JPH04210B2 - - Google Patents

Info

Publication number
JPH04210B2
JPH04210B2 JP9867284A JP9867284A JPH04210B2 JP H04210 B2 JPH04210 B2 JP H04210B2 JP 9867284 A JP9867284 A JP 9867284A JP 9867284 A JP9867284 A JP 9867284A JP H04210 B2 JPH04210 B2 JP H04210B2
Authority
JP
Japan
Prior art keywords
magnetic anisotropy
rail
excitation
detection
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9867284A
Other languages
Japanese (ja)
Other versions
JPS60243526A (en
Inventor
Kenji Kashiwatani
Kunio Takeshita
Toshuki Ono
Masayuki Ito
Shuji Sugimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Railway Technical Research Institute
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Railway Technical Research Institute
Priority to JP9867284A priority Critical patent/JPS60243526A/en
Priority to FR8503386A priority patent/FR2564585B1/en
Priority to DE19853508337 priority patent/DE3508337A1/en
Publication of JPS60243526A publication Critical patent/JPS60243526A/en
Publication of JPH04210B2 publication Critical patent/JPH04210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は外乱磁界や増幅器の飽和に影響されず
に測定できるようにしたレール軸力測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rail axial force measuring device capable of measuring without being affected by a disturbance magnetic field or amplifier saturation.

〔発明の背景〕[Background of the invention]

近年、鋼財中の応力を非破壊で測定する方法と
して、磁気異方性センサを用いることが提案され
ている。(例えば、S.Abuku:Japanese Journal
of Applied Physics,vol.16、No.7、1977、
p1161.)予め良く消磁した試料について、比較的
弱い励磁用磁界を発生する磁気異方性センサを用
いて、一定の交流磁界で励振したときに検出コイ
ルに出力される電圧は、応力が大きいほど大きく
なり、圧縮応力と引張応力では、励振する交流に
同期させて整流した出力電力の向きが逆になる。
(柏谷ほか3名、電気学会、マグネテイツクス研
究会試料MAG−83−87、1983年9月10日) 磁気異方性センサには、例えば、第1図に基本
構造を示す(山田 一他2名、電気学会論文誌
B:昭和55年4月197〜203頁)ようなものがあ
る。これは磁気異方性センサと呼ばれるもので、
倒立したU字形の励振コア1と検出コア2は、そ
れぞれ直交した内面に配置されそれぞれ、脚部に
1対の励振コイル3、検出コイル4が捲かれてい
る。これらのコア材料としては、測定対象磁性材
料すなわち通常の鋼材より遥かに透磁率の高いパ
ーマロイなどを用いる。これを測定対象磁性材料
の上に置いたとき、もし其の材料に磁気異方性が
存在しないか、又は励振コアの面内に磁化容易軸
が存在する場合は励振コイルによる磁束は第2図
aに示すようになり、検出コイルには出力が現れ
ない。但し、1−1,1−2は励振コアの脚、2
−1,2−2は検出コアの脚である。しかし、測
定対象磁性材料に磁気異方性が存在し、磁化容易
軸が第2図bに矢印Aで示す方向になつている
と、励振コイルによる磁束は第2図bに示すよう
になり、検出コイルに出力が現れる。第2図aに
示す状態は、公知のブリツジ回路の各辺抵抗が平
衡している場合に対応し、第2図bに示す場合は
脚1−1と2−1の間、および脚1−2と2−2
の間の辺の抵抗が小さい場合に対応するものとし
て扱うことが出来る。第3図は此の対応するブリ
ツジ回路を示し、矢印Aが過る辺6−1と6−2
の抵抗は小さく、辺3−6,3−4の抵抗は大き
く、検出器7に出力が現れている。
In recent years, the use of magnetic anisotropy sensors has been proposed as a method for non-destructively measuring stress in steel goods. (For example, S.Abuku: Japanese Journal
of Applied Physics, vol.16, No.7, 1977,
p1161.) When a sample that has been well demagnetized in advance is excited with a constant alternating magnetic field using a magnetic anisotropy sensor that generates a relatively weak excitation magnetic field, the voltage output to the detection coil increases as the stress increases. The direction of output power rectified in synchronization with the excited alternating current becomes opposite for compressive stress and tensile stress.
(Kashiwaya et al., IEEJ, Magnetics Research Group Sample MAG-83-87, September 10, 1983) For example, the basic structure of a magnetic anisotropy sensor is shown in Figure 1 (Yamada Hajime et al. 2 authors, Transactions of the Institute of Electrical Engineers of Japan B: April 1980, pp. 197-203). This is called a magnetic anisotropy sensor.
An inverted U-shaped excitation core 1 and detection core 2 are arranged on inner surfaces that are perpendicular to each other, and each has a pair of excitation coil 3 and a detection coil 4 wound around its legs. As these core materials, permalloy or the like is used, which has a much higher magnetic permeability than the magnetic material to be measured, that is, ordinary steel. When this is placed on the magnetic material to be measured, if the material does not have magnetic anisotropy or if there is an axis of easy magnetization in the plane of the excitation core, the magnetic flux due to the excitation coil will be as shown in Figure 2. As shown in a, no output appears in the detection coil. However, 1-1 and 1-2 are the legs of the excitation core, and 2
-1 and 2-2 are the legs of the detection core. However, if the magnetic material to be measured has magnetic anisotropy and the axis of easy magnetization is in the direction shown by arrow A in Figure 2b, the magnetic flux due to the excitation coil will be as shown in Figure 2b, Output appears on the detection coil. The state shown in FIG. 2a corresponds to the case where the resistances on each side of the known bridge circuit are balanced, and in the case shown in FIG. 2 and 2-2
It can be treated as corresponding to the case where the resistance of the side between is small. Figure 3 shows this corresponding bridge circuit, with the sides 6-1 and 6-2 crossed by arrow A.
The resistance on the sides 3-6 and 3-4 is small, and the resistance on the sides 3-6 and 3-4 is large, and an output appears on the detector 7.

いま第4図に示すように、敷設されたレール9
の軸力を測定するために、磁気異方性センサ8を
レール9に設置したとする。レール9には、列車
駆動用や信号用の電流を合成した電流10が流れ
ており、その結果、右ねじの法則に従つた磁界1
1が生じている。この磁界11により、第5図に
示すように、励磁コア1に磁束11−1、検出コ
ア2中に磁束11−2が生じ、検出コイル出力は
大きく、増幅器のダイナミツクレンジを越え飽和
させる。この磁界11は、レールに流れる電流に
よつて生じた磁界であつて、レールの軸方向とは
直交しており、レール中の応力を測定するため
に、磁気異方性センサで励振している励振磁界と
は全く別な、外乱磁界である。
As shown in Fig. 4, the laid rail 9
Assume that the magnetic anisotropy sensor 8 is installed on the rail 9 in order to measure the axial force of the rail 9. A current 10 that is a combination of train drive and signal currents flows through the rail 9, and as a result, a magnetic field 1 that follows the right-handed screw rule is generated.
1 is occurring. As shown in FIG. 5, this magnetic field 11 generates a magnetic flux 11-1 in the excitation core 1 and a magnetic flux 11-2 in the detection core 2, and the output of the detection coil is large and exceeds the dynamic range of the amplifier and is saturated. This magnetic field 11 is a magnetic field generated by a current flowing through the rail, is perpendicular to the axial direction of the rail, and is excited by a magnetic anisotropy sensor in order to measure the stress in the rail. This is a disturbance magnetic field that is completely different from the excitation magnetic field.

第6図は、レール9に流れる電流10の方向、
この電流によつて生ずる磁界11の方向と、励振
コイル1、検出コイル2の方向を示す。第6図a
は、検出コイル2が外乱磁界11の影響を最も受
け易い状態を示し、同図bは最も影響を受けにく
い状態を示す。
FIG. 6 shows the direction of the current 10 flowing through the rail 9,
The direction of the magnetic field 11 generated by this current and the directions of the excitation coil 1 and detection coil 2 are shown. Figure 6a
2 shows a state in which the detection coil 2 is most susceptible to the influence of the disturbance magnetic field 11, and b in the figure shows a state in which it is least affected.

第1図に示した磁気異方性センサは、通常、測
定対象に対して励磁コイルと検出コイルよりなる
コイル系全体を回転できるようになつている。第
7図は、検出コイルが外乱磁界による出力を生じ
ない位置すなわち第6図bの位置を角度θ=0の
始点とし、θを0〜360度回転した場合のθと検
出コイル出力V0の関係を示す図で、13は検出
コイル出力、14は増幅出力を示し、検出コイル
が外乱磁界の影響を受けて、怱ち増幅器が飽和し
てしまう状況が判る。
In the magnetic anisotropy sensor shown in FIG. 1, the entire coil system consisting of an excitation coil and a detection coil can be rotated with respect to the object to be measured. Figure 7 shows the relationship between θ and the detection coil output V 0 when θ is rotated from 0 to 360 degrees, with the position where the detection coil does not produce an output due to the disturbance magnetic field, that is, the position in Figure 6 b, as the starting point of angle θ = 0 . In the diagram showing the relationship, 13 indicates the detection coil output, and 14 indicates the amplification output, and it can be seen that the detection coil is affected by a disturbance magnetic field and the amplifier becomes saturated.

レール軸力を磁気異方性センサで測定する際に
は、レール軸力を最も検出し易い角度、励振コイ
ル、検出コアの面が夫々レールとほど45度をなす
ように配置する。第7図は、検出コイルの面をレ
ールに対して45度をなすように配置した場合到
底、レール軸方向の応力による磁化容易軸の存在
や磁化の容易さの程度などを検出できる状況では
ないことを示している。
When measuring rail axial force with a magnetic anisotropy sensor, the angle at which the rail axial force can be most easily detected is arranged so that the excitation coil and detection core surfaces form a 45 degree angle with the rail. Figure 7 shows that when the surface of the detection coil is placed at a 45 degree angle to the rail, it is impossible to detect the presence of an axis of easy magnetization due to stress in the rail axis direction or the degree of ease of magnetization. It is shown that.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、実際の測定に際して外乱磁界
の影響を受けずに、磁気異方性センサを用いてレ
ールの軸方向応力を測定できるようにした装置を
提供することにある。
An object of the present invention is to provide an apparatus that can measure the axial stress of a rail using a magnetic anisotropy sensor without being affected by a disturbance magnetic field during actual measurement.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明においては
夫々レール表面に略直交し、かつ互いに直交して
レールと夫々略45度をなす2平面内に脚部をレー
ル表面に接して配置した倒立U字形のコアに、そ
れぞれコイルを捲き、一方を磁気異方性検出用、
他方を励振用とした磁気異方性センサを、2組隣
接して配設し、これら2組の磁気異方性のセンサ
を、磁気異方性検出用コア面同士、励磁用コア面
同士を夫々平行させ、磁気異方性検出用コイル同
士を差動接続して外乱磁界が2個の検出用コイル
に及ぼす影響を相殺させ、また2個の励振用コイ
ルを夫々逆相で励振して、差動接続した2個の検
出コイル夫々が、レール軸力に対応した出力が得
られるようにした。検出用コイルが差動接続さ
れ、励振用コイルが逆相に励振するから、検出用
コイルの出力は同相となり、加え合わされること
になる。
In order to achieve the above object, the present invention has an inverted U-shape in which the legs are arranged in contact with the rail surface in two planes, each of which is substantially orthogonal to the rail surface and which is orthogonal to each other and forms an angle of about 45 degrees with the rail. A coil is wound around each core, one for magnetic anisotropy detection, and one for magnetic anisotropy detection.
Two sets of magnetic anisotropy sensors, the other for excitation, are arranged adjacently, and these two sets of magnetic anisotropy sensors are arranged so that the core surfaces for magnetic anisotropy detection are connected to each other, and the core surfaces for excitation are connected to each other. The magnetic anisotropy detection coils are connected in a differential manner to cancel out the influence of the disturbance magnetic field on the two detection coils, and the two excitation coils are excited in opposite phases. Each of the two differentially connected detection coils is configured to provide an output corresponding to the rail axial force. Since the detection coils are differentially connected and the excitation coils excite in opposite phases, the outputs of the detection coils are in phase and added together.

なお、磁気異方性センサによるレール軸力測定
に際しては、前記の如く種々の電流が流されてい
たり、また例えばレールが地球磁場の影響を受け
易い方向に敷設されていたりして、レールが特定
方向に磁化されている場合が多いから測定作業に
先立つて、あらかじめ、漸次低減する交流磁界に
よつて消磁を行つておくものとする。
When measuring rail axial force using a magnetic anisotropy sensor, it is important to note that as mentioned above, various currents may be flowing, or the rail may be laid in a direction that is susceptible to the effects of the earth's magnetic field. Since the magnet is often magnetized in one direction, it must be demagnetized by a gradually decreasing alternating current magnetic field prior to measurement.

〔発明の実施例〕[Embodiments of the invention]

第8図は本発明一実施例の要部概略接続図であ
る。一方のセンサ15−1の検出コイル17−
1,17−2は和動接続され1個のコイルとみな
せる。他方のセンサ15−2の検出コイル19−
1,19−2も同様である。今センサ15−1と
15−2をレールに対し等しい角度で設置したと
き、検出コイル17−1と17−2、および19
−1と19−2に誘起される外乱磁束による電圧
は等しくなり、検出コイル17−1,17−2と
19−1,19−2が差動接続してあると相殺さ
れ出力端子12に出力は現れない。しかし、この
ままでは、励振コイル16−1,16−2と18
−1,18−2から誘起される本来の信号まで相
殺してしまうため、励振コイル18−1,18−
2を逆相になる様に接続すると、検出コイル19
−1,19−2に誘起される信号電圧は逆相とな
り、これらの検出コイルは検出コイル17−1,
17−2とは差動接続されているため信号は和と
なり2倍となる。このようにして、磁気異方性セ
ンサ自体の励振コイルによるレール磁化の程度の
検出信号は2倍となり、外乱は相殺され本来の信
号を確実に検出できる。この方法を採用すること
により、外乱はセンサ15−1,15−2に対し
て等しければ良く、その方向、強さなどは無関係
となる。また、センサ15−2を無励振で使用す
ると外乱の相殺は可能であるが、出力信号はセン
サ1個のときと等しくなる。なお、測定に先立つ
て、レールと同一材質の試料について、十分、応
力と出力電圧の関係を測定、較正しておくことが
望ましい。
FIG. 8 is a schematic connection diagram of main parts of an embodiment of the present invention. Detection coil 17- of one sensor 15-1
1 and 17-2 are harmonically connected and can be regarded as one coil. Detection coil 19- of the other sensor 15-2
The same applies to 1 and 19-2. Now, when sensors 15-1 and 15-2 are installed at equal angles to the rail, detection coils 17-1 and 17-2, and 19
The voltages due to the disturbance magnetic flux induced in -1 and 19-2 become equal, and if the detection coils 17-1, 17-2 and 19-1, 19-2 are differentially connected, they are canceled and output to the output terminal 12. does not appear. However, as it is, the excitation coils 16-1, 16-2 and 18
-1, 18-2, the original signals induced from the excitation coils 18-1, 18-2 are canceled out.
2 are connected in reverse phase, the detection coil 19
The signal voltages induced in -1 and 19-2 have opposite phases, and these detection coils are connected to detection coils 17-1 and 17-1.
Since it is differentially connected to 17-2, the signal is summed and doubled. In this way, the detection signal of the degree of rail magnetization by the excitation coil of the magnetic anisotropy sensor itself is doubled, disturbances are canceled out, and the original signal can be reliably detected. By employing this method, the disturbance only needs to be equal to the sensors 15-1 and 15-2, and its direction, strength, etc. are irrelevant. Further, if the sensor 15-2 is used without excitation, disturbances can be canceled out, but the output signal will be the same as when using only one sensor. Note that, prior to measurement, it is desirable to sufficiently measure and calibrate the relationship between stress and output voltage using a sample made of the same material as the rail.

なお、上述した動作を純電気的方法で実現する
ことも可能であり、これを第9図に示す。センサ
15により検出された信号と外乱の和の電圧は、
増幅器20で増幅され、復調器21で直流電圧に
直される。これをサンプルホールド23−1に保
持する。次にスイツチ22を反対に倒し、無励振
状態とし、外乱電圧のみを同様にサンプルホール
ド23−2で保持し、差動増幅器24で差をと
り、本来の信号だけを出力させることができる。
しかし、復調する以前に飽和してしまう(実際に
よく生ずる)ような場合には使用できないという
難点がある。
Note that it is also possible to realize the above-mentioned operation by a purely electrical method, which is shown in FIG. The voltage of the sum of the signal detected by the sensor 15 and the disturbance is:
The signal is amplified by an amplifier 20 and converted to a DC voltage by a demodulator 21. This is held in the sample hold 23-1. Next, the switch 22 is turned in the opposite direction to create a non-excitation state, and only the disturbance voltage is similarly held in the sample hold 23-2, the difference is taken by the differential amplifier 24, and only the original signal can be output.
However, it has the disadvantage that it cannot be used in cases where saturation occurs before demodulation (which often occurs).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、外乱や増
幅器の飽和などに妨げられずに、磁気異方性検出
装置によりレール軸方向応力を測定することが出
来る。
As explained above, according to the present invention, the rail axial stress can be measured by the magnetic anisotropy detection device without being hindered by disturbances, amplifier saturation, or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気異方性クロスセンサの基本構造を
示す図、第2図a,bは磁気異方性センサの作動
原理説明図、第3図は磁気異方性センサに対応す
るブリツジ回路の図、第4図は磁気異方性センサ
によるレール軸力測定状態およびその際の外乱の
説明図、第5図、第6図a,b、第7図は外乱の
原因、影響の説明図、第8図は本発明の一実施例
の要部概略接続図、第9図は磁気異方性センサを
用い純電気的に外乱の影響を除去してレール軸力
を測定する回路例を示す図である。 1……励振コア、2……検出コア、3……励振
コイル、4……検出コイル、9……レール、10
……レールに流れる電流、11……外乱磁界、1
5−1……一方の磁気異方性センサ、15−2…
…他方の磁気異方性センサ、16−1,16−
2,18−1,18−2……励振コイル、17−
1,17−2,19−1,19−2……検出コイ
ル。
Fig. 1 shows the basic structure of the magnetic anisotropic cross sensor, Fig. 2 a and b are diagrams explaining the operating principle of the magnetic anisotropic sensor, and Fig. 3 shows the bridge circuit corresponding to the magnetic anisotropic sensor. Figure 4 is an explanatory diagram of the rail axial force measurement state by the magnetic anisotropy sensor and the disturbance at that time, Figures 5, 6 a, b, and 7 are explanatory diagrams of the causes and effects of the disturbance, Fig. 8 is a schematic connection diagram of the main parts of an embodiment of the present invention, and Fig. 9 is a diagram showing an example of a circuit that uses a magnetic anisotropy sensor to remove the influence of disturbance purely electrically and measure the rail axial force. It is. 1...Excitation core, 2...Detection core, 3...Excitation coil, 4...Detection coil, 9...Rail, 10
... Current flowing in the rail, 11 ... Disturbing magnetic field, 1
5-1...One magnetic anisotropy sensor, 15-2...
...The other magnetic anisotropy sensor, 16-1, 16-
2,18-1,18-2...excitation coil, 17-
1, 17-2, 19-1, 19-2...Detection coil.

Claims (1)

【特許請求の範囲】[Claims] 1 夫々レール表面に略直交し、かつ互いに直交
する2平面内に脚部をレール表面に接して配置し
た倒立U字形のコアに、それぞれコイルを捲い
て、一方を磁気異方性検出用、他方を励振用とし
た磁気異方性センサを、2組隣接して配設し、こ
れら2組の磁気異方性センサの、磁気異方性検出
用コア面同士、励磁用コア面同士を夫々平行さ
せ、磁気異方性検出用コイル同士を差動接続、励
振用コイル同士を逆相励振し、レール軸力に対応
した磁気異方性がレールに生じていることを利用
して、前記差動接続した磁気異方性検出用コイル
の出力により外乱磁界の影響を除去したレール軸
力を測定するようにしたことを特徴とするレール
軸力測定装置。
1 Each coil is wound around an inverted U-shaped core whose legs are arranged in contact with the rail surface in two planes that are substantially perpendicular to the rail surface and mutually orthogonal, one for detecting magnetic anisotropy and the other for detecting magnetic anisotropy. Two sets of magnetic anisotropy sensors for excitation are arranged adjacently, and the core surfaces for magnetic anisotropy detection of these two sets of magnetic anisotropy sensors are parallel to each other, and the core surfaces for excitation are parallel to each other. The magnetic anisotropy detection coils are connected differentially, the excitation coils are excited in opposite phases, and the magnetic anisotropy corresponding to the rail axial force is generated in the rail. A rail axial force measuring device characterized in that the rail axial force is measured with the influence of a disturbance magnetic field removed by the output of a connected magnetic anisotropy detection coil.
JP9867284A 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail Granted JPS60243526A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9867284A JPS60243526A (en) 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail
FR8503386A FR2564585B1 (en) 1984-05-18 1985-03-07 APPARATUS FOR MEASURING A CONSTRAINT BY ELECTROMAGNETIC PROCESS
DE19853508337 DE3508337A1 (en) 1984-05-18 1985-03-08 Device for the electromagnetic measurement of a load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9867284A JPS60243526A (en) 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail

Publications (2)

Publication Number Publication Date
JPS60243526A JPS60243526A (en) 1985-12-03
JPH04210B2 true JPH04210B2 (en) 1992-01-06

Family

ID=14226003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9867284A Granted JPS60243526A (en) 1984-05-18 1984-05-18 Apparatus for measuring axial force of rail

Country Status (3)

Country Link
JP (1) JPS60243526A (en)
DE (1) DE3508337A1 (en)
FR (1) FR2564585B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140333U (en) * 1986-02-24 1987-09-04
DE3887853T2 (en) * 1987-12-28 1994-05-19 Kubota Ltd Torque measuring device.
JPH076950B2 (en) * 1988-09-14 1995-01-30 株式会社日立製作所 Device and method for detecting deterioration of metallic material
DE4014686A1 (en) * 1989-05-12 1990-11-15 Preussag Ag Head measuring changes in magnetic properties due to mechanical stress - has coil carrying arms of iron core with common back plate
JP2849038B2 (en) * 1994-04-08 1999-01-20 新日本製鐵株式会社 Rail axial force measurement method and rail that can measure axial force
NL1028698C2 (en) * 2005-01-26 2006-07-31 Grontmij Nederland B V System and method for at least detecting a mechanical stress in at least a part of a rail.
EP2862778B1 (en) * 2013-10-15 2017-01-04 Bayern Engineering GmbH & Co. KG Method for generating measurement results from sensor signals
EP3051265B1 (en) * 2015-01-29 2017-10-11 Torque and More (TAM) GmbH Force measurement device
DE102016205784A1 (en) 2016-04-07 2017-10-12 Robert Bosch Gmbh Torque detecting device and vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1201642B (en) * 1963-03-05 1965-09-23 Elveco L Van Den Eynde & Cie E Transmission with a single drive unit and with several gear ratios
DE1220634B (en) * 1964-09-24 1966-07-07 Schwingungstechnik Veb Magnetoelastic force measuring device
US3535625A (en) * 1968-04-22 1970-10-20 Garrett Corp Strain and flaw detector
BE760080A (en) * 1969-12-10 1971-05-17 Jones & Laughlin Steel Corp METHOD AND APPARATUS FOR MEASURING STRESSES IN A FERROMAGNETIC MATERIAL
SE385406B (en) * 1974-10-25 1976-06-28 Asea Ab PROCEDURE FOR MANUFACTURING A MAGNETOELASTIC SENSOR
DE3031997C2 (en) * 1980-08-25 1986-01-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for non-contact measurement of static and dynamic torques

Also Published As

Publication number Publication date
FR2564585A1 (en) 1985-11-22
JPS60243526A (en) 1985-12-03
DE3508337A1 (en) 1985-11-21
FR2564585B1 (en) 1988-09-23

Similar Documents

Publication Publication Date Title
JPH08273952A (en) Plane current detector
JPH04210B2 (en)
US7271587B2 (en) High resolution and low power magnetometer using magnetoresistive sensors
JP2002277522A (en) Magnetic field sensor
JP2841153B2 (en) Weak magnetism measurement method and device, and nondestructive inspection method using the same
JP3764834B2 (en) Current sensor and current detection device
JP4732705B2 (en) Magnetic field sensor
JP3651268B2 (en) Magnetic measurement method and apparatus
JP2803917B2 (en) Magnetic anisotropy detection method for steel sheet
JPH0331377B2 (en)
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
US5831424A (en) Isolated current sensor
US4683535A (en) Thin film magnetometer
JP2617570B2 (en) Magnetic measuring device
Yoshida et al. Precise current sensor by means of small-angle magnetization rotation using amorphous wire and its industrial application
JP2912003B2 (en) Method for measuring magnetic properties of superconductors
Garcia et al. Biaxial magnetometer sensor
JP2759303B2 (en) Stress detector
JP2000266786A (en) Current sensor
JPH0414735B2 (en)
JPS5861433A (en) Magnetic permeability type stress measuring method
JP2905561B2 (en) Non-contact torque sensor
JPS60205372A (en) Clip-on ammeter
JP2514550B2 (en) Magnetic force type stress measurement method for non-ferrous metal materials
JPH0638101B2 (en) Magnetic field detector