JPS60243978A - Metal-hydrogen secondary battery - Google Patents

Metal-hydrogen secondary battery

Info

Publication number
JPS60243978A
JPS60243978A JP59100828A JP10082884A JPS60243978A JP S60243978 A JPS60243978 A JP S60243978A JP 59100828 A JP59100828 A JP 59100828A JP 10082884 A JP10082884 A JP 10082884A JP S60243978 A JPS60243978 A JP S60243978A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
metal
gas
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59100828A
Other languages
Japanese (ja)
Other versions
JPH0626147B2 (en
Inventor
Takanao Matsumoto
松本 孝直
Yoshikazu Ishikura
石倉 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59100828A priority Critical patent/JPH0626147B2/en
Publication of JPS60243978A publication Critical patent/JPS60243978A/en
Publication of JPH0626147B2 publication Critical patent/JPH0626147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To enable the maximum capacity to be achieved in the early stage after battery assembly by compressing and packing a gas into the internal space of a sealed-type container in which a positive electrode and a negative electrode containing a hydrogen-absorbing or discharging metal or an alloy are installed. CONSTITUTION:A positive electrode 3 containing a metal oxide and a negative electrode 4 containing a hydrogen-absorbing alloy are immersed in liquid potassium hydroxide electrolyte 11 poured in a container 1. They are electrically connected to a positive and a negative terminal 7 and 8, which are attached to an upper lid 2 and penetrate it, through a positive and a negative current collector 5 and 6. Argon gas is compressed and charged into the internal space of the container 1 through a valve 9 and a gas hole 10 which is formed in the upper lid 2. As a result, the surface of the hydrogen-absorbing electrode is pressed by the electrolyte 11 and a great amount of hydrogen is absorbed by the electrode. Therefore, a discharge capacity level almost equal to the maximum discharge capacity can be achieved during the initial stage of the charge-and-discharge cycle.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水素を吸蔵・放出する能力を有する金属または
合金を備えた電極を負極とするニラグルー水素電池のよ
うな金属−水素二次電池に関し、特に活性化処理を行な
わずして電池組立後早期に最大容量を得ることが可能な
金属−水素二次電池に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention is applicable to metal-hydrogen secondary batteries such as NilaGlu hydrogen batteries, which have an electrode comprising a metal or alloy having the ability to absorb and release hydrogen as a negative electrode. In particular, the present invention relates to a metal-hydrogen secondary battery that can obtain maximum capacity early after battery assembly without performing an activation process.

(ロ)従来技術 水素を収蔵及び放出することのできる金属または合金を
備えたアルカリニ次電池用の負極は、持分11s49−
25135号公鍜に見られるように水素収蔵合金粉末に
固着剤を加えてなるペーストを支持体に塗着、乾燥後焼
結して得たもの、特藺昭55−103541号公報に見
られるように水素吸蔵ダl粉末及びアセチレンブラック
を結着剤により支持体に固着して得たものなど従来より
種々の提案がなされており、該負極は単位重量あたりの
エネルギー密度が大きいため高密度電池を構成する電極
として非常に優れている。
(b) Prior art A negative electrode for an alkaline secondary battery comprising a metal or an alloy capable of storing and releasing hydrogen has an equity of 11s49-
As seen in Publication No. 25135, a paste made by adding a fixing agent to hydrogen storage alloy powder is applied to a support, dried and sintered, and obtained. Various proposals have been made in the past, such as those obtained by fixing hydrogen-absorbing powder and acetylene black to a support using a binder, and since the negative electrode has a high energy density per unit weight, it is difficult to use high-density batteries. It is excellent as a constituent electrode.

しかしながら、この水素吸蔵合金を有する水素収蔵電極
からなる負極と、金属酸化物を活物質とする正極とを備
えた金属−水素二次電池は初期容量が低く、電池組立後
段大容量を得る筐でに故〜数士サイクルの充放電を必要
とするという問題点がある。この問題点を解決するため
に水素吸蔵合金粉末を予め密閉容器で水素を吸蔵させ次
いで水素吸蔵合金粉末を加熱することで吸蔵した水素を
放出させるという水素の吸蔵・放出を繰り返すことによ
って水素吸蔵合金を活性化させ、こうして得られた水素
吸蔵合金を用いて負極を製造する方法が一般によく行な
われるが、この場合、活性化を行なうための操作が増す
ばかりか活性化した水素吸蔵合金粉末が極めて反応性に
富み空気中で急激に酸化するため収シ扱い環境にも制約
を受けるため充分な解決方法とはいえなかった。
However, a metal-hydrogen secondary battery equipped with a negative electrode made of a hydrogen storage electrode containing a hydrogen storage alloy and a positive electrode made of a metal oxide as an active material has a low initial capacity, and it is difficult to obtain a large capacity in the post-assembly stage of the battery. Therefore, there is a problem in that charging and discharging of several cycles are required. In order to solve this problem, hydrogen storage alloy powder is made to absorb hydrogen in advance by storing hydrogen in a sealed container, and then heating the hydrogen storage alloy powder to release the occluded hydrogen. Generally, a method of activating hydrogen storage alloy and manufacturing a negative electrode using the thus obtained hydrogen storage alloy is commonly used, but in this case, not only does the number of operations for activation increase, but the activated hydrogen storage alloy powder is extremely Because it is highly reactive and oxidizes rapidly in the air, it is not a sufficient solution because it is subject to restrictions in the environment in which it can be handled.

(ハ)発明の目的 本発明はかかる点に鑑み電池組立後早期に最大容量を得
ることが出来、且つ煩雑な操作を伴う活性化処理を解消
出来る金属−水素二次電池を提供せしめんとするもので
ある。
(c) Purpose of the Invention In view of the above, the present invention aims to provide a metal-hydrogen secondary battery that can obtain the maximum capacity at an early stage after battery assembly and eliminates the activation process that involves complicated operations. It is something.

、−に)発明の構成 本発明の金属−水素二次電池は、水素を吸蔵・放出する
能力を有する金属または合金を備えた負極と、正極とを
収納する密閉型の電槽の内部空間に気体が加圧充填され
たものであり、前記加圧充填される気体としては窒素、
アルゴンなどの不活性ガスが適している。
,-2) Structure of the Invention The metal-hydrogen secondary battery of the present invention has a negative electrode comprising a metal or an alloy having the ability to absorb and release hydrogen, and a positive electrode in an internal space of a sealed battery case. The gas is filled under pressure, and the gas filled under pressure is nitrogen,
An inert gas such as argon is suitable.

(ホ)実施例 負極に水素吸蔵合金を用い、正極に金属酸化物を用いる
代表的な二次電池としてニッケルー水素電池がある。断
る電池を用い本発明の一実施例を説明する。
(E) Example A nickel-hydrogen battery is a typical secondary battery that uses a hydrogen storage alloy for the negative electrode and a metal oxide for the positive electrode. An embodiment of the present invention will be described using a battery that refuses.

カーボニルニッケル粉末に増粘剤と水を加えて混合して
なるスラリーを鉄にニッケルメッキが施こされた薄い集
電体の両面に塗着し乾燥した後還元性雰囲気中で焼結を
行ない多孔度80〜85%の多孔性ニッケル焼結基板を
作製し、これを活物質保持体としてその孔中に硝酸ニッ
ケル溶液を含浸しアルカリ処理、水洗、乾燥という一連
の活物質充填操作を操り返し行なって所定量の水酸化ニ
ッケルを充填したニッケル極板を得、こうして得られた
ニッケル極板を裁断して正極とする。この正極の寸法は
60■X 30 tm X O,6mである。
A slurry made by mixing carbonyl nickel powder with a thickener and water is applied to both sides of a thin current collector made of nickel-plated iron, dried, and then sintered in a reducing atmosphere to create porous A porous sintered nickel substrate with a density of 80 to 85% was prepared, and the pores were impregnated with a nickel nitrate solution using this as an active material holder, and a series of active material filling operations including alkali treatment, water washing, and drying were repeated. A nickel electrode plate filled with a predetermined amount of nickel hydroxide is obtained, and the nickel electrode plate thus obtained is cut to form a positive electrode. The dimensions of this positive electrode are 60 mm x 30 tm x 0, 6 m.

次いで、水素吸蔵能力を有するLaNi 5 を機械的
に粉砕して微粉化し、こうして得られた1IaNi 5
粉末に小さなせん断力で粒子が簡単に繊維化し塑性変形
するポリテトラフルオロエチレン(PTFE)粉末を、
LaNi 5 粉末の重量に対して1〜5%添加して混
合機で均一に混合すると同時にポリテトラフルオロエチ
レンを繊維化させ、これをニッケル音圧からなる集電体
の両面に配置し1 ton/−の圧力で加圧成型するこ
とにより直径60m1厚さ1調の水素吸蔵電極を得、こ
うして得られた水素吸蔵電極を負極とする。
Next, LaNi 5 having a hydrogen storage capacity is mechanically crushed into a fine powder, and the thus obtained 1IaNi 5
We use polytetrafluoroethylene (PTFE) powder, which easily fiberizes and plastically deforms when subjected to a small shearing force.
LaNi 5 is added in an amount of 1 to 5% based on the weight of the powder, mixed uniformly with a mixer, and at the same time, polytetrafluoroethylene is made into fibers, which are placed on both sides of a current collector made of nickel sound pressure, and the amount of 1 ton/ A hydrogen storage electrode with a diameter of 60 m and a thickness of 1 tone was obtained by pressure molding at a pressure of -, and the hydrogen storage electrode thus obtained was used as a negative electrode.

第1図は上述の正極及び負極音用いて作製した(A) 本発明のニッケルー水素二次電池ρ断面図であり、ポリ
プロピレン樹脂よりなる電槽本体(1)の開口部と、ポ
リプロピレン樹脂よりなる上蓋(2)とを超音波溶着す
ることにより電槽が密閉化されており、電槽本体11)
内に注入された60%の水酸化カリクム、電解液(ID
100cc 中に浸漬した前記正極(3)及び負極14
)が前記上蓋(2)に貫通して収り付けられた正、負極
端子(7)、(8)に夫々正、負極の集電体;5)、(
6)を介して電気的に接続されると共に、バルブ(9)
から前記上蓋(2)に設けられたガス注入口I]0)を
通して電槽の内部空間にアルゴンガスが加圧充填され填
のみ行なっていない比較電池いとを、25mAの電流で
16時間充電して完全充電を行なった後、終止電圧を1
,0■として50mAの電流を放電するというサイクル
条件で充放電を繰り返し行なった。第2図はこの結果を
示す放電容量図であり、充放電サイクル数と放電容量と
の関係を表わしている。第2図から明らかなように本発
明電池は最大容量に到達するまでの充放電サイクル数が
極めて短く非常に優れていることがわかる。
Figure 1 is a sectional view of the nickel-hydrogen secondary battery (A) of the present invention manufactured using the above-mentioned positive and negative electrodes, showing the opening of the battery case body (1) made of polypropylene resin and the opening of the battery case body (1) made of polypropylene resin. The battery case is sealed by ultrasonic welding with the top cover (2), and the battery case body 11)
60% potassium hydroxide injected into the electrolyte (ID
The positive electrode (3) and negative electrode 14 immersed in 100cc
) are inserted into the upper lid (2) and housed in the positive and negative terminals (7) and (8) respectively; 5), (
6) and is electrically connected via the valve (9).
The internal space of the battery case was filled with argon gas under pressure through the gas inlet I]0) provided in the upper lid (2), and a comparative battery that had not been filled was charged with a current of 25 mA for 16 hours. After fully charging, set the final voltage to 1
, 0■, charging and discharging were repeated under cycle conditions of discharging a current of 50 mA. FIG. 2 is a discharge capacity diagram showing this result, and represents the relationship between the number of charge/discharge cycles and the discharge capacity. As is clear from FIG. 2, it can be seen that the battery of the present invention has an extremely short number of charge/discharge cycles to reach the maximum capacity and is very excellent.

この充放電サイクルに於ける充電の際に負極で起こる反
応は、まず水素が負極である水素吸蔵電極に飽和量吸蔵
されていない間は H++e−→1ad(電極表面に活性吸着した水素) )1a d −’p Hlattice(電極内部に吸
蔵された水素) のようになり、電極表面に活性吸着した水素が電極内部
に吸蔵されて行く。そして次第に電極内部に吸蔵されて
行く水素が増加し、飽和量吸蔵されると、 H+e −+lad 1(a d −1−)1 a d −+ H2↑のよう
に反応し水素ガスの発生が起こる。この水素吸蔵電極の
水素の飽和吸蔵量は、水素吸蔵金属または合金の種類に
よっても異なるが、一般に何れの水素吸蔵電極を用いた
場合にも、まわりの圧力の増加に伴なって水素吸蔵電極
の水素飽和吸蔵量は増加して行き、ある一定の圧力に達
するとそれ以上圧力を増加しても水素飽和吸蔵量の増加
はみられなくなる。
The reaction that occurs at the negative electrode during charging in this charge/discharge cycle is as follows: H++e-→1ad (hydrogen actively adsorbed on the electrode surface) 1a. d −'p Hlattice (Hydrogen occluded inside the electrode) The hydrogen actively adsorbed on the electrode surface is occluded inside the electrode. Then, the hydrogen absorbed inside the electrode gradually increases, and when the saturation amount is occluded, a reaction occurs as shown in H + e - + lad 1 (a d -1-) 1 a d - + H2 ↑, and hydrogen gas is generated. . The saturated hydrogen storage amount of this hydrogen storage electrode varies depending on the type of hydrogen storage metal or alloy, but in general, no matter which hydrogen storage electrode is used, the hydrogen storage electrode's capacity increases as the surrounding pressure increases. The saturated hydrogen storage amount increases, and when a certain pressure is reached, no increase in the hydrogen saturated storage amount is observed even if the pressure is increased further.

本発明電池ではアルゴンガスが加圧充填されているため
、電解液上部に位置する電槽内部空間のガスが電解液表
面を加圧し、結果的には負極である水素吸蔵電極の表面
を電解液が加圧して収シ囲んでいることになり、 1(ad−+H1attice の反応がより優位に進み 1(ad +H’aa−+H2↑ の反応が遅れて極めて大量の水素が電極内に吸蔵される
ため、充放電サイクル初期にほぼ最大放電容量に近い値
が得られたものと考えられる。
Since the battery of the present invention is filled with argon gas under pressure, the gas in the internal space of the container located above the electrolyte pressurizes the surface of the electrolyte, and as a result, the surface of the hydrogen storage electrode, which is the negative electrode, is heated by the electrolyte. The reaction of 1(ad-+H1attice progresses more dominantly, and the reaction of 1(ad+H'aa-+H2↑) is delayed and an extremely large amount of hydrogen is occluded in the electrode. Therefore, it is considered that a value close to the maximum discharge capacity was obtained at the beginning of the charge/discharge cycle.

尚、電槽の内部空間に加圧充填される気体としては電池
に悪影響を及ぼさないものであればよく、窒素、アルゴ
ン、ヘリクムなどの不活性ガスなどが良い。
The gas that is pressurized and filled into the internal space of the battery case may be any gas that does not have an adverse effect on the battery, and may preferably be an inert gas such as nitrogen, argon, or helicum.

(へ)発明の効果 本発明の金属−水素二次電池は水素を吸蔵・放出する能
力を有する金属または合金を備えた負極と、正極とを収
納する密閉型の電槽の内部空間に気体が加圧充填されて
なるものであるから、電池組立後早期に最大容量を得る
ことができ、煩雑な操作を伴う活性化処理を解消できる
ものである。
(F) Effects of the Invention In the metal-hydrogen secondary battery of the present invention, gas is generated in the internal space of a sealed battery case that houses a negative electrode comprising a metal or alloy capable of absorbing and releasing hydrogen, and a positive electrode. Since the battery is filled under pressure, maximum capacity can be obtained at an early stage after battery assembly, and activation processing that involves complicated operations can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に於けるニッケルー水素電池
の断面図、第2図は本発明電池囚及び比較電池(6)の
放電容量図である。 (1)・・・電槽本体、(2)・・・上蓋、(3)・・
・正極、f4)・・・負極、(5)・・・正極集電体、
(6)・・・負極集電体、(7)・・・正極端子、(8
)・・・負極端子、(9)・・・バルブ、tl[l・・
・ガス注入口、(111・・・電解液。 出願人三洋電
機株式会社代理人弁理士 佐 野 静 夫
FIG. 1 is a sectional view of a nickel-metal hydride battery according to an embodiment of the present invention, and FIG. 2 is a discharge capacity diagram of a battery according to the present invention and a comparative battery (6). (1)...Battery case body, (2)...Top lid, (3)...
・Positive electrode, f4)... Negative electrode, (5)... Positive electrode current collector,
(6)... Negative electrode current collector, (7)... Positive electrode terminal, (8
)...Negative terminal, (9)...Valve, tl[l...
・Gas inlet, (111... Electrolyte. Applicant: Shizuo Sano, Patent Attorney, Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)水素を収蔵・放出する能力を有する金属または合
金を備えた負極と、正極とを収納する密閉型の電槽の内
部空間に気体が加圧充填されてなる金属−水素二次電池
(1) A metal-hydrogen secondary battery in which gas is pressurized and filled into the internal space of a sealed battery case that houses a negative electrode and a positive electrode, which are made of a metal or alloy that has the ability to store and release hydrogen.
(2)前記気体が不活性ガスである特許請求の範囲第(
1)項記載の金属−水素二次電池。
(2) Claim No. 2, wherein the gas is an inert gas (
1) The metal-hydrogen secondary battery described in item 1).
JP59100828A 1984-05-18 1984-05-18 Metal-hydrogen secondary battery Expired - Lifetime JPH0626147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100828A JPH0626147B2 (en) 1984-05-18 1984-05-18 Metal-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100828A JPH0626147B2 (en) 1984-05-18 1984-05-18 Metal-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPS60243978A true JPS60243978A (en) 1985-12-03
JPH0626147B2 JPH0626147B2 (en) 1994-04-06

Family

ID=14284181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100828A Expired - Lifetime JPH0626147B2 (en) 1984-05-18 1984-05-18 Metal-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH0626147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044062A (en) * 2019-09-06 2021-03-18 トヨタ自動車株式会社 Aqueous battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937667A (en) * 1982-08-26 1984-03-01 Toshiba Corp Metal oxide-hydrogen battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937667A (en) * 1982-08-26 1984-03-01 Toshiba Corp Metal oxide-hydrogen battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044062A (en) * 2019-09-06 2021-03-18 トヨタ自動車株式会社 Aqueous battery

Also Published As

Publication number Publication date
JPH0626147B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US5032475A (en) Nickel-metal hydride secondary cell
JP2936604B2 (en) Square sealed alkaline storage battery using hydrogen storage alloy negative electrode
JPH11162505A (en) Nickel-hydrogen battery
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
US4792505A (en) Electrodes made from mixed silver-silver oxides
US6524746B2 (en) Hydrogen absorbing alloy powder and process for producing same
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
US5865874A (en) Hydrogen storage alloy
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JPS59181459A (en) Metal oxide hydrogen battery
JPS60243978A (en) Metal-hydrogen secondary battery
US6129789A (en) Surface treatment method of hydrogen absorbing alloy
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
US5496665A (en) Hydrogen-occlusion-alloy electrode
JP3429684B2 (en) Hydrogen storage electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPS6166372A (en) Hydrogen-occlusion electrode
JP3012658B2 (en) Nickel hydride rechargeable battery
JPH1186897A (en) Sealed nickel hydrogen battery
JPH10251791A (en) Hydrogen storage alloy, cathode for battery and alkaline secondary battery
JPH03108273A (en) Manufacture of nickel hydrogen secondary battery
JPH1197003A (en) Nickel hydrogen secondary cell
JP3742149B2 (en) Alkaline secondary battery
JP2634859B2 (en) Electrode manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term