JPH0638101B2 - Magnetic field detector - Google Patents

Magnetic field detector

Info

Publication number
JPH0638101B2
JPH0638101B2 JP62286389A JP28638987A JPH0638101B2 JP H0638101 B2 JPH0638101 B2 JP H0638101B2 JP 62286389 A JP62286389 A JP 62286389A JP 28638987 A JP28638987 A JP 28638987A JP H0638101 B2 JPH0638101 B2 JP H0638101B2
Authority
JP
Japan
Prior art keywords
magnetic field
sensor
current
detected
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62286389A
Other languages
Japanese (ja)
Other versions
JPH01126576A (en
Inventor
敏勝 園田
隆三 上田
茂夫 高田
Original Assignee
目黒電機製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 目黒電機製造株式会社 filed Critical 目黒電機製造株式会社
Priority to JP62286389A priority Critical patent/JPH0638101B2/en
Publication of JPH01126576A publication Critical patent/JPH01126576A/en
Publication of JPH0638101B2 publication Critical patent/JPH0638101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は極微小の磁界を高感度に且つ、高速応答性を以
って検出する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for detecting an extremely small magnetic field with high sensitivity and high speed response.

従来技術 例えば10-9テスラ程度以下の極微小の磁界を検出する
場合、従来フラックスゲート形磁気検知器、超伝導量子
干渉計等があるが、フラックスゲート形磁気検知器は、
コアに使用している磁性材料の磁気雑音にその検出限界
を制限され、又超伝導量子干渉計も、例えば現時点で
は、未だ極低温の維持装置を必要としないものは現れて
おらないのに見られるように、特殊な技術と高価な材
料,装置を必要とするのが現状である。
Conventional technology For detecting an extremely small magnetic field of, for example, 10 -9 Tesla or less, there are conventional flux gate type magnetic detectors, superconducting quantum interferometers, etc.
The detection limit is limited by the magnetic noise of the magnetic material used for the core, and no superconducting quantum interferometer has yet appeared, for example, that does not require a cryogenic maintenance device at this time. Therefore, special technology, expensive materials and equipment are required at present.

発明が解決しようとする問題点 本発明は上記のような問題点を解決したものであって、
即ち磁気雑音に関してはコアとして使用する磁気材料の
内部ひずみや組成の不均一性、空孔や夾雑物に起因する
不連続磁化範囲を避け、不連続磁化範囲より大きな非線
形領域がセンサーコアの動的磁化レベル(励振領域)と
なるように磁気偏位を起こさせることにより、磁気雑音
が出力に現れるのを有効に軽減するようにし、更に零磁
界法の応用により、直線性に優れ且つ外界に存在する磁
界を高感度で拾い安定で且つ高範囲の磁界検出を可能に
したものである。又本発明は液化気体及びその維持装置
等、特に高価な装置は使用せずとも実施でき、超伝導量
子干渉計でなくては測定不可能であった極微小磁界の高
感度検出を可能とすると共に、これにより使用者にとっ
て平易で安価な高感度磁気検出装置を提供することがで
きるようにしたものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention has solved the above problems,
In other words, regarding magnetic noise, avoid the discontinuous magnetization range due to internal strain and compositional inhomogeneity of the magnetic material used as the core, voids and impurities, and make the nonlinear region larger than the discontinuous magnetization range the dynamic of the sensor core. By causing magnetic excursion to reach the magnetization level (excitation region), magnetic noise is effectively reduced from appearing in the output, and by applying the zero magnetic field method, it has excellent linearity and exists in the outside world. It is possible to detect a magnetic field with high sensitivity and to detect a magnetic field in a stable and wide range. Further, the present invention can be carried out without using a particularly expensive device such as a liquefied gas and a device for maintaining the same, and enables highly sensitive detection of an extremely small magnetic field that could not be measured without a superconducting quantum interferometer. At the same time, this makes it possible to provide a high-sensitivity magnetic detection device that is simple and inexpensive for the user.

問題点を解決するための手段及び作用 交流電流によって励振されたセンサーコアの動的磁化レ
ベルが、今測定対象たる外部磁界(以下被検出磁界H
という)によってシフトされると、これに伴いコアの動
的微分透磁率の大きさも変化することになる。従って被
検出磁界Hによって生じた透磁率の変化分を、高周波
の励磁電流に対する二次側巻線に生ずる変圧器起電力と
して検出すれば、これから被検出磁界の大きさと極性と
を知ることができる。しかしセンサーコアの動的磁化レ
ベルが不連続磁化範囲にある場合には二次側巻線に生ず
る変圧器起電力には被検出磁界に基かない有害な磁気雑
音が重畳されて出力されることが認められる。
Means and Actions for Solving Problems The dynamic magnetization level of the sensor core excited by the alternating current is determined by the external magnetic field (hereinafter, detected magnetic field H X
That is, the magnitude of the dynamic differential permeability of the core also changes accordingly. Therefore, if the change in magnetic permeability caused by the detected magnetic field H X is detected as the transformer electromotive force generated in the secondary winding with respect to the high-frequency exciting current, the magnitude and polarity of the detected magnetic field can be known. it can. However, if the dynamic magnetization level of the sensor core is in the discontinuous magnetization range, harmful electro-magnetic noise that is not based on the detected magnetic field may be superimposed on the transformer electromotive force generated in the secondary winding. Is recognized.

本発明は上記センサーコアに上記交流電流による励振と
同時に、直流偏位磁界を印加し、コアの励振領域を不連
続磁化範囲より大きな非線形領域に偏位させ、該偏位励
振領域において上記被検出磁界を感知させ、これにより
上記センサーコアの二次側巻線に生じた誘起起電力の変
化分を基に該センサーコアに付加した制御巻線に制御電
流を流して、該センサーコアを逆励磁することにより、
上記変化分を減殺又は相殺させ、該減殺又は相殺を生じ
させる制御電流から上記被検出磁界を検出するようにし
て上記問題の解決を図ったものである。
The present invention applies a DC excursion magnetic field to the sensor core at the same time as excitation by the AC current to excite the excitation region of the core to a nonlinear region larger than the discontinuous magnetization range, and to detect the detected object in the excitement excitation region. A magnetic field is sensed, and a control current is caused to flow through the control winding added to the sensor core based on the change in the induced electromotive force generated in the secondary winding of the sensor core, and the sensor core is reverse-excited. By doing
The problem is solved by canceling or canceling the change, and detecting the magnetic field to be detected from the control current that causes the cancel or cancel.

実施例 以下本発明の実施例を第1図乃至第3図に基いて説明す
る。実施例はセンサーコアを二個用いた場合を代表例と
して示している。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. The example shows a case where two sensor cores are used as a representative example.

A,Bは変圧器、a,bは各変圧器におけるセンサーコ
アであり、該センサーコアa,bの一次側巻線A,B
は一方の入力端2,5同士が接続されており、同他方
の入力端1と6には交流電源Eと直流電源Dとを第1図
実線で示す如く直列、又は同図破線で示す如く並列に接
続し、該直列又は並列電源回路に抵抗Cが直列に接続
されており、並列電源回路の場合には、抵抗C,C
が夫々直列に接続されており、センサーコアaの二次側
巻線Aの一方の出力端4とセンサーコアbの二次側巻
線Bの一方の出力端7とが接続されており、更に二次
側巻線A,Bの出力端3,8間には低雑音増幅器F
を介して同期整流器Gと周波数選択性減衰器Hとが接続
されている。
A and B are transformers, a and b are sensor cores in each transformer, and primary windings A 1 and B of the sensor cores a and b are provided.
One input terminal 2 and 5 are connected to each other, and an AC power source E and a DC power source D are connected to the other input terminals 1 and 6 in series as shown by the solid line in FIG. And the resistance C 1 is connected in series to the series or parallel power supply circuit. In the case of the parallel power supply circuit, the resistances C 2 and C 3 are connected.
Are connected in series, and one output end 4 of the secondary winding A 2 of the sensor core a and one output end 7 of the secondary winding B 2 of the sensor core b are connected. , And a low noise amplifier F between the output terminals 3 and 8 of the secondary windings A 2 and B 2.
The synchronous rectifier G and the frequency selective attenuator H are connected via the.

ここで4つの巻線A,B,A,Bに付した
「・」印は巻線の極性を示したもので、センサーコア
a,bの一次側巻線A,Bの巻線方向は被検出磁界
に対し逆相であり、二次側巻線A,Bの巻線方
向は被検出磁界に対し同相である。
Here, the “•” marks attached to the four windings A 1 , B 1 , A 2 , and B 2 indicate the polarities of the windings, and the primary windings A 1 and B 1 of the sensor cores a and b are shown. the winding direction is reversed phase with respect to the detected magnetic field H X, winding directions of the secondary winding a 2, B 2 are in phase with respect to the detected magnetic field.

更に上記センサーコアa,bの夫々に第3の巻線を付加
し、これを零磁界法における制御巻線A,Bとす
る。制御巻線A,Bはその巻線方向を被検出磁界に
対し共に逆相となるようにし、一方の巻線端子16,1
7同士を接続する。又制御巻線B,Aの制御系とし
て周波数選択性減衰器Hの検出信号14Khd とセンサー
コアa,bの偏位磁界からの変化分の目標値Hrの差εに
基き制御電流指令信号icr を出力する比例積分回路Iを
具備させ、該比例積分回路Iの制御電流指令信号icr を
増幅器Jの一方の差動的入力電圧とすると共に、該増幅
器Jの出力側を制御巻線Bの他方の巻線端子18に接
続し、増幅器Jの出力たる制御電流icを制御巻線B
へと流すようにし、該制御巻線Aの他方の巻線端
子15の出力を抵抗Rdに流しその電圧を増幅器Jの他方
の差動的入力電圧とする。
Further, a third winding is added to each of the sensor cores a and b, and these are used as control windings A 3 and B 3 in the zero magnetic field method. The control windings A 3 and B 3 are arranged so that their winding directions are opposite to the magnetic field to be detected, and one of the winding terminals 16 and 1
Connect 7 to each other. Further, as a control system of the control windings B 3 and A 3 , a control current command signal is generated based on a difference ε between the detection signal 14Khd of the frequency selective attenuator H and the target value Hr of the change from the deflection magnetic field of the sensor cores a and b. A proportional integrator circuit I that outputs icr is provided, and the control current command signal icr of the proportional integrator circuit I is used as one differential input voltage of the amplifier J, and the output side of the amplifier J is controlled by the control winding B 3. Connected to the other winding terminal 18 of the control winding B 3 and outputs the control current ic, which is the output of the amplifier J, to the control winding B 3
Allowed to flow into A 3, the voltage flowing the output of the other winding terminals 15 of the control windings A 3 to the resistor Rd and the other differential input voltage of the amplifier J.

上記回路によりセンサーコアa,bにおける被検出磁界
を相殺又は減殺するような電流を制御巻線B,A
に流すように制御する。
With the above circuit, a current that cancels or reduces the detected magnetic field H x in the sensor cores a and b is generated in the control windings B 3 and A.
It is controlled so that it flows to 3 .

変圧器A,Bにおけるセンサーコアa,bの形状は夫々
開磁路を構成する棒状又は短冊状又は線状であり、変圧
器A,Bのコアa,bの材料として、強磁性体の磁性材
料、例えばアモルファス合金又はパーマロイ等を使用す
る。
The shape of the sensor cores a and b in the transformers A and B is a rod shape, a strip shape, or a linear shape that forms an open magnetic circuit, respectively. As a material of the cores a and b of the transformers A and B, the magnetism of a ferromagnetic material is used. A material such as an amorphous alloy or permalloy is used.

而して、センサーコアa,bの一次側巻線A,B
入力端1,6に交流電流9(iex )と直流電流10(id
c )を重畳して加えてセンサーコアa,bを交流電流9
により励振し交流磁界を加えると同時に、直流電流10
により直流偏位磁界を加えて置く。
Thus, at the input ends 1 and 6 of the primary windings A 1 and B 1 of the sensor cores a and b, an alternating current 9 (iex) and a direct current 10 (id
c) is superimposed and added, and sensor cores a and b are applied with alternating current 9
And apply an AC magnetic field while simultaneously applying a DC current 10
Apply a DC excursion magnetic field.

斯くしてセンサーコアa,bに加えられた被検出磁界H
により振幅変調された信号12をセンサーコアa,b
の二次側巻線A,Bの出力端3,8より取り出し、
低雑音増幅器Fを経させた後、同期整流器Gによって信
号12を一次側交流電流9に同期して整流し、被検出磁
界Hの方向に対応した極性を持つ信号13を取り出
し、更に周波数選択性減衰器Hによって信号13から一
次側交流電流の成分を取り除いた信号14を取り出す。
Thus, the detected magnetic field H applied to the sensor cores a and b
The signal 12 amplitude-modulated by x is applied to the sensor cores a and b.
Of the secondary windings A 2 and B 2 of the output terminals 3 and 8 of
After passing through the low-noise amplifier F, the synchronous rectifier G rectifies the signal 12 in synchronism with the primary side alternating current 9, extracts a signal 13 having a polarity corresponding to the direction of the magnetic field H X to be detected, and further selects the frequency. The signal 14 obtained by removing the component of the primary side alternating current from the signal 13 is extracted by the sex attenuator H.

上記によってセンサーコアa,bにより感知した被検出
磁界Hに応じた二次側巻線A,B側の誘起起電力
の変化分を信号14として取り出すことができる。この
際、第2図,第3図に示すように、センサーコアa,b
に使用している磁性材料を磁化する直流電流10による
偏位磁界Hdc,-Hdcの大きさは、磁性材料の不連続磁化範
囲Mより大きな非線形領域に入るように設定されてい
る。好ましくは偏位磁界Hdc,-Hdcは上記不連続磁化範囲
より大きく、飽和磁化範囲Mより小さくなるよう
な回転磁化範囲Mに設定されており、且つ直流電流1
0に重畳されるべき交流電流9の大きさは上記不連続磁
化範囲M及び飽和磁化範囲Mに入らないように設定
されている。
As described above, the change in the induced electromotive force on the secondary windings A 2 , B 2 side according to the detected magnetic field H X sensed by the sensor cores a, b can be extracted as the signal 14. At this time, as shown in FIGS. 2 and 3, the sensor cores a, b
The magnitude of the deflection magnetic field Hdc, −Hdc by the direct current 10 that magnetizes the magnetic material used for is set so as to fall within the nonlinear region larger than the discontinuous magnetization range M 1 of the magnetic material. Preferably, the deflection magnetic field Hdc, -Hdc is set to a rotating magnetization range M 3 which is larger than the discontinuous magnetization range M 1 and smaller than the saturation magnetization range M 2 , and a direct current 1
The magnitude of the alternating current 9 to be superimposed on 0 is set so as not to fall within the discontinuous magnetization range M 1 and the saturation magnetization range M 2 .

これによってセンサーコアa,bの励振領域を不連続磁
化範囲Mより大きな非線形領域に偏位させ、該偏位励
振領域、最適には回転磁化範囲Mにおいて上記被検出
磁界Hを感知させ磁界測定を行なう。
As a result, the excitation regions of the sensor cores a and b are deviated to a nonlinear region larger than the discontinuous magnetization range M 1 , and the detected magnetic field H X is sensed in the deviated excitation region, optimally the rotating magnetization range M 3 . Perform magnetic field measurement.

第2図Aは被検出磁界が零の場合(H=0)における
変圧器A,Bの夫々のコアa,bの磁性材料の磁化特性
を表しており、第3図Aは同H>0の場合の同磁化特
性を表している。
FIG. 2A shows the magnetization characteristics of the magnetic materials of the cores a and b of the transformers A and B when the magnetic field to be detected is zero (H X = 0), and FIG. 3A shows the same H X. It shows the same magnetization characteristics when> 0.

又第2図Bは被検出磁界がない場合(H=0)のセン
サーコアa,bにかけられた直流偏位磁界Hdc,-Hdcの近
傍における交流電流9による二次側巻線の誘起電圧(es
chp )と(eschn )と、その加算信号12(esch)とを
表したものである。各誘起電圧(eschp )と(eschn )
とは差動的に加算されているため、信号中の交流電流9
による成分は検出波形には殆ど表われない。
FIG. 2B shows the induced voltage of the secondary winding due to the AC current 9 in the vicinity of the DC excursion magnetic fields Hdc, -Hdc applied to the sensor cores a, b when there is no magnetic field to be detected (H X = 0). (Es
chp) and (eschn) and the addition signal 12 (esch) thereof. Each induced voltage (eschp) and (eschn)
Since and are added differentially, the AC current 9
The component due to is hardly shown in the detected waveform.

第3図Bは被検出磁界がある場合(H>0)のセンサ
ーコアa,bにかけられた直流偏位磁界の近傍における
交流電流9による二次側巻線の誘起電圧(eschp )と
(eschn )と、その加算電圧である信号12(esch)を
表したものである。同様に誘起電圧(eschp )と(esch
n )とは差動的に加算をされているため、被検出磁界に
よって生じた各コアの動作磁化レベルの変化に基く加算
信号(esch)のみが表わされていることになる。
FIG. 3B shows the induced voltage (eschp) in the secondary winding due to the AC current 9 in the vicinity of the DC excursion magnetic field applied to the sensor cores a and b when there is a magnetic field to be detected (H X > 0) and ( eschn) and a signal 12 (esch) which is the added voltage thereof. Similarly, induced voltages (eschp) and (eschp
Since n) is differentially added, only the addition signal (esch) based on the change in the operating magnetization level of each core caused by the magnetic field to be detected is represented.

上記の如くして周波数選択性減衰器Hから得られる信号
14Khd と目標値Hrの差分Hr−Khd =εに基き比例積分
回路Iから制御電流指令信号icr を出し、増幅器Jを介
して制御電流icを制御巻線B,Aに流す。
As described above, the control current command signal icr is output from the proportional integrator circuit I based on the difference Hr-Khd = ε between the signal 14Khd obtained from the frequency selective attenuator H and the target value Hr, and the control current ic is output via the amplifier J. Flow through the control windings B 3 and A 3 .

この制御電流icによってセンサーコアa,bを逆励磁
し、被検出磁界Hx、即ち誘起起電力の変化分を減殺又は
相殺する。この変化分を減殺又は相殺すべく制御巻線B
,Aに流れた電流icから被測定磁界Hxを検出する。
Rdはこの被測定磁界Hxの検出を電圧Rdicとして取り出す
ための抵抗である。
The control currents ic reversely excite the sensor cores a and b to reduce or cancel the detected magnetic field Hx, that is, the variation of the induced electromotive force. To reduce or cancel this change, control winding B
3, for detecting the measured magnetic field Hx from current ic flowing to A 3.
Rd is a resistor for taking out the detection of the measured magnetic field Hx as a voltage Rdic.

発明の効果 以上のように、本発明ではセンサーコアに直流偏位磁界
を印加した上に交流電流に基く交流磁界を重畳した状態
で被検出磁界を検出すると言う検出装置であるため、磁
界検出媒体であるセンサーコアの磁気雑音を軽減するこ
とができる。又検出のための補助信号である交流の励振
電流に基いて生じる各二次側巻線電圧を差動的にキャン
セルしているため、出力には交流励振電流によって変調
されてはいるものの、実質的には被検出磁界分しか表れ
ないよう工夫されていることにより、極微小の被検出磁
界を検出できるようになったものである。
Effects of the Invention As described above, the present invention is a detection device that detects a detected magnetic field in a state where an alternating magnetic field based on an alternating current is superposed on the sensor core by applying a direct current deviation magnetic field to the sensor core. It is possible to reduce the magnetic noise of the sensor core. Further, since each secondary winding voltage generated based on the AC excitation current, which is an auxiliary signal for detection, is differentially canceled, the output is modulated by the AC excitation current, but In particular, by devising such that only the detected magnetic field appears, it becomes possible to detect an extremely small detected magnetic field.

又従来技術では、前記の如く被測定磁界による交流励振
電流や二次側巻線電圧の位相ズレ、又はパルス位置の変
化をとらえる方式であったために、高周波磁界の検出が
原理的にも制限され、従って応答性が極めてわるいもの
であった。
Further, in the prior art, as described above, the method for detecting the AC excitation current due to the magnetic field to be measured, the phase deviation of the secondary winding voltage, or the change of the pulse position, the detection of the high frequency magnetic field is also limited in principle. Therefore, the responsiveness was extremely poor.

本発明は二次側巻線による誘起起電力の変化分を制御巻
線に流した電流により可及的に減殺又は相殺するという
方法でこの電流値から被測定磁界を検出する方法を採っ
たので、被測定磁界の検出範囲が著しく拡大され、被検
出磁界と測定値との直線性が著しく良好なる検出が行な
え、加えて巻線の太さやコアの大きさ、回路容量等を任
意に選択することによりその検出範囲において磁界を有
する全ての測定対象に対応させ得る能力の磁界検出装置
が提供できた。又外界の温度等の外乱要因に影響されな
い安定な磁界検出を可能とする長所がある。加えて補助
励振交流電流に高周波を使用することにより高速応答を
可能にし、更に直流偏位磁界をセンサーコアに印加する
ことによりコア雑音を軽減した検出動作が行なえ、結果
的に高感度で高範囲の磁界検出器を安価に提供できるこ
ととなった。
The present invention adopts the method of detecting the magnetic field to be measured from this current value by the method of reducing or canceling the variation of the induced electromotive force due to the secondary winding by the current flowing in the control winding as much as possible. The detection range of the magnetic field to be measured is remarkably expanded, and the linearity between the magnetic field to be detected and the measured value can be detected extremely. In addition, the thickness of the winding, the size of the core, the circuit capacity, etc. can be selected arbitrarily. As a result, it was possible to provide a magnetic field detection device having the ability to correspond to all measurement targets having a magnetic field in the detection range. Further, there is an advantage that a stable magnetic field can be detected without being affected by a disturbance factor such as an external temperature. In addition, high-frequency response is enabled by using high frequency for auxiliary excitation AC current, and detection operation with reduced core noise can be performed by applying DC excursion magnetic field to the sensor core, resulting in high sensitivity and high range. The magnetic field detector can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す磁界検出装置の回路図、
第2図Aは第1図における被検出磁界H=0の場合の
センサーコアの磁化特性曲線と磁界検出における適用範
囲を示す図、第2図Bは第2図Aにおけるセンサーコア
の一次側交流電流と二次側巻線電圧の波形図、第3図A
は第1図における被検出磁界H>0である場合のセン
サーコアの磁化特性曲線と磁界検出における適用範囲を
示す図、第3図Bは第3図Aにおけるセンサーコアの一
次側交流電流と二次側巻線電圧の波形図である。 A,B……変圧器、A,B……一次側巻線、A
……二次側巻線、a,b……センサーコア、A
……制御巻線、D……直流電源、10……直流電
流、E……交流電源、9……交流電流、G……同期整流
器、H……周波数選択性減衰器、H……被検出磁界、
……不連続磁化範囲、M……飽和磁化範囲、M
……回転磁化範囲、F……低雑音増幅器、I……比例積
分回路、J……増幅器、Rd……制御電流検出用抵抗、C
,C,C……抵抗。
FIG. 1 is a circuit diagram of a magnetic field detection device showing an embodiment of the present invention,
2A is a diagram showing the magnetization characteristic curve of the sensor core in the case where the magnetic field to be detected H X = 0 in FIG. 1 and the applicable range in magnetic field detection, and FIG. 2B is the primary side of the sensor core in FIG. 2A. Waveform diagram of AC current and secondary winding voltage, Fig. 3A
Is a diagram showing the magnetization characteristic curve of the sensor core and the applicable range in the magnetic field detection when the magnetic field to be detected H X > 0 in FIG. 1, and FIG. 3B is the primary side alternating current of the sensor core in FIG. 3A. It is a waveform diagram of the secondary side winding voltage. A, B ... Transformer, A 1 , B 1 ... Primary winding, A 2 ,
B 2 ... secondary winding, a, b ... sensor core, A 3 ,
B 3 ...... control winding, D ...... DC power supply, 10 ...... DC current, E ...... AC power source, 9 ...... alternating current, G ...... synchronous rectifier, H ...... frequency selective attenuator, H X ... … Magnetic field to be detected,
M 1 ... Discontinuous magnetization range, M 2 ... Saturation magnetization range, M 3
...... Rotary magnetization range, F …… Low noise amplifier, I …… Proportional integrator circuit, J …… Amplifier, Rd …… Control current detection resistor, C
1 , C 2 , C 3 ... Resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開磁路を形成する二個のセンサーコアを用
い、各センサーコアの一次側巻線に交流電源と直流電源
とを直列又は並列に接続して交流電流と直流電流とを重
畳して印加し、該交流電流により上記各センサーコアを
励振し交番磁界を加えると共に、該直流電流により上記
一方のセンサーコアに被検出磁界に対し同方向の直流偏
位磁界を、同他方のセンサーコアに被検出磁界に対し逆
方向の直流偏位磁界を夫々印加し、上記各センサーコア
を磁化する上記直流電流による各偏位磁界の大きさを上
記センサーコアの不連続磁化範囲より大きな非線形領域
に入るように設定し、該非線形領域において上記被検出
磁界を感知して上記両センサーコイルの二次側巻線に被
検出磁界に応じた誘起起電力の変化分を信号として取り
出し、該信号を上記一次側交流電流に同期して整流し被
検出磁界の方向に対応した極性を持つ信号を取り出す同
期整流器と、該同期整流器の信号から上記一次側交流電
流の成分を取り除いた信号を取り出す周波数選択性減衰
器を具備させ、更に上記両センサーコイルの夫々に制御
巻線を施し、該制御巻線の制御系として上記周波数選択
性減衰器の検出信号と上記両センサーコアの偏位磁界か
らの変化分の目標値との差に基き制御電流指令信号を出
力する比例積分回路を具備させ、該比例積分回路を介し
て出力される制御電流を上記両制御巻線に流し、この制
御電流によって上記両センサーコアを逆励磁して上記誘
起起電力の変化分を減殺又は相殺し、この変化分を減殺
又は相殺する上記制御電流から被測定磁界を検出する磁
界検出装置。
1. Using two sensor cores forming an open magnetic circuit, and connecting an AC power supply and a DC power supply in series or in parallel to the primary winding of each sensor core to superimpose an AC current and a DC current. Then, the alternating current excites the sensor cores to apply an alternating magnetic field, and the direct current causes a direct current deviation magnetic field in the same direction to the detected magnetic field to the one sensor core and the other sensor. A DC bias magnetic field in the opposite direction to the magnetic field to be detected is applied to the core, and the magnitude of each bias magnetic field due to the DC current that magnetizes each sensor core is larger than the non-continuous magnetization range of the sensor core. , The detected magnetic field is sensed in the non-linear region, and a change in the induced electromotive force corresponding to the detected magnetic field is extracted as a signal in the secondary windings of the sensor coils. Up A synchronous rectifier that rectifies in synchronization with the primary side alternating current and extracts a signal having a polarity corresponding to the direction of the magnetic field to be detected, and a frequency selectivity that extracts a signal obtained by removing the primary side alternating current component from the signal of the synchronous rectifier. An attenuator is further provided, and a control winding is provided on each of the sensor coils. As a control system of the control winding, a detection signal of the frequency selective attenuator and a change amount from the deflection magnetic fields of the both sensor cores are provided. Is provided with a proportional-integral circuit that outputs a control current command signal based on a difference from the target value, and a control current output through the proportional-integral circuit is passed through the control windings. A magnetic field detection device that reversely excites a core to reduce or cancel a change in the induced electromotive force, and detects a measured magnetic field from the control current that reduces or cancels the change.
JP62286389A 1987-11-11 1987-11-11 Magnetic field detector Expired - Fee Related JPH0638101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286389A JPH0638101B2 (en) 1987-11-11 1987-11-11 Magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286389A JPH0638101B2 (en) 1987-11-11 1987-11-11 Magnetic field detector

Publications (2)

Publication Number Publication Date
JPH01126576A JPH01126576A (en) 1989-05-18
JPH0638101B2 true JPH0638101B2 (en) 1994-05-18

Family

ID=17703766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286389A Expired - Fee Related JPH0638101B2 (en) 1987-11-11 1987-11-11 Magnetic field detector

Country Status (1)

Country Link
JP (1) JPH0638101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805228B2 (en) * 2007-08-23 2011-11-02 日本エンジニアリング株式会社 Burn-in equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4511976Y1 (en) * 1968-12-03 1970-05-27
JPS56147086A (en) * 1980-04-16 1981-11-14 Nec Corp Flux gate type magnetic sensor
JPS56158967A (en) * 1980-05-13 1981-12-08 Matsushita Electric Ind Co Ltd Magnetism detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
磁性体ハンドブックP.910朝倉書店1975年6月30日発行

Also Published As

Publication number Publication date
JPH01126576A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US4596950A (en) Compensated transducer
JP5943768B2 (en) DC current detector
US9383392B2 (en) Current sensor
US7218092B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
EP0380562B1 (en) Magnetometer employing a saturable core inductor
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
US9465134B2 (en) Geomagnetic sensor
JP4716030B2 (en) Current sensor
JP2008532012A (en) Current sensor with annular coil
US4972146A (en) Saturble core device with DC component elimination for measuring an external magnetic field
WO1996019819A1 (en) Magnetic correction circuit and picture display using it
JP2000055998A (en) Magnetic sensor device and current sensor device
JP2007033222A (en) Current sensor
JPH04210B2 (en)
JP3651268B2 (en) Magnetic measurement method and apparatus
JPH0638101B2 (en) Magnetic field detector
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
US5831424A (en) Isolated current sensor
JP2617570B2 (en) Magnetic measuring device
Ghatak et al. A simple fluxgate magnetometer using amorphous alloys
JPH01126575A (en) Magnetic field detector
Yoshida et al. Precise current sensor by means of small-angle magnetization rotation using amorphous wire and its industrial application
JPS6017746Y2 (en) metal detector
Robertson Miniature magnetic sensor with a high sensitivity and wide bandwidth
JP3567604B2 (en) Fluxgate type magnetic detector and position detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees