79
544によれば、アルカリ土類金属酸化物及び/又はラ
ンタニド元素の酸化物で格子安定化された転移酸化アル
ミニウムと組み合わせたパラジウム触媒を耐熱スチール
マ) IJノックス担持させた場合、アルコールで運転
される内燃機関の排ガス中のアルデヒドの燃焼に有効で
あることが示されている。これらの触媒の耐熱性は、前
述した技術のものとほぼ同程度のものと思われる。
There are also systems similar to these in which rare earth oxides are added to mainly aim for a catalytic effect. For example, JP-A-58
Publication No. 36634 states that when platinum and palladium are supported on a porous carrier containing neodymium oxide or neodymium oxide and cerium oxide, NOx can be removed without containing expensive rhodium as in conventional three-way catalysts. It is stated that it is possible. Also, JP-A-58-79
544, when a palladium catalyst in combination with a transitional aluminum oxide lattice-stabilized with alkaline earth metal oxides and/or oxides of lanthanide elements is supported on a heat-resistant steel alloy, an alcohol-operated internal combustion It has been shown to be effective in burning aldehydes in engine exhaust gas. The heat resistance of these catalysts appears to be approximately the same as that of the technologies described above.

かかる状況を鑑み、釧意検討した結果本発明を完成する
に至った。
In view of this situation, we have completed the present invention as a result of careful consideration.

本発明に従って、酸化ランタンと酸化セリウムを除いた
希土類酸化物とパラジウムからなることを特徴とする高
温接触燃焼触媒が提供される。
According to the present invention, there is provided a high-temperature catalytic combustion catalyst characterized by comprising a rare earth oxide excluding lanthanum oxide and cerium oxide, and palladium.

〔発明の構成〕[Structure of the invention]

本発明の触媒の特徴は、希土類酸化物がパラジウムと特
定の結合を有しパラジウムが安定化されているため熱安
定性に優れている。そして、これは酸化ランタンとパラ
ジウムあるいは酸化セリウムとパラジウムからなる触媒
では達成できないものである。
The catalyst of the present invention is characterized by excellent thermal stability because the rare earth oxide has a specific bond with palladium and palladium is stabilized. This cannot be achieved with a catalyst consisting of lanthanum oxide and palladium or cerium oxide and palladium.

本発明においてパラジウムと組み合わせる希土類元素は
プラセオジウム(Pr)、ネオジウム(Nd)、サマリ
ウム(Sm)、ユーロピウム(Eu)、ガドリニウム(
Gd)、テルビウム(Tb)、ジスプロシウム(DY)
、ホルミウム(Ho)、エルビウム(Er)、ツリウム
(Tm)、イッテルビウム(Yb)、ルテチウム(Lu
)で、これらを単独あるいは組み合わせて用いることが
できる。また、この場合、不純物程度の少量のランタン
やセリウムが含まれていても本発明を実施する上で特に
問題はない。
In the present invention, rare earth elements combined with palladium include praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), and gadolinium (
Gd), terbium (Tb), dysprosium (DY)
, holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu
), these can be used alone or in combination. Further, in this case, even if a small amount of lanthanum or cerium, which is equivalent to an impurity, is contained, there is no particular problem in implementing the present invention.

触媒の担体としては、酸化雰囲気中で1300℃以上の
耐熱性のあるものであれば良く、例えばコーディエライ
ト、ジルコニア、ムライト、アルファ・アルミナ、チタ
ニア、炭化ケイ素、窒化ケイ素、サイアロン等を用いる
ことができる。担体の形状は特に制限はなく、例えばベ
レット状、ハニカム状あるいは三次元網目状の構造を持
つフオーム状のものを使用できる。
The catalyst carrier may be any material that has heat resistance of 1300° C. or higher in an oxidizing atmosphere, such as cordierite, zirconia, mullite, alpha alumina, titania, silicon carbide, silicon nitride, sialon, etc. I can do it. The shape of the carrier is not particularly limited, and for example, a pellet-shaped, honeycomb-shaped, or foam-shaped carrier having a three-dimensional network structure can be used.

パラジウムと希土類酸化物の担体への担持量は0.1〜
3Qwt% で、好ましくは1〜20Wt係である。担
持量が30 wt4を越えても活性の向上は認められず
、また0、1wt1以下では充分な性能が得られない。
The amount of palladium and rare earth oxide supported on the carrier is 0.1~
3Qwt%, preferably 1 to 20Wt. Even if the supported amount exceeds 30 wt4, no improvement in activity is observed, and if the supported amount is less than 0.1 wt1, sufficient performance cannot be obtained.

希土類元素とパラジウムの原子比は希土類元素1に対し
てパラジウム0,05〜4で、好ましくは01〜2であ
る。パラジウムの希土類元素に対する原子比は4を越え
てもそれに見合うだけの性能の向上は望めないし、また
0、05以下では光分な性能が得られない。
The atomic ratio of the rare earth element to palladium is 1 to 1 of the rare earth element to 0.05 to 4 palladium, preferably 0.01 to 2. Even if the atomic ratio of palladium to the rare earth element exceeds 4, no commensurate improvement in performance can be expected, and if it is less than 0.05, optical performance cannot be obtained.

触媒の製造は、例えば、パラジウムの可溶性塩と希土類
元素の可溶性塩の混合水溶液を調製し、含浸法によって
行なうことができる。原料に用いる可溶性塩とは水に溶
けるものであれば何でも良く、例えば、硝酸塩や塩化物
等を用いることができる。含浸法によれば、所定の濃度
となるように調製した溶液に担体な60分〜1時間浸漬
し、70〜150℃で2〜10時間乾燥する。さらに、
使用した塩の分解温度以上で6〜12時間焼成すること
によって完成触媒を得ることができる。尚1回の含浸操
作で所定の担持量が得られない場合、網成を行なった後
に含浸を繰り返すことができる。
The catalyst can be produced, for example, by preparing a mixed aqueous solution of a soluble salt of palladium and a soluble salt of a rare earth element, and performing an impregnation method. The soluble salt used as a raw material may be any salt as long as it is soluble in water, and for example, nitrates, chlorides, etc. can be used. According to the impregnation method, the carrier is immersed in a solution prepared to a predetermined concentration for 60 minutes to 1 hour, and then dried at 70 to 150° C. for 2 to 10 hours. moreover,
The finished catalyst can be obtained by calcination for 6 to 12 hours at a temperature above the decomposition temperature of the salt used. If a predetermined amount of support cannot be obtained in one impregnation operation, the impregnation can be repeated after net formation.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

へ実施例1 硝酸パラジウムと硝酸プラセオジウムが各々0.1モル
゛/リットルとO12モル/リットルトナルように混合
水溶液を調製し、これにコーディエライト質の四角の貫
通孔を有するノ・ニカム担体(25龍グ×50關)を6
0分間浸漬し、110℃で2時間乾燥後1100℃で4
時間焼成し、て完成触媒を得た。触媒成分の担持量は1
.2 ’wt %であった。
Example 1 A mixed aqueous solution of palladium nitrate and praseodymium nitrate of 0.1 mol/liter and 12 mol/liter of O, respectively, was prepared, and a cordierite-based nickel-based carrier having square through-holes was added to the solution. 25 dragons x 50 feet) 6
Immersed for 0 minutes, dried at 110℃ for 2 hours, and then dried at 1100℃ for 4 hours.
After calcination for an hour, a finished catalyst was obtained. The amount of catalyst component supported is 1
.. It was 2'wt%.

実施例2 硝酸プラセオジウムの代わりに硝酸サマリウムを用〜・
た他は全て実施例1と同じ方法で完成触媒を得た。触媒
成分の担持量は1.2wtq&であった。
Example 2 Using samarium nitrate instead of praseodymium nitrate
A finished catalyst was obtained in the same manner as in Example 1 in all other respects. The amount of catalyst components supported was 1.2 wtq&.

実施例6 硝酸プラセオジウムの代わりに硝酸ランタンを用いた他
は全て実施例1と同じ方法で完成触媒を得た。触媒成分
の担持量は1.3wL%であつ、た。
Example 6 A finished catalyst was obtained in the same manner as in Example 1 except that lanthanum nitrate was used instead of praseodymium nitrate. The amount of catalyst component supported was 1.3 wL%.

実施例4 活性アルミナ57g、酸化セリウム3g、アラビアゴム
0.9L純水120 ccをボールミルで混合してアル
ミナスラリーを調製した。このスラリーを用いて実施例
1で使用したのと同じ担体にアルミナをコーティングし
、乾燥後500℃でろ時間焼成した。これによって担体
には5wt4の酸化セリウムを含む活性アルミナが5w
t4被覆された。
Example 4 57 g of activated alumina, 3 g of cerium oxide, 0.9 L of gum arabic, and 120 cc of pure water were mixed in a ball mill to prepare an alumina slurry. Using this slurry, the same carrier used in Example 1 was coated with alumina, and after drying, it was calcined at 500°C for a period of time. As a result, the carrier contains 5w of activated alumina containing 5wt4 of cerium oxide.
t4 coated.

この担体な0.1モル/リットルの塩化ノでラジウム水
溶液に60分間浸漬し、110℃で2時間乾燥後水素気
流中250℃で1時間焼成を行ない完成触媒を得た。
This carrier was immersed in an aqueous radium solution containing 0.1 mol/liter of chloride for 60 minutes, dried at 110°C for 2 hours, and then calcined in a hydrogen stream at 250°C for 1 hour to obtain a completed catalyst.

〔発明の効果〕〔Effect of the invention〕

以上実施例で示した以外の他の触媒についても同様に実
施した。これらの触媒について、それぞれ流通式反応試
験装置を用いて触媒活性ヶ評価した。試験は、触媒入口
温度600℃、ガス流量“16.3 Nll/mi n
、燃焼ガス濃度プロパy900p四、触媒量24.5 
c cおよび空間速度4X10hr で行なった。
The same procedure was carried out for other catalysts other than those shown in the examples above. Each of these catalysts was evaluated for catalytic activity using a flow reaction test device. The test was conducted at a catalyst inlet temperature of 600°C and a gas flow rate of 16.3 Nll/min.
, combustion gas concentration propy900p4, catalyst amount 24.5
The test was carried out at c c and space velocity of 4×10 hr.

試験結果を表1に示す。The test results are shown in Table 1.

表1 注 活性判定 800℃焼成◎転化率95曝り上090−94係△80
係台×80%未満900’C焼成◎転化率90啄以上0
80%台 △70係台 ×70係未満1000℃焼成◎
転化率80係以上 070係台 △60係台 ×40(
歩満り100℃焼成◎転化率60係以上050壬台 △
40係台 ×20係未満表1から本発明の高温接触燃焼
用触媒の耐熱性が他の触媒に比べて優れていることが明
らかである。
Table 1 Note: Activity determination 800℃ firing ◎ Conversion rate 95 Exposure rate 090-94 △80
Seating stand x less than 80% 900'C firing ◎ Conversion rate 90 taku or more 0
80% level △70 level × Less than 70 level 1000℃ firing◎
Conversion rate 80 or higher 070 ratio △60 ratio x 40 (
Firing at 100℃ ◎ Conversion rate 60 or more 050 △
It is clear from Table 1 that the heat resistance of the catalyst for high temperature catalytic combustion of the present invention is superior to other catalysts.

以上述べた本発明の方法によれば耐熱性に優れた高温接
触燃焼用触媒が得られ、これを用いろことによりノック
ス等の排出の少ないクリーンな燃焼が可能となる。
According to the method of the present invention described above, a catalyst for high-temperature catalytic combustion with excellent heat resistance can be obtained, and by using this catalyst, clean combustion with less emissions of nox and the like becomes possible.

特許出願人 日本化学産業株式会社 代理人 弁理土中川周吉Patent applicant Nihon Kagaku Sangyo Co., Ltd. Agent: Patent Attorney Shukichi Donakagawa

Claims (2)

【特許請求の範囲】[Claims] (1) プラセオジウム(Pr)、ネオジウム(Nd)
、サマリウム(Sm)、ユーロピ”ラム(Eu)、ガド
リニウム(Gd)、テルビウム(Tb)、ジスプロシラ
云(Dy)、ホルミウム(Ho)、エルビウム(Er)
、ツリウム(Tm)、イッテルビウム(Yb)、ルテチ
ウム(Lu)の中から選ばれる少なくとも1種以上の希
土類元素の酸化物とパラジウムからなること・を特徴と
する高温接触燃焼用触媒。
(1) Praseodymium (Pr), neodymium (Nd)
, samarium (Sm), europyram (Eu), gadolinium (Gd), terbium (Tb), dysproscilla (Dy), holmium (Ho), erbium (Er)
A catalyst for high-temperature catalytic combustion, comprising palladium and an oxide of at least one rare earth element selected from , thulium (Tm), ytterbium (Yb), and lutetium (Lu).
(2)上記触媒が耐火材料からなる担体上に担持された
特許請求範囲第1項記載の触媒。
(2) The catalyst according to claim 1, wherein the catalyst is supported on a carrier made of a refractory material.
JP59100564A 1984-05-21 1984-05-21 Catalyst for high temperature catalytic combustion Pending JPS60244339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100564A JPS60244339A (en) 1984-05-21 1984-05-21 Catalyst for high temperature catalytic combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100564A JPS60244339A (en) 1984-05-21 1984-05-21 Catalyst for high temperature catalytic combustion

Publications (1)

Publication Number Publication Date
JPS60244339A true JPS60244339A (en) 1985-12-04

Family

ID=14277411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100564A Pending JPS60244339A (en) 1984-05-21 1984-05-21 Catalyst for high temperature catalytic combustion

Country Status (1)

Country Link
JP (1) JPS60244339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102639A (en) * 1991-04-12 1992-04-07 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst compositions containing the same, and methods of use
US5169300A (en) * 1991-04-12 1992-12-08 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst, methods of combustion and regeneration
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130230A (en) * 1980-03-17 1981-10-13 Nissan Motor Co Ltd Palladium type oxidation catalyst
JPS5836634A (en) * 1981-08-29 1983-03-03 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
JPS58156349A (en) * 1982-03-12 1983-09-17 Mitsui Mining & Smelting Co Ltd Tertinally-component catalyst for purifying exhaust gas
JPS59160536A (en) * 1983-03-04 1984-09-11 Hitachi Ltd Combustion-catalyst and its manufacture
JPS60190236A (en) * 1984-03-12 1985-09-27 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of catalyst having high temperature heat resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130230A (en) * 1980-03-17 1981-10-13 Nissan Motor Co Ltd Palladium type oxidation catalyst
JPS5836634A (en) * 1981-08-29 1983-03-03 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
JPS58156349A (en) * 1982-03-12 1983-09-17 Mitsui Mining & Smelting Co Ltd Tertinally-component catalyst for purifying exhaust gas
JPS59160536A (en) * 1983-03-04 1984-09-11 Hitachi Ltd Combustion-catalyst and its manufacture
JPS60190236A (en) * 1984-03-12 1985-09-27 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of catalyst having high temperature heat resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474441A (en) * 1989-08-22 1995-12-12 Engelhard Corporation Catalyst configuration for catalytic combustion systems
US5102639A (en) * 1991-04-12 1992-04-07 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst compositions containing the same, and methods of use
US5169300A (en) * 1991-04-12 1992-12-08 Engelhard Corporation Praseodymium-palladium binary oxide, catalyst, methods of combustion and regeneration
US5378142A (en) * 1991-04-12 1995-01-03 Engelhard Corporation Combustion process using catalysts containing binary oxides
US5750458A (en) * 1991-04-12 1998-05-12 Kennelly; Teresa Combustion catalysts containing binary oxides and processes using the same
US5863851A (en) * 1991-04-12 1999-01-26 Engelhard Corporation Combustion catalysts containing binary oxides and processes using the same

Similar Documents

Publication Publication Date Title
EP0960649B1 (en) Exhaust gas clean-up catalyst
CN109475843B (en) Three-zone diesel oxidation catalyst
JPH03161052A (en) Exhaust gas cleaning catalyst and its preparation
JP2006272079A (en) Catalyst for oxidizing and removing methane in combustion exhaust gas and exhaust gas cleaning method
JP2006051431A (en) Ternary catalyst for exhaust gas purification, and its production method
JP3406001B2 (en) Exhaust gas purification catalyst
JPS60244339A (en) Catalyst for high temperature catalytic combustion
JP4852595B2 (en) Exhaust gas purification catalyst
JP2006068722A (en) Catalyst for cleaning exhaust gas, production method therefor, exhaust gas cleaning material, and exhaust gas cleaning system
JPS6380848A (en) Catalytic system for combustion of high pressure methane based fuel and combustion method using the same
JPH02268830A (en) Catalyst for combustion of kerosene type fuel
KR100648594B1 (en) Catalytic compositions for oxidizing particular matters and Catalytic soot filters employing the compositions
JPS6280420A (en) Combustion catalyst system for low class hydro-carbon fuel and combustion method of using same
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP6325042B2 (en) Exhaust gas purification device for heat engine
JP4192791B2 (en) Exhaust gas purification catalyst
JPS634852A (en) Catalyst for combustion
JPH08206500A (en) Palladium-based catalyst, combustion catalyst, and combustion device
JP3284312B2 (en) Three-way catalyst for combustion exhaust gas of methane main gas
JPS6388041A (en) Oxidizing catalyst
JP4265445B2 (en) Exhaust gas purification catalyst
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JP2013244483A (en) Exhaust gas purifying apparatus of thermal engine and exhaust gas purifying method
JPH09253491A (en) Catalyst for clarification of exhaust gas and its preparation
JPH07136513A (en) Waste gas treating oxidation catalyst