JPS60243526A - Apparatus for measuring axial force of rail - Google Patents

Apparatus for measuring axial force of rail

Info

Publication number
JPS60243526A
JPS60243526A JP9867284A JP9867284A JPS60243526A JP S60243526 A JPS60243526 A JP S60243526A JP 9867284 A JP9867284 A JP 9867284A JP 9867284 A JP9867284 A JP 9867284A JP S60243526 A JPS60243526 A JP S60243526A
Authority
JP
Japan
Prior art keywords
rail
magnetic anisotropy
coils
detection
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9867284A
Other languages
Japanese (ja)
Other versions
JPH04210B2 (en
Inventor
Kenji Kashiwatani
柏谷 賢治
Kunio Takeshita
竹下 邦夫
Toshiyuki Ono
小野 利之
Masayuki Ito
昌之 伊藤
Shiyuuji Sugimura
杉村 秋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Hitachi High Tech Corp
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Nippon Kokuyu Tetsudo
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Hitachi Ltd, Japan National Railways, Nippon Kokuyu Tetsudo, Hitachi Electronics Engineering Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP9867284A priority Critical patent/JPS60243526A/en
Priority to FR8503386A priority patent/FR2564585B1/en
Priority to DE19853508337 priority patent/DE3508337A1/en
Publication of JPS60243526A publication Critical patent/JPS60243526A/en
Publication of JPH04210B2 publication Critical patent/JPH04210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To make it possible to measure the stress in the axial direction of a rail, by differentially connecting magnetic anisotropy detecting coils so that disturbance magnetic fields are offset. CONSTITUTION:Detecting coils 17-1 and 17-2 of one magnetic anisotropy sensor 15-1 are cumulatively connected. Detecting coils 19-1 and 19-2 of another magnetic anisotropy sensor 15-2 are similarly connected. When the sensors 15-1 and 15-2 are arranged at an equal angle with respect to a rail, the voltages, caused by disturbance magnetic fluxes, which are induced in the detecting coils 17-1 and 17-2 and 19-1 and 19-2, become equal. When the coils 17-1 and 17-2 and 19-1 and 19-2 are differentially connected, the voltages are offset, and no output appears across output terminals 12. When exciting coils 18-1 and 18-2 are connected out of phase, the signal voltages, which are induced in the detecting coils 19- 1 and 19-2 become out of phase. Since the detecting coils 19-1 and 19-2 and 17-1 and 17-2 are differentially connected, the signals are added, i.e., the result is the twice the original voltage. Therefore, the detected signal of the degree of magnetization of the rail by the exciting coils of the sensors themselves becomes twice the original value. The disturbances are offset, and the proper signal can be positively detected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 十 ’l* RFI l→ kl ’F4.1:kl 
m 64m 而91ia nA hk ↓n r−l 
4区 −一 もずに測定できるようにしたレール軸力測
定装置に関する。
[Detailed description of the invention] [Field of application of the invention] 10 'l* RFI l→ kl 'F4.1:kl
m 64m 91ia nA hk ↓n r-l
Section 4 -1 This invention relates to a rail axial force measuring device that can measure the force without any effort.

〔発明の背景〕[Background of the invention]

近年、鋼材中の応力を非破壊で測定する方法として、磁
気異方性センサを用いることが提案されている0 (例
えばXS、 kbwklL: :fapantzt:J
ournal of Applied Physic、
? 、vol、16.A7゜1977 、 p1161
. ) 予め良く消磁した試料について、比較的弱い励
磁用磁界を発生する磁気異方性センサを用いて、一定の
交流磁界で励振したときに検出フィルに出力される電圧
は、応力が大きいほど大きくなり、圧縮応力とす1張応
力では、励振する交流に同期させて整流した出力電圧の
向きが逆になる。(相谷はか3名、電気学会、マグネテ
ィックス研究会試料MAG −85−87。
In recent years, the use of magnetic anisotropy sensors has been proposed as a method for nondestructively measuring stress in steel materials (for example, XS, kbwklL: :fapantzt:J
our own of Applied Physics,
? , vol. 16. A7゜1977, p1161
.. ) When a sample that has been well demagnetized in advance is excited with a constant alternating magnetic field using a magnetic anisotropy sensor that generates a relatively weak excitation magnetic field, the voltage output to the detection filter increases as the stress increases. , for compressive stress and tensile stress, the direction of the output voltage rectified in synchronization with the excited alternating current is reversed. (3 Haka Aiya, Institute of Electrical Engineers of Japan, Magnetics Research Group sample MAG-85-87.

1983年9月10日) 磁気異方性センサには、例えば、第1図に基本構造を示
す(山1)−他2名、電気学会論文誌B:昭和55年4
月197〜203頁)ようなものがある〜、−hけ講侑
描力妊↓ソ廿シ睡しイhスえので、倒立したU字形の励
振コア1と検出コア2は、それぞれ直交した面内に配置
されそれぞれ、n部に1対の励振コイル3、検出フィル
4が捲かれている。これらのコア材料としては、測定対
象磁性材料すなわち通常の鋼材より遷かに透磁率の高い
パーマロイなどを用いる。これを測定対象磁性材料の上
に置いたとき、もし其の材料に磁気異方性が存在しない
か、又は励振コアの面内に磁化容易軸が存在する場合は
励振コイルによる磁束は第2図(α)に示すようになり
、検出コイルには出力が現れない。但し、1−1.1−
2は励振コアの脚、2−1.2−2は検出コアの脚であ
る。しかし、測定対象磁性材料に磁気異方性が存在し、
磁化容易軸が第2図(A)に矢印Aで示す方向になって
いると、励振フィルによる磁束は第2図Cb)に示すよ
うになり、検出コイルに出力が現れる。第2図(α)に
示す状態は、公知のブリッジ回路の各辺抵抗が平衡して
いる場合に対応し、第2図<h>に示す場合は脚1−1
と2−1の間、および脚1−2と2−2の間の辺の抵抗
が小さい場合に対応するものとして扱うことが出来る。
(September 10, 1983) For example, the basic structure of a magnetic anisotropic sensor is shown in Figure 1 (Mountain 1) - 2 others, Journal of the Institute of Electrical Engineers of Japan B: 1984 4
197-203) Since there is something like this, the inverted U-shaped excitation core 1 and detection core 2 are orthogonal to each other. A pair of excitation coils 3 and a pair of detection filters 4 are arranged in the plane and wound around the n part. As these core materials, permalloy or the like is used, which has a much higher magnetic permeability than the magnetic material to be measured, that is, ordinary steel. When this is placed on the magnetic material to be measured, if the material does not have magnetic anisotropy or if there is an axis of easy magnetization in the plane of the excitation core, the magnetic flux due to the excitation coil will be as shown in Figure 2. As shown in (α), no output appears in the detection coil. However, 1-1.1-
2 is a leg of the excitation core, and 2-1.2-2 is a leg of the detection core. However, magnetic anisotropy exists in the magnetic material to be measured,
When the axis of easy magnetization is in the direction shown by arrow A in FIG. 2(A), the magnetic flux due to the excitation fill becomes as shown in FIG. 2Cb), and an output appears in the detection coil. The state shown in FIG. 2 (α) corresponds to the case where the resistances on each side of the known bridge circuit are balanced, and the state shown in FIG.
and 2-1 and between legs 1-2 and 2-2 can be treated as corresponding cases where the resistance is small.

第3図は此の対応するブリッジ回路を示し矢印Aが過る
辺6−1と6−2の抵抗は小さく)辺6−3.6−4の
抵抗は大きく、検出器7に出力が現れている。
Figure 3 shows the corresponding bridge circuit, and the resistances on sides 6-1 and 6-2, where arrow A crosses, are small), and the resistances on sides 6-3 and 6-4 are large, so that an output appears on detector 7. ing.

いま第4図に示すように、敷設されたレール9の軸力を
測定するために、磁気異方性センサ8をレール9に設ν
したとする0レール9には、列車駆動用や信号用の電流
を合成した電流10が流れており、その結果、右ねじの
法則に従った磁界11が生じている。この磁界11によ
り、第5図に示すように、励磁コア1中に磁束11−1
、検出コア2中に磁束11−2が生じ、検出コイル出力
は大きく、増幅器のダイナミックレンジを越え飽和させ
る。この磁界11は、レールに流れる電流によって生じ
た磁界であって、レールの軸方向とは直交しており、レ
ール中の応力を測定するために、磁気異方性センサで励
振している励振磁界とは全く別な、外乱磁界である。
As shown in FIG. 4, a magnetic anisotropy sensor 8 is installed on the rail 9 in order to measure the axial force of the installed rail 9.
Assuming that, a current 10 that is a combination of train drive and signal currents flows through the 0 rail 9, and as a result, a magnetic field 11 according to the right-handed screw rule is generated. This magnetic field 11 causes a magnetic flux 11-1 in the excitation core 1, as shown in FIG.
, a magnetic flux 11-2 is generated in the detection core 2, and the output of the detection coil is large, exceeding the dynamic range of the amplifier and saturating it. This magnetic field 11 is a magnetic field generated by a current flowing through the rail, and is orthogonal to the axial direction of the rail, and is an excited magnetic field that is excited by a magnetic anisotropy sensor in order to measure the stress in the rail. This is a completely different disturbance magnetic field.

第6図は、レール9に流れる電流10の方向、この電流
によって生ずる磁界11の方向と、励振コイル1、検出
コイル2の方向を示す。第6図(α)は、検出コイル2
が外乱磁界11の影響を最も受け易い状態を示し、同図
(h)は最も影響を受けにくい状態を示す。
FIG. 6 shows the direction of the current 10 flowing through the rail 9, the direction of the magnetic field 11 generated by this current, and the directions of the excitation coil 1 and the detection coil 2. Figure 6 (α) shows the detection coil 2
shows a state where it is most susceptible to the influence of the disturbance magnetic field 11, and (h) in the figure shows a state where it is least affected.

第1図に示した磁気異方性センサは、通常、測定対象に
対して励磁コイルと検出コイルよりなるコイル系全体を
回転できるようになっている。第7図は、検出コイルが
外乱磁界による出力を生じない位置すなわち第6図(A
)の位置を角度1)−0の始点とし、θを0〜560度
回転した場合のθと検出コイル出力V、の関係を示す図
で13は検出コイル出力、14は増幅出力を示し、検出
コイルが外乱磁界の影響を受けて、忽ち増幅器が飽和し
てしまう状況が判る。
In the magnetic anisotropy sensor shown in FIG. 1, the entire coil system consisting of an excitation coil and a detection coil can usually be rotated with respect to the object to be measured. Figure 7 shows the position where the detection coil does not produce an output due to the disturbance magnetic field, that is, Figure 6 (A
) is the starting point of the angle 1)-0, and the figure shows the relationship between θ and the detection coil output V when θ is rotated from 0 to 560 degrees. 13 indicates the detection coil output, 14 indicates the amplification output, and the detection It can be seen that the coil is affected by the disturbance magnetic field and the amplifier suddenly becomes saturated.

レール軸力を磁気異方性センサで測定する際には、レー
ル軸力を最も検出し易い角度、励振コイル、検出コアの
面が夫々レールとほぼ45度をなすように配置する。第
7図は、検出コイルた場合側底、レール軸方向の応力に
よる磁化容易軸の存在や磁化の容易さの程度などを検出
できる状況ではないことを示している。
When measuring the rail axial force with a magnetic anisotropic sensor, the angle at which the rail axial force can be most easily detected is arranged so that the excitation coil and the detection core are arranged at approximately 45 degrees with respect to the rail. FIG. 7 shows that in the case of a detection coil, it is not possible to detect the presence of an axis of easy magnetization or the degree of ease of magnetization due to stress in the direction of the side bottom or rail axis.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、実際の測定に際して外乱磁界の影響を
受けずに、磁気異方性センサを用いてレールの軸方向応
力を測定できるようにした装置を提供することにある。
An object of the present invention is to provide an apparatus that can measure the axial stress of a rail using a magnetic anisotropy sensor without being affected by a disturbance magnetic field during actual measurement.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては夫々レール
表面に略直交し、かつ互いに直交してレールと夫々略4
5度をなす2平面内に脚部をレール表面に接して配置し
た倒立U字形のコアに、それぞれコイルを捲き、一方を
磁気異方性検出用、他方を励振用とした磁気異方性セン
サを、2組!4接して配設し、これら2組の磁気異方性
センサの、磁気異方性検出用コア面同士、励磁用コア面
同士を夫々平行させ、磁気異方性検出用コイル同士を差
動接続して外乱磁界が2個の輸出ノ■コイルに&ぼす嵌
盛か焔付六せ−中た2個の励振用コイルを夫々逆相で励
振して、差動接続した2個の検出コイル夫々が、レール
軸力に対応した出力が得られるようにした◇検出用コイ
ルが差動接続され、励振用コイルが逆相に励振するから
、検出用フィルの出力は同相となり、加え合わされるこ
とになる。
In order to achieve the above object, in the present invention, each of the rails is approximately perpendicular to the rail surface, and each is orthogonal to the rail by approximately 4.
A magnetic anisotropy sensor in which a coil is wound around an inverted U-shaped core whose legs are arranged in two planes forming a 5 degree angle with the legs in contact with the rail surface, with one side used for magnetic anisotropy detection and the other used for excitation. , 2 pairs! The core surfaces for magnetic anisotropy detection and the excitation core surfaces of these two sets of magnetic anisotropy sensors are parallel to each other, respectively, and the magnetic anisotropy detection coils are differentially connected to each other. Then, the disturbance magnetic field is applied to the two export coils and the two excitation coils in the six-piece coil with a flame are excited in opposite phases, and the two detection coils are differentially connected. Each output corresponds to the rail axial force. ◇Since the detection coils are connected differentially and the excitation coils excite in opposite phases, the outputs of the detection filters are in phase and added together. become.

なお、磁気異方性センサによるレール軸力測定に際して
は、前記の如く種々の電流が流されていたり、また例え
ばレールが地球磁場の影響を受け易い方向に敷設されて
いたりして、レールが特走方向に磁化されている場合が
多いから測定作業に先立って、あらかじめ、漸次低減す
る交流磁界によって消去を行っておくものとする。
Note that when measuring the rail axial force using a magnetic anisotropy sensor, there may be cases where the rail is in a particular condition, such as when various currents are being passed as described above, or because the rail is laid in a direction that is easily affected by the earth's magnetic field. Since the magnet is often magnetized in the running direction, it should be erased using a gradually decreasing alternating current magnetic field prior to measurement.

〔発明の実施例〕[Embodiments of the invention]

第8図は本発明一実施例の要部概略接続図である。一方
のセンサ15−1の検出コイル17 1%17−2は和
動接続され1個のコイルとみなせる。
FIG. 8 is a schematic connection diagram of main parts of an embodiment of the present invention. The detection coil 171%17-2 of one sensor 15-1 is connected in a harmonic manner and can be regarded as one coil.

他方のセンサ15−2の検出コイル19−1.19−2
も同様である。今センサ15−1と15−2をレールに
対し等しい角度で設置したとき、検出コイル17−1と
17−2、および19−1と19−2に誘起される外乱
磁束による電圧は等しくなり、検出コイル17−1.1
7−2と19−1.19−2が差動接続しであると相殺
され出力端子12記出力は現れない。しかし、このまま
では、励振コイル16−1.16−2と18−1.18
−2から誘起される本来の信号まで相殺してしまうため
、励振コイル18−1.18−2を逆相になる様に接続
すると、検出コイル1’?−1,19−2に誘起される
信号電圧は逆相となり、これらの検出コイルは検出コイ
ル17−1.17−2とけ差動接続されているため信号
は和となり2倍となる。このようにして、磁気異方性セ
ンサ自体の励振コイルによるレール磁化の程度の検出信
号は2倍となり、外乱は相殺され本来の信号を?r’!
実に検出できる。
Detection coil 19-1.19-2 of the other sensor 15-2
The same is true. Now, when sensors 15-1 and 15-2 are installed at equal angles to the rail, the voltages due to the disturbance magnetic flux induced in detection coils 17-1 and 17-2 and 19-1 and 19-2 will be equal, Detection coil 17-1.1
If 7-2 and 19-1 and 19-2 are differentially connected, they will be canceled and the output of output terminal 12 will not appear. However, as it is, the excitation coils 16-1.16-2 and 18-1.18
-2 cancels out the original signal induced from the detection coil 1'? The signal voltages induced at -1 and 19-2 have opposite phases, and since these detection coils are differentially connected to the detection coils 17-1 and 17-2, the signals are summed and doubled. In this way, the detection signal of the degree of rail magnetization due to the excitation coil of the magnetic anisotropy sensor itself is doubled, and the disturbance is canceled out and the original signal is returned to normal. r'!
It is actually detectable.

この方法を採用することにより、外乱はセンサ15−1
.15−2に対して等しければ良く、その方向1強さな
どは無関係となる。また、センサ15−2を無励振で使
用すると外乱の相殺は可能であるが、出力信号はセンサ
1個のときと等しくなる。なお、測定に先立って、レー
ルと同一材質の試料について、十分、応力と出力電圧の
関係を測定、較正しておくことが望ましい。
By adopting this method, the disturbance is reduced to the sensor 15-1.
.. It is sufficient if it is equal to 15-2, and its direction 1 strength is irrelevant. Further, if the sensor 15-2 is used without excitation, disturbances can be canceled out, but the output signal will be the same as when using only one sensor. Note that, prior to measurement, it is desirable to sufficiently measure and calibrate the relationship between stress and output voltage using a sample made of the same material as the rail.

なお、上述した動作を純電気的方法で実現することも可
能であり、これを第9図に示す。センサ15により検出
された信号と外乱の和の電圧は、増幅器20で増幅され
、復調器21で直流電圧に直される。これをサンプルホ
ールド23−1に保持する。次にスイッチ22を反対に
倒し、無励振状態とし、外乱電圧のみを同様にサンプル
ホールド23−2で保持し、差動増幅器24で差をとり
、本来の信号だけを出力させることができる。
Note that it is also possible to realize the above-mentioned operation by a purely electrical method, which is shown in FIG. The voltage that is the sum of the signal detected by the sensor 15 and the disturbance is amplified by an amplifier 20 and converted to a DC voltage by a demodulator 21. This is held in the sample hold 23-1. Next, the switch 22 is reversed to create a non-excitation state, and only the disturbance voltage is similarly held in the sample hold 23-2, the difference is taken by the differential amplifier 24, and only the original signal can be output.

しかし、復調する以前に飽和してしまう(実際によく生
ずる)ような場合には使用できないという鍾点がある。
However, the drawback is that it cannot be used in cases where saturation occurs before demodulation (which often occurs).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、外乱や増幅器の飽
和などに妨げられずに、磁気異方性検出装置によりレー
ル軸方向応力を測定することが出来る。
As explained above, according to the present invention, the rail axial stress can be measured by the magnetic anisotropy detection device without being hindered by disturbances, amplifier saturation, or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気異方性クロスセンサの基本構造を示す図、
第2図(α)、(b)は磁気異方性センサの作動原理説
明図、第3図は磁気異方性センサに対応するブリッジ回
路の図、第4図は磁気異方性センサによるレール軸力測
定状態およびその際の外乱の説明図、第5図、第6図(
α)、(h)、第7図は外乱の原因、影響の説明図、第
8図は本発明の一実施例の要部概略接続図、第9図は磁
気異方性センサを用い純電気的に外乱の影響を除去して
レール軸力を測定する回路例を示す図である。 1・・・励振コア 2・・・検出コア 3・・・励振コイル 4・・・検出コイル 9・・・レール 10・・・レールに流れる電流 11・・・外乱磁界 15−1・・・一方の磁気異方性センサ15−2・・・
他方の磁気異方性センサ1(S 1.10 2.18 
1.18−2−・・励振コイル17−1.17−2.1
9−1.19−2・・・検出コイル代理人弁理士 高 
橋 明 夫 第1 図 第2図 (ρ) (し) 姉3 図 第1頁の続き −@発明者伊藤 昌之 @発明者杉村 私利 神奈川県足柄上郡中井町久所30幡地 日立電子エンジ
ニアリング株式会社内 神奈川県足柄上郡中井町久所3001地 日立電子エン
ジニアリング株式会社内
Figure 1 shows the basic structure of the magnetic anisotropic cross sensor.
Figures 2 (α) and (b) are diagrams explaining the operating principle of the magnetic anisotropy sensor, Figure 3 is a diagram of the bridge circuit corresponding to the magnetic anisotropy sensor, and Figure 4 is a rail using the magnetic anisotropy sensor. Explanatory diagrams of the axial force measurement state and the disturbance at that time, Figures 5 and 6 (
α), (h), Fig. 7 is an explanatory diagram of the causes and effects of disturbance, Fig. 8 is a schematic connection diagram of the main parts of an embodiment of the present invention, and Fig. 9 is a pure electric FIG. 3 is a diagram illustrating an example of a circuit that measures rail axial force while removing the influence of disturbance. 1... Excitation core 2... Detection core 3... Excitation coil 4... Detection coil 9... Rail 10... Current flowing in the rail 11... Disturbing magnetic field 15-1... One side magnetic anisotropy sensor 15-2...
The other magnetic anisotropy sensor 1 (S 1.10 2.18
1.18-2-...Excitation coil 17-1.17-2.1
9-1.19-2...Detection coil agent patent attorney Takashi
Akio Hashi Figure 1 Figure 2 (ρ) (shi) Sister 3 Continuation of Figure 1 page - @ Inventor Masayuki Ito @ Inventor Sugimura Personal interest 30 Hata, Kusho, Nakai-cho, Ashigarakami-gun, Kanagawa Prefecture Inside Hitachi Electronic Engineering Co., Ltd. 3001 Kusho, Nakai-machi, Ashigarakami-gun, Kanagawa Prefecture Inside Hitachi Electronics Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 夫々レール表面に略直交し、かつ互いに直交する2平面
内に脚部をレール表面に接して配置した倒立U字形のコ
アに、それぞれコイルを捲いて、一方を磁気異方性検出
用、他方を励振用とした磁気異方性センサを、2組隣接
して配設し、これら2組の磁気異方性センサの、磁気異
方性検出用コア面同士、励磁用コア面同士を夫々平行さ
せ、磁気異方性検出用コイル同士を差動接続、励振用コ
イル同士を逆相励振し、レール軸力に対応した磁気異方
性がレールに生じていることを利用して、前記差動接続
した磁気異方性検出用コイルの出力により外乱磁界の影
響を除去したレール軸力を測定するようにしたことを特
徴とするレール軸力測定装置。
Each coil is wound around an inverted U-shaped core whose legs are arranged in contact with the rail surface in two planes that are substantially perpendicular to the rail surface and mutually orthogonal, one for detecting magnetic anisotropy and the other for detecting magnetic anisotropy. Two sets of magnetic anisotropy sensors for excitation are arranged adjacently, and the core surfaces for magnetic anisotropy detection and the core surfaces for excitation of these two sets of magnetic anisotropy sensors are parallel to each other, respectively. , the magnetic anisotropy detection coils are differentially connected, the excitation coils are excited in opposite phases, and magnetic anisotropy corresponding to the rail axial force is generated in the rail. A rail axial force measuring device characterized in that the rail axial force is measured by removing the influence of a disturbance magnetic field by the output of a magnetic anisotropy detection coil.
JP9867284A 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail Granted JPS60243526A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9867284A JPS60243526A (en) 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail
FR8503386A FR2564585B1 (en) 1984-05-18 1985-03-07 APPARATUS FOR MEASURING A CONSTRAINT BY ELECTROMAGNETIC PROCESS
DE19853508337 DE3508337A1 (en) 1984-05-18 1985-03-08 Device for the electromagnetic measurement of a load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9867284A JPS60243526A (en) 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail

Publications (2)

Publication Number Publication Date
JPS60243526A true JPS60243526A (en) 1985-12-03
JPH04210B2 JPH04210B2 (en) 1992-01-06

Family

ID=14226003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9867284A Granted JPS60243526A (en) 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail

Country Status (3)

Country Link
JP (1) JPS60243526A (en)
DE (1) DE3508337A1 (en)
FR (1) FR2564585B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140333U (en) * 1986-02-24 1987-09-04
JPH0278948A (en) * 1988-09-14 1990-03-19 Hitachi Ltd Device and method for inspecting deterioration damage of metallic material
WO1995027888A1 (en) * 1994-04-08 1995-10-19 Nippon Steel Corporation Rail axial force measuring method and rail whose axial force can be measured
JP2016540964A (en) * 2013-10-15 2016-12-28 バイエルン エンジニアリング ゲーエムベーハー ウント コー カーゲー How to get measurement results from sensor signals

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321662B1 (en) * 1987-12-28 1994-02-16 Kubota Corporation Torque measuring device
DE4014686A1 (en) * 1989-05-12 1990-11-15 Preussag Ag Head measuring changes in magnetic properties due to mechanical stress - has coil carrying arms of iron core with common back plate
NL1028698C2 (en) * 2005-01-26 2006-07-31 Grontmij Nederland B V System and method for at least detecting a mechanical stress in at least a part of a rail.
EP3051265B1 (en) * 2015-01-29 2017-10-11 Torque and More (TAM) GmbH Force measurement device
DE102016205784A1 (en) 2016-04-07 2017-10-12 Robert Bosch Gmbh Torque detecting device and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1201642B (en) * 1963-03-05 1965-09-23 Elveco L Van Den Eynde & Cie E Transmission with a single drive unit and with several gear ratios
DE1220634B (en) * 1964-09-24 1966-07-07 Schwingungstechnik Veb Magnetoelastic force measuring device
US3535625A (en) * 1968-04-22 1970-10-20 Garrett Corp Strain and flaw detector
BE760080A (en) * 1969-12-10 1971-05-17 Jones & Laughlin Steel Corp METHOD AND APPARATUS FOR MEASURING STRESSES IN A FERROMAGNETIC MATERIAL
SE385406B (en) * 1974-10-25 1976-06-28 Asea Ab PROCEDURE FOR MANUFACTURING A MAGNETOELASTIC SENSOR
DE3031997C2 (en) * 1980-08-25 1986-01-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for non-contact measurement of static and dynamic torques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140333U (en) * 1986-02-24 1987-09-04
JPH0278948A (en) * 1988-09-14 1990-03-19 Hitachi Ltd Device and method for inspecting deterioration damage of metallic material
WO1995027888A1 (en) * 1994-04-08 1995-10-19 Nippon Steel Corporation Rail axial force measuring method and rail whose axial force can be measured
JP2016540964A (en) * 2013-10-15 2016-12-28 バイエルン エンジニアリング ゲーエムベーハー ウント コー カーゲー How to get measurement results from sensor signals

Also Published As

Publication number Publication date
FR2564585A1 (en) 1985-11-22
JPH04210B2 (en) 1992-01-06
DE3508337A1 (en) 1985-11-21
FR2564585B1 (en) 1988-09-23

Similar Documents

Publication Publication Date Title
JPS60194379A (en) Magnetic field sensor and method of detecting magnetic field
JPH08273952A (en) Plane current detector
JPS60243526A (en) Apparatus for measuring axial force of rail
JP4732705B2 (en) Magnetic field sensor
JP2002277522A (en) Magnetic field sensor
JP3764834B2 (en) Current sensor and current detection device
JP3651268B2 (en) Magnetic measurement method and apparatus
JP2617570B2 (en) Magnetic measuring device
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
US5831424A (en) Isolated current sensor
JP2606043Y2 (en) Eddy current flaw detector
JPH07248365A (en) Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method
JP2000266786A (en) Current sensor
JPS625173A (en) Method and apparatus for mixing amount in paramagnetic substance base
JPH1164473A (en) Magnetic sensor and magnetic orientation sensor
JP2759303B2 (en) Stress detector
RU2096787C1 (en) Device for contactless measurement of heavy direct current
JPS5861433A (en) Magnetic permeability type stress measuring method
JP2663767B2 (en) Transformation rate measuring method and apparatus
Leehey et al. DC current transformer
JPH0414735B2 (en)
JP2514550B2 (en) Magnetic force type stress measurement method for non-ferrous metal materials
Adams A Simple Field Detector for a Dc Permeameter
JP3271339B2 (en) Magnetic bridge sensor
JP3353120B2 (en) Current sensor