JPS60244047A - Manufacture of semiconductive ic device - Google Patents

Manufacture of semiconductive ic device

Info

Publication number
JPS60244047A
JPS60244047A JP10011284A JP10011284A JPS60244047A JP S60244047 A JPS60244047 A JP S60244047A JP 10011284 A JP10011284 A JP 10011284A JP 10011284 A JP10011284 A JP 10011284A JP S60244047 A JPS60244047 A JP S60244047A
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor integrated
integrated circuit
dielectric isolation
semiconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10011284A
Other languages
Japanese (ja)
Inventor
Shigeharu Yamamura
山村 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10011284A priority Critical patent/JPS60244047A/en
Publication of JPS60244047A publication Critical patent/JPS60244047A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable chip size to the reduced and yield rate to improve by a method wherein an uneven part of an oxide film for insulation of a dielectric isolation substrate out of an oxide film on a surface of a semiconductor IC is smoothened and flattened. CONSTITUTION:At first, an oxide film 5 on a surface of a semiconductive IC is formed on a surface of a dielectric isolation substrate 4. Next, solution 12 melted SiO2 system mineral compound, such as glass melted into organic compound is applied on the surface by the spin-on method, so as to fill up enough a recessed hollow 11 of the oxide film on the surface of the semiconductive IC, and levels the surface thereof. Next, after solution 12 is hardened by heat treatment, the semiconductive IC element is formed, adding the process to remove uniformly a part of the oxide film 13 from the ground by means of dry-etching. The semiconductive IC device which is obtained by the dielectric isolation method in such a manner, can remove the problems such as disconnection of wiring at the wiring process and increasing thickness of wiring to prevent thereof, etc., thanks to the smoothing uneven part of an oxide film for insulation and flattening of the surface.

Description

【発明の詳細な説明】 本発明は、誘電体分離基板を用いかつ特に高耐圧化、高
周波特性に勝れた半導体集積回路装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit device using a dielectric isolation substrate and having particularly excellent high voltage resistance and high frequency characteristics.

一般にモノリシック集積回路の製造においては、トラン
ジスター、抵抗等多敬の構成素子を互いに電気的に絶縁
分離する必要がある。現在この分211f方式の代表的
なものと1−で、PN分離方式と誘醒1体分離方式とが
ある。後者の方式は絶縁材料と1〜で通常酸化膜を使用
するので、PN分離力式に比し寄性容量が少なく、高耐
圧化も容易である等の利点がある。
In general, in the manufacture of monolithic integrated circuits, it is necessary to electrically isolate and isolate various components such as transistors and resistors from each other. At present, there are two typical 211f systems: the PN separation system and the induced one-body separation system. The latter method usually uses an oxide film as an insulating material and has advantages over the PN separation force method in that it has less parasitic capacitance and can easily achieve a high breakdown voltage.

従来最も代表的な誘電体分離方式による半導体集積回路
装置の製造方法を第1図(a)〜(e)により順次説明
する。
A method of manufacturing a semiconductor integrated circuit device using the most typical conventional dielectric isolation method will be sequentially explained with reference to FIGS. 1(a) to 1(e).

先ず第1図(a)に示す如く、多結晶シリコン1の中に
絶縁用酸化膜2で互いに絶縁された複数の単結晶シリコ
ンの島3を有する誘電体分離基板4を公知の技術で製造
し、この誘電体分離基板4の表面に、熱酸化により、半
導体集積回路表面酸化膜5を形成する。この半導体集積
回路表面酸化膜5は、高耐圧プレーナー型半導体集積回
路装置では単結晶シリコン表面の反転防止のため通常2
μm以上の非常に厚い酸化膜とする必要ある。次に公知
のプレーナー技術等を用いホトリソグラフィ一工程、拡
散・酸化工程等を経て誘電体分断「基板4に不純物を導
入1〜.トランジスター、抵抗等の半導体集積回路素子
を形成する。第11!m(b)は前記方法で形成された
バーチカル型npn )ランシスター6を示す。ただし
説明を容易にするため誘電体分離基板4の単結晶シリコ
ンの島3と1−でn型導電性の場合について説明を行う
。続いて第1図(c)に示すように、リソグラフィ一工
程、A1等で代表される配線金属付着工程等を経て半導
体集積回路装置を形成する。第1図(C)において符号
7,8゜9はそれぞれバーチカル型npn )ランシス
ター6のコレクタ電極、エミッタ電極、ベース重接を示
す。
First, as shown in FIG. 1(a), a dielectric isolation substrate 4 having a plurality of single-crystal silicon islands 3 insulated from each other by an insulating oxide film 2 in a polycrystalline silicon 1 is manufactured using a known technique. A semiconductor integrated circuit surface oxide film 5 is formed on the surface of this dielectric isolation substrate 4 by thermal oxidation. This semiconductor integrated circuit surface oxide film 5 is usually used in order to prevent inversion of the single crystal silicon surface in a high-voltage planar type semiconductor integrated circuit device.
It is necessary to make an extremely thick oxide film of μm or more. Next, by using a known planar technique or the like, a photolithography step, a diffusion/oxidation step, etc. are carried out to divide the dielectric material. Impurities are introduced into the substrate 4 (1 to 1). Semiconductor integrated circuit elements such as transistors and resistors are formed. 11th! m(b) shows a vertical type npn) run sister 6 formed by the above method. However, for ease of explanation, it is assumed that the monocrystalline silicon islands 3 and 1- of the dielectric isolation substrate 4 have n-type conductivity. Next, as shown in FIG. 1(c), a semiconductor integrated circuit device is formed through a lithography step, a wiring metal deposition step represented by A1, etc. In FIG. 1(c), Reference numerals 7, 8 and 9 respectively indicate the collector electrode, emitter electrode, and base overlap of the vertical type NPN) run sister 6.

上述1−た誘電体分離方式による高耐圧プレーナー型半
導体集積同略装置の最も欠点とするところは、第1図(
e)に示す絶縁用酸化膜2の表面界面10が、その部分
拡大図である第2図に示すように、凹形のくぼみ11を
生じることである。一般に、酸化膜の酸化メカニズムは
単結晶あるいは多結晶シリコン而については表面に約5
5係、内部に約45チ成長する。1−か1−1誘電体分
離基板の絶縁用酸化Ill中には反応する過剰シリコン
が存在1〜ないため絶縁用酸化膜2はその誘′畦体分離
基板表面垂直方向にはほとんど成長しない。このため、
単結晶シリコン面に半導体集積回路装置の特性面の心安
性から2μm以上の表向酸化膜を成長させると、fI!
3縁用酸化膜の部分に1μm以上の段差を生じ、これが
表面の凹凸となって現われることとなる。
The biggest drawback of the high-voltage planar semiconductor integrated device based on the dielectric isolation method described in 1-1 above is shown in Figure 1 (
The surface interface 10 of the insulating oxide film 2 shown in e) forms a concave depression 11, as shown in FIG. 2, which is a partially enlarged view. In general, the oxidation mechanism of oxide film is about 50% on the surface of single crystal or polycrystalline silicon.
Division 5, grows about 45 inches inside. Since there is no reacting excess silicon in the insulating oxide Ill of the dielectric isolation substrate 1- or 1-1, the insulating oxide film 2 hardly grows in the direction perpendicular to the surface of the dielectric isolation substrate. For this reason,
If a surface oxide film of 2 μm or more is grown on a single-crystal silicon surface for safety in terms of the characteristics of a semiconductor integrated circuit device, fI!
A step difference of 1 μm or more is produced in the oxide film for the three edges, and this appears as surface irregularities.

このように誘電体分離基板に凹凸を生じると。If unevenness occurs in the dielectric isolation substrate in this way.

配線工程で断線等の問題を生じ、これを防止するため配
線環をr4 くする等の対策を講じなければならない。
Problems such as wire breakage occur during the wiring process, and to prevent this, measures must be taken such as making the wiring ring r4.

この場合、配線のホトリソグラフィ一工程でのエツチン
グの不均一により配線の微細化が困難となり、チップサ
イズの増加、ひいては歩留りの低下となる等の欠点を有
していた。なお、第2図で第1図と同じ構成要素の部分
には同一の符号を付1−である。
In this case, it is difficult to miniaturize the wiring due to non-uniform etching in one process of wiring photolithography, resulting in an increase in chip size and a decrease in yield. In FIG. 2, the same components as in FIG. 1 are designated by the same reference numerals 1-.

3一 本発明の目的は、半導体集積回路表面酸化膜のうち誘電
体分離基板の絶縁用酸化膜の部分の凹凸を無くシ、平坦
にすることにより、上記欠点を除去し5チツプサイズの
縮少1歩留りの向上が図れる高耐圧プレーナー型半導体
集積回路装+qを提供することにある。
31 An object of the present invention is to eliminate the above-mentioned defects and reduce the chip size by eliminating unevenness and flattening the insulating oxide film of the dielectric isolation substrate in the surface oxide film of a semiconductor integrated circuit. An object of the present invention is to provide a high-voltage planar type semiconductor integrated circuit device +q that can improve yield.

上記目的を達成するために本発明は、誘電体分離方式に
不純物を拡散・酸化して、トランジスター、抵抗等の半
導体集積回路素子を形成1〜、配線工程を経て半導体集
積回路装置を形成する方法において、配線工程以前に誘
電体分離基板表面に厚い酸化膜が形成された後、その酸
化膜の上に、溶融ガラス(Fused Glass )
等の8102系無機化合物を有機溶剤に溶いた溶液をス
ピン・オン法で塗布し、熱処理で固化させた後、その酸
化膜の一部を表面よりドライエツチング法で均一に除去
する工程を追加して半導体集積回路装置を形成すること
を特徴とする。
In order to achieve the above object, the present invention provides a method for forming semiconductor integrated circuit devices such as transistors, resistors, etc. by diffusing and oxidizing impurities in a dielectric separation method, and then forming a semiconductor integrated circuit device through a wiring process. In the process, a thick oxide film is formed on the surface of the dielectric isolation substrate before the wiring process, and then fused glass is deposited on the oxide film.
A solution of 8102-based inorganic compounds dissolved in an organic solvent, such as The method is characterized in that a semiconductor integrated circuit device is formed.

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

4− 第3図(a)〜(d)は、本発明の実施例に係る誘電体
分離方式による高耐圧プレーナー型半導体集積回路装置
の製造工程を示す部分断面図である。先ず第3図(a)
において、公知の技術で製造さt″Lだ多結晶シリコン
1の中に絶縁用酸化膜2で互いに絶縁された複数の単結
晶シリコンの島3を有する誘電体分離基板40表面に、
熱酸化により半導体集積回路表面酸化膜5を形成する。
4- FIGS. 3(a) to 3(d) are partial cross-sectional views showing the manufacturing process of a high breakdown voltage planar semiconductor integrated circuit device using a dielectric separation method according to an embodiment of the present invention. First, Figure 3(a)
, on the surface of a dielectric isolation substrate 40 having a plurality of monocrystalline silicon islands 3 insulated from each other by an insulating oxide film 2 in a polycrystalline silicon 1 manufactured by a known technique,
A semiconductor integrated circuit surface oxide film 5 is formed by thermal oxidation.

この半導体集積回路表面酸化膜5は、高耐圧プレーナー
型半導体集積回路装置では準結晶シリコン表面の反転防
止のため通常2μm以−ヒの非常に厚い酸化膜が必要と
される。次に半導体集積回路表面酸化膜5の凹形のくぼ
み11が十分埋まるよう表面に、溶融ガラス等のS i
 O2系無機化合物を有機溶剤に溶いた溶液12をスピ
ン・オン法で塗布し、表面を平坦にする。次に第3図(
b)に示すように、半導体集積回路表面酸化膜5の表面
に塗布した溶液12を熱処理で固化させることにより、
溶液12は半導体集積回路表面酸化膜5とほぼ同一の特
性を有する酸化膜13に遷移する。続いて酸化[13の
一部を、その表面から、CFA +02ガスを用いたド
ライエツチング装置を用いて、プラズマエツチング法に
より均一に除去することで表面が平(はな)−二板14
が得られる。続いて公知のプレーナー技術等を用いホト
リソグラフィ一工程、拡散・酸化工程等を経て基板14
に不純物を導入1−、トランジスター、抵抗等の半導体
集積回路素子を形成する。第3図(c)は前記方法で形
成されたバーチカル型npn )ランシスター6を示す
。ただj〜、説明を容易にするため誘電体分離基板4の
単結晶シリコンの島3としてn型導電性の場合について
説明を行う。さらに第3図(d)に示すようにリソグラ
フィ一工程、へe等で代表される配線金属付着工程を経
て半導体集積回路装置を形成する。第3図(d)におい
て7,8゜9はそれぞれバーチカル型npn トランジ
スター6のコレクタ電極、エミッタ電極、ベース成極を
示す。
This semiconductor integrated circuit surface oxide film 5 is normally required to be a very thick oxide film of 2 μm or more in order to prevent inversion of the quasi-crystalline silicon surface in a high breakdown voltage planar type semiconductor integrated circuit device. Next, the surface of the semiconductor integrated circuit surface oxide film 5 is filled with Si such as molten glass so that the concave depressions 11 are sufficiently filled.
A solution 12 in which an O2-based inorganic compound is dissolved in an organic solvent is applied by a spin-on method to flatten the surface. Next, Figure 3 (
As shown in b), by solidifying the solution 12 applied to the surface of the semiconductor integrated circuit surface oxide film 5 by heat treatment,
The solution 12 transforms into an oxide film 13 having almost the same characteristics as the semiconductor integrated circuit surface oxide film 5. Subsequently, a part of the oxidized layer 13 is uniformly removed from the surface by a plasma etching method using a dry etching device using CFA +02 gas, so that the surface becomes flat.
is obtained. Next, the substrate 14 is formed through a photolithography process, a diffusion/oxidation process, etc. using a known planar technology.
Impurities are introduced into 1- to form semiconductor integrated circuit elements such as transistors and resistors. FIG. 3(c) shows a vertical type npn) run sister 6 formed by the above method. However, for ease of explanation, a case will be described in which the single crystal silicon islands 3 of the dielectric isolation substrate 4 have n-type conductivity. Further, as shown in FIG. 3(d), a semiconductor integrated circuit device is formed through a lithography step and a wiring metal adhesion step represented by e. In FIG. 3(d), 7 and 8 degrees 9 indicate the collector electrode, emitter electrode, and base polarization of the vertical type NPN transistor 6, respectively.

このようにして得られた高耐圧プレーナー型半導体集積
回路装置は、配線工程での配線の断線、配線厚の増加等
の問題を除くことが出来、チップサイズ縮少1ナ留り向
上等の優れた半導体集積回路装置を4i1s成できる。
The high-voltage planar semiconductor integrated circuit device obtained in this way can eliminate problems such as disconnection of wiring and increase in wiring thickness during the wiring process, and has advantages such as reduction in chip size and improvement in 1-in. A 4i1s semiconductor integrated circuit device can be produced.

なお、上記実施例において誘電体分離基板の準結晶シリ
コンの島はn型導電性について説明(〜だが、p型導市
性の島でも、11型導屯性とn型導電性の相補形の島で
も、又絶縁用i狸化膜界面に反転防止用の高??i度埋
込層を持つ島でも差支えないことは勿論である。
In the above example, the quasi-crystalline silicon islands of the dielectric isolation substrate are described as having n-type conductivity (~, but even islands with p-type conductivity have complementary types of 11-type conductivity and n-type conductivity). Of course, it may be an island, or an island having a high-intensity buried layer for preventing inversion at the interface of the insulation film.

以上説明した1、しうに本発明の方法によって得られた
誘電体分離基板による半導体集積回路装置は、半導体集
積回路表面酸化膜のうち誘電体分離基板の絶縁用酸化膜
の部分の凹凸が無く、平坦であることに8シリ、後に続
く配線工程での配線の断線、こ′t″Lを防上するため
配線厚の増加等の問題を除くことができ、チップサイズ
縮少1ナ留り向上等の優れた効果を有する。
1. As explained above, the semiconductor integrated circuit device using the dielectric isolation substrate obtained by the method of the present invention has no unevenness in the insulating oxide film portion of the dielectric isolation substrate of the semiconductor integrated circuit surface oxide film. In addition to being flat, it is possible to eliminate problems such as wire breakage in the subsequent wiring process and increase in wiring thickness to prevent this problem, resulting in a reduction in chip size and a single improvement. It has excellent effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は従来の誘電体分離方式による半
導体集積回路装(峰の!!造工桿を示す断面図、第2図
は第1図(c)の部分拡大断面図、第3図(a)〜(d
)は本発明の誘電体分離方式による半導体集積回路装7
− 置の製造工程を示す断面図である。 1・・・多結晶シリコン、 2・・・絶縁用酸化膜、3
・・・単結晶シリコンの島。 4・・・誘電体分離基板、 5・・・半導体集積)け1路表面酸化膜、6・・・バー
チカル型npn トランジスター、7・・・コレクタ電
極、 8・・・エミッタ電極、9・・・ベース電極、 10・・・絶縁用酸化膜の表面界面、 11・・・凹形のくぼみ、 12・・・溶融ガラス等のS、02系無機化合物を有機
溶剤に溶いた溶液、 13・・・酸化膜、 14・・・基板。 代理人 弁理士 染用利吉 8− 寸 + N 凸へ d 二 りν
Figures 1 (a) to (e) are cross-sectional views showing a conventional dielectric isolation semiconductor integrated circuit device (Mine's!!), and Figure 2 is a partially enlarged cross-sectional view of Figure 1 (c). , Fig. 3(a) to (d)
) is a semiconductor integrated circuit device 7 using the dielectric isolation method of the present invention.
- It is a sectional view showing the manufacturing process of the device. 1... Polycrystalline silicon, 2... Insulating oxide film, 3
...An island of single crystal silicon. 4... Dielectric isolation substrate, 5... Semiconductor integration) single-way surface oxide film, 6... Vertical type NPN transistor, 7... Collector electrode, 8... Emitter electrode, 9... Base electrode, 10... Surface interface of insulating oxide film, 11... Concave depression, 12... Solution of S, 02-based inorganic compound such as molten glass dissolved in organic solvent, 13... oxide film, 14...substrate. Agent Patent Attorney Someyo Rikichi 8- Sun + N Convex d Two ν

Claims (1)

【特許請求の範囲】[Claims] 誘電体分離基板に不純物を拡散・酸化1〜で、トランジ
スター、抵抗等の半導体集積回路素子を形成し、配線工
程を経て、g電体分離方式による高耐圧プレーナー型半
導体集積回路装置を形成する方法において、配線工程以
前に、誘電体分離基板表面に厚い酸化膜が形成された後
、その酸化膜の上に、溶融ガラス(Fused Gla
ss )等の5iCh系無機化合物を有機溶剤に溶いた
溶液をスピン・オン法で塗布L、熱処理で固化させた後
、その酸化膜の一部を表面よりドライ・エツチング法で
均一に除去する工程を追加1−で半導体集積回路装置を
形成することを特徴とする高耐圧プレーナー型半導体集
積回路装置の製造方法。
A method of forming semiconductor integrated circuit elements such as transistors and resistors by diffusing and oxidizing impurities on a dielectric isolation substrate, and then forming a high-voltage planar semiconductor integrated circuit device using the g-electrical isolation method through a wiring process. Before the wiring process, a thick oxide film is formed on the surface of the dielectric isolation substrate, and then fused glass is deposited on top of the oxide film.
A process in which a solution of a 5iCh-based inorganic compound such as ss) dissolved in an organic solvent is applied by a spin-on method, solidified by heat treatment, and then a part of the oxide film is uniformly removed from the surface by a dry etching method. 1. A method for manufacturing a high-voltage planar semiconductor integrated circuit device, characterized in that the semiconductor integrated circuit device is formed by adding 1-.
JP10011284A 1984-05-18 1984-05-18 Manufacture of semiconductive ic device Pending JPS60244047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10011284A JPS60244047A (en) 1984-05-18 1984-05-18 Manufacture of semiconductive ic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10011284A JPS60244047A (en) 1984-05-18 1984-05-18 Manufacture of semiconductive ic device

Publications (1)

Publication Number Publication Date
JPS60244047A true JPS60244047A (en) 1985-12-03

Family

ID=14265282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10011284A Pending JPS60244047A (en) 1984-05-18 1984-05-18 Manufacture of semiconductive ic device

Country Status (1)

Country Link
JP (1) JPS60244047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835113A (en) * 1986-09-26 1989-05-30 American Telephone And Telegraph Company, At&T Bell Laboratories Fabrication of dielectrically isolated devices with buried conductive layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835113A (en) * 1986-09-26 1989-05-30 American Telephone And Telegraph Company, At&T Bell Laboratories Fabrication of dielectrically isolated devices with buried conductive layers

Similar Documents

Publication Publication Date Title
KR890003382B1 (en) Manufacturing method of dielectronic isolation complementary ic.
JP3006425B2 (en) Semiconductor device and manufacturing method thereof
JPS6015944A (en) Semiconductor device
JPH0666311B2 (en) Method of manufacturing separated semiconductor structure
JPS60244047A (en) Manufacture of semiconductive ic device
JPS61172346A (en) Semiconductor integrated circuit device
JPS6022502B2 (en) Manufacturing method of semiconductor device
JPH0368170A (en) Manufacture of thin film semiconductor element
JP2666427B2 (en) Method for manufacturing semiconductor device
JPS61135136A (en) Manufacture of semiconductor device
JPS60240138A (en) Manufacture of dielectric isolating substrate in semiconductor integrated circuit device
JPS63199454A (en) Semiconductor device
JPH0420266B2 (en)
JPH0685051A (en) Manufacture of semiconductor device
JP3189320B2 (en) Method for manufacturing semiconductor device
JPH0332232B2 (en)
JPS6010748A (en) Manufacture of semiconductor device
JPS6226181B2 (en)
JPS60753A (en) Manufacture of semiconductor device
JPH1050823A (en) Dielectric isolation substrate and manufacture thereof
JPH06151450A (en) Semiconductor device
JPS6149826B2 (en)
JPS61125049A (en) Semiconductor integrated circuit device
JPS59208746A (en) Manufacture of semiconductor device
JPH01196135A (en) Semiconductor device and manufacture of the same