JP2514550B2 - Magnetic force type stress measurement method for non-ferrous metal materials - Google Patents
Magnetic force type stress measurement method for non-ferrous metal materialsInfo
- Publication number
- JP2514550B2 JP2514550B2 JP27551392A JP27551392A JP2514550B2 JP 2514550 B2 JP2514550 B2 JP 2514550B2 JP 27551392 A JP27551392 A JP 27551392A JP 27551392 A JP27551392 A JP 27551392A JP 2514550 B2 JP2514550 B2 JP 2514550B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic force
- stress
- ferrous metal
- force type
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、非鉄金属材料中に発生
している応力を磁力を使用して測定するようにした非鉄
金属材料の磁力式応力測定方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic force type stress measuring method for a non-ferrous metal material, wherein a stress generated in the non-ferrous metal material is measured by using a magnetic force.
【0002】[0002]
【従来の技術】従来の磁力式応力計による測定方法によ
れば、鋼材などの鉄成分を含む磁性体金属材料において
のみ測定が可能で、例えば図1に示す、励磁用鉄心と検
出用鉄心とからなる磁力式応力計を用いて磁性体金属材
料中にすでに発生してしまっている応力を非破壊で測定
する方法として従来から広く実施されている(例えば、
特公昭39−2178号公報、特公昭51−44425
号公報および特開昭60−243526号公報、また本
発明者による実用新案登録番号第1648984号、実
用新案登録番号第1648985号および特許登録番号
第1413416号など参照)。2. Description of the Related Art According to a conventional measuring method using a magnetic force type stress meter, it is possible to measure only a magnetic metal material containing an iron component such as a steel material. For example, an exciting core and a detecting core shown in FIG. It has been widely practiced as a method for non-destructively measuring the stress that has already occurred in the magnetic metal material using the magnetic force type stress meter consisting of (for example,
Japanese Patent Publication No. 39-2178, Japanese Patent Publication No. 51-44425
Japanese Patent Laid-Open No. 60-243526, Utility Model Registration No. 1648984, Utility Model Registration No. 1648985, and Patent Registration No. 1413416 by the present inventor).
【0003】[0003]
【発明が解決しょうとする課題】しかしながら、従来の
磁力式応力計による測定方法は、材料中に含む鉄成分の
磁化による磁束の変化量を検出する原理にもとずいてい
るので、少なくともその被計測物中に鉄成分が5%以上
存在しなければ実用的には計測することができなかっ
た。特に、全く鉄成分を含まないジュラルミン材、純ア
ルミニウム材、銅材、真ちゅう材や、ほとんど鉄成分を
含まない種類のステンレス材などでは、発生している応
力を全く計測することができなかった。However, since the conventional measuring method using the magnetic force type stress meter is based on the principle of detecting the amount of change in the magnetic flux due to the magnetization of the iron component contained in the material, at least the measurement of the magnetic flux If the iron content of 5% or more was not present in the measured object, it could not be practically measured. In particular, with duralumin materials containing no iron component, pure aluminum materials, copper materials, brass materials, and stainless steel materials of the type containing almost no iron component, the stress that has occurred cannot be measured at all.
【0004】本発明は、上記のように従来の磁力式応力
計では測定することができなかった非鉄金属材料中に発
生している応力を、磁力式応力計を用いて測定すること
ができる方法を提供することを目的とする。According to the present invention, the stress generated in the non-ferrous metal material, which cannot be measured by the conventional magnetic force type stress meter as described above, can be measured by using the magnetic force type stress meter. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明の非鉄金属材料の磁力式応力測定方法は、非
鉄金属材料中に発生している応力が作用している方向お
よびその直角方向のいずれか一方、または両方に、直流
式あるいは交流式に励磁させる手段と、この励磁した磁
力線のN極、S極間に磁力式応力計を非鉄金属材料の表
面に接して配置させる手段とを組み合わせることによっ
て非鉄金属材料中に発生している応力を測定する。In order to achieve the above-mentioned object, a magnetic force type stress measuring method for a non-ferrous metal material according to the present invention is directed to a direction in which a stress occurring in the non-ferrous metal material is acting and its right angle. A means for exciting a direct current type or an alternating current type in either or both of the directions, and a means for disposing a magnetic force type stress meter between the N pole and the S pole of the excited magnetic force line in contact with the surface of the non-ferrous metal material. The stress generated in the non-ferrous metal material is measured by combining.
【0006】[0006]
【作用】使用するにさいしては、上記の磁力式応力計を
被計測物の測定すべき個所表面に接して置き、他方その
磁力式応力計の両側に、かつ被計測物の表面に接して応
力が作用している方向およびその直角方向のいずれか一
方、または両方に、直流式あるいは交流式に励磁させる
磁石のN極とS極を置いて励磁させる。すると、被計測
物中に発生している応力の大きさに応じて励磁束が変化
し、その結果は検出器に出力され、その値を測定用指針
で読みとる。[Operation] In use, place the above-mentioned magnetic force type stress meter in contact with the surface of the measuring object to be measured, and on the other hand, on both sides of the magnetic force type stress meter and in contact with the surface of the measuring object. The N-pole and the S-pole of the magnet to be excited in the direct current type or the alternating current type are placed in either or both of the direction in which the stress is applied and the direction perpendicular to the direction in which the stress is applied, and the magnet is excited. Then, the exciting magnetic flux changes according to the magnitude of the stress generated in the measured object, the result is output to the detector, and the value is read by the measuring pointer.
【0007】[0007]
【実施例】実施例について図面にもとづき説明すると、
例えば、図1に示す従来実施されている磁力式応力計1
(上記従来の技術で述べたように、種々の形式のものが
あるが、いずれの実施例でも利用することができる)を
使用する。この磁力式応力計1は、残留磁気がほとんど
残らない材質でできたU字型の高透磁率性材料からなる
励磁用鉄心2に励磁用コイル3を巻いて、その先端に磁
極4、5を構成し、この励磁用コイル3に適当な周波数
の一定強度の交番電圧を与えるための発振器6(図5参
照)を接続しており、さらに、前記励磁用鉄心2の磁極
4と磁極5の間に、検出用コイル7を巻いたU字型の高
透磁率性材料からなる検出用鉄心8に磁極9、10を構
成し、この検出用コイル7にその出力を検出する検出器
18を接続する。これら励磁用鉄心2と検出用鉄心8は
互いに直角に交わる2平面上にそれぞれを配置させると
ともに、それらの磁極4、5、9、10は同一平面上に
配置されている。なお、検出器18は検出用コイル7に
接続してその出力を増幅する回路および被測定物15が
無応力の状態での出力のときに測定用指針11が零点を
指示するように逆電圧を与えるための回路を備えてい
る。12は発振器6の電源スイッチ、13は測定用指針
11の零点調節ツマミ、14は検出用コイル7の出力増
幅度切替ツマミである。EXAMPLE An example will be described with reference to the drawings.
For example, the magnetic force type stress meter 1 shown in FIG.
(There are various types as described in the above-mentioned related art, but any type can be used). In this magnetic force type stress meter 1, an exciting iron core 2 made of a U-shaped material having a high magnetic permeability, which is made of a material having almost no residual magnetism, is wound with an exciting coil 3, and magnetic poles 4 and 5 are provided at the ends thereof. The excitation coil 3 is connected to an oscillator 6 (see FIG. 5) for applying an alternating voltage of a proper frequency and a constant intensity, and further, between the magnetic poles 4 and 5 of the excitation iron core 2. In addition, magnetic poles 9 and 10 are formed on a detection iron core 8 made of a U-shaped high magnetic permeability material around which the detection coil 7 is wound, and a detector 18 for detecting the output thereof is connected to the detection coil 7. . The exciting iron core 2 and the detecting iron core 8 are arranged on two planes that intersect each other at right angles, and their magnetic poles 4, 5, 9, 10 are arranged on the same plane. The detector 18 is connected to the detection coil 7 and a circuit for amplifying its output and a reverse voltage so that the measuring pointer 11 indicates a zero point when the object to be measured 15 is an output in a stress-free state. It has a circuit for giving. Reference numeral 12 is a power switch of the oscillator 6, 13 is a zero adjustment knob of the measuring pointer 11, and 14 is an output amplification switching knob of the detection coil 7.
【0008】応力を測定するにさいしては、あらかじめ
ほとんど応力が作用していないと考えられるものや、あ
るいは十分に焼鈍を行って無応力とした被計測物15と
同質の板材の上に磁力式応力計1を置き、またその両側
にして磁石16のN極とS極を板材の上に置くととも
に、検出器18の電源スイッチ12を入れて発振器6か
ら励磁用鉄心2の励磁用コイル3に適当な周波数の一定
強度の交番電圧を加えると、磁極4、5間に交番磁極が
発生してその板材内を磁力線が通過する。零点調節ツマ
ミ13を回して検出器18の測定用指針11が零点値に
なるように調整し、この値を無応力状態とする。In measuring the stress, it is considered that almost no stress is applied in advance, or a magnetic material is applied on a plate material of the same quality as the object to be measured 15 which has been sufficiently annealed to be stress-free. The stress meter 1 is placed, and the N and S poles of the magnet 16 are placed on both sides of the stress gauge 1, and the power switch 12 of the detector 18 is turned on to switch the oscillator 6 to the exciting coil 3 of the exciting iron core 2. When an alternating voltage with a constant frequency and a constant intensity is applied, an alternating magnetic pole is generated between the magnetic poles 4 and 5, and the magnetic force lines pass through the plate material. The zero adjustment knob 13 is turned to adjust the measuring pointer 11 of the detector 18 so as to have a zero value, and this value is set to a stress-free state.
【0009】次に、図2および図3に示すように、磁力
式応力計1を被計測物15の測定すべき個所表面に接し
て置き、その両側にして、かつ被計測物15の表面に接
して応力が作用している方向(A−A矢視)およびその
直角方向(B−B矢視)のいずれか一方、または両方に
磁石16のN極とS極を置いて励磁させる(この励磁電
力は直流式あるいは交流式のいずれでもよい)。このと
き、被計測物15の表面に励磁した磁力線17が応力の
作用線上に重ね合わせて加えられ、あるいはその作用線
上に対し直角方向に作用させると、これがあたかも鉄成
分に対する磁化作用に疑似して被計測物15に作用して
磁力式応力計1の検出用コイル7に磁束の変化をもたら
し検出器18にその変化が出力され、その出力の大きさ
により出力増幅度切替ツマミ14で増幅度を調節すれば
測定用指針11で応力値が読み取れる。Next, as shown in FIG. 2 and FIG. 3, the magnetic force type stress gauge 1 is placed in contact with the surface of the object to be measured 15 to be measured, on both sides thereof and on the surface of the object to be measured 15. The N-pole and the S-pole of the magnet 16 are placed in either or both of the direction in which the stress is in contact with it (viewed by the arrow A-A) and the direction perpendicular thereto (viewed by the arrow BB) (this Excitation power may be either DC or AC). At this time, when the magnetic field lines 17 excited on the surface of the object to be measured 15 are added to be superposed on the action line of stress or acted in a direction perpendicular to the action line, this simulates the magnetization action on the iron component. It acts on the object to be measured 15 and causes a change in the magnetic flux to the detection coil 7 of the magnetic force type stress meter 1, and the change is output to the detector 18, and the amplification degree is adjusted by the output amplification degree switching knob 14 depending on the magnitude of the output. If adjusted, the stress value can be read by the measuring pointer 11.
【0010】また、図2に示すように、磁石16の磁力
線が直接、磁力式応力計1の鉄心に流れると誤差が出る
恐れがある場合には、鉄心の磁極周囲に厚さ1mm程度の
鉄板19を取り付けておくとよい。Further, as shown in FIG. 2, when an error may occur when the magnetic force lines of the magnet 16 flow directly to the iron core of the magnetic force type stress meter 1, an iron plate having a thickness of about 1 mm is provided around the magnetic poles of the iron core. 19 should be attached.
【0011】また、図4に示すように、被計測物15が
比較的薄い板の場合には、磁力式応力計1をおいた板の
裏面に励磁用磁石16を置いても類似の効果を得ること
ができる。Further, as shown in FIG. 4, when the object to be measured 15 is a relatively thin plate, a similar effect can be obtained by placing the exciting magnet 16 on the back surface of the plate on which the magnetic stress meter 1 is placed. Obtainable.
【0012】上記手段を用いて、非鉄金属材料の内、ア
ルミニューム材の内部に発生している応力を測定した結
果を表1に示す。また、その結果を図6に示す。Table 1 shows the results of measuring the stress generated inside the aluminum material among the non-ferrous metal materials using the above means. The results are shown in FIG.
【0013】[0013]
【表1】 [Table 1]
【0014】上記表1および図6に示すように、アルミ
ニューム材料内に発生している引張応力および圧縮応力
値は、金属材料とほぼ同様の傾き変化を示し、非鉄金属
材料内に与えた磁力線は鉄鋼材料と疑似された特性を持
ち、応力に反応して鉄鋼材料と同様に作用することがわ
かる。その値は同じ応力値に対してほぼ1/2程度の感
度で計測できる。これは検出器18の感度を上げること
で鉄鋼材料の場合と同値に検出できる。As shown in Table 1 and FIG. 6 above, the tensile stress and compressive stress values generated in the aluminum material show almost the same gradient changes as those of the metallic material, and the lines of magnetic force applied in the non-ferrous metallic material. It can be seen that has a property that is simulated as a steel material, and acts in the same way as a steel material in response to stress. The value can be measured with a sensitivity of about ½ for the same stress value. This can be detected at the same value as in the case of steel material by increasing the sensitivity of the detector 18.
【発明の効果】本発明は、以上説明した結果、以下に記
載されるような効果をもたらす。As a result of the above explanation, the present invention brings about the following effects.
【0015】従来、磁力式応力計1を用いては測定する
ことができなかった非鉄金属材料中に発生している応力
および残留応力を測定することができるようになった。It has become possible to measure the stress and residual stress generated in a non-ferrous metal material, which could not be measured using the magnetic force type stress meter 1 in the past.
【0016】被計測物の表面にN極とS極の磁力を与え
るだけで測定できるので、被計測物を破壊せずにすみ、
しかも簡単に測定することができる。Since the measurement can be made only by applying the magnetic forces of the N pole and the S pole to the surface of the object to be measured, the object to be measured need not be destroyed,
Moreover, it can be easily measured.
【0017】[0017]
【図1】磁力式応力計の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a magnetic force type stress meter.
【図2】被計測物の表面に置かれた使用状態を示す正面
図である。FIG. 2 is a front view showing a usage state placed on the surface of the object to be measured.
【図3】磁力線の励磁状態を示す説明図である。FIG. 3 is an explanatory diagram showing an excited state of magnetic force lines.
【図4】磁石の設置状態の別の実施例を示す正面図であ
る。FIG. 4 is a front view showing another embodiment of a magnet installed state.
【図5】検出器を示す平面図である。FIG. 5 is a plan view showing a detector.
【図6】アルミニューム材内部に発生している応力値の
測定結果一例を示すグラフ。FIG. 6 is a graph showing an example of measurement results of stress values generated inside the aluminum material.
1 磁力式応力計 15 非鉄金属材料 16 磁石 17 磁力線 1 Magnetic force type stress meter 15 Non-ferrous metal material 16 Magnet 17 Magnetic field line
Claims (1)
応力が作用している方向(A−A矢視)およびその直角
方向(B−B矢視)のいずれか一方、または両方に、直
流式あるいは交流式に励磁させる手段と、この励磁した
磁力線(17)のN極、S極間に磁力式応力計1を非鉄
金属材料(15)の表面に接して配置させる手段とを組
み合わせることによって、非鉄金属材料(15)中に発
生している応力を測定するようにした非鉄金属材料の磁
力式応力測定方法。1. A non-ferrous metal material (15), in which one or both of a direction in which a stress is applied (as viewed in the direction of arrow AA) and a direction perpendicular thereto (as viewed in the direction of arrow BB), or both. , A combination of means for exciting the direct current or alternating current and means for disposing the magnetic force type stress meter 1 between the N pole and the S pole of the excited magnetic force line (17) in contact with the surface of the non-ferrous metal material (15) Thus, a magnetic force type stress measuring method for a non-ferrous metal material, wherein the stress generated in the non-ferrous metal material (15) is measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27551392A JP2514550B2 (en) | 1992-09-18 | 1992-09-18 | Magnetic force type stress measurement method for non-ferrous metal materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27551392A JP2514550B2 (en) | 1992-09-18 | 1992-09-18 | Magnetic force type stress measurement method for non-ferrous metal materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06102104A JPH06102104A (en) | 1994-04-15 |
JP2514550B2 true JP2514550B2 (en) | 1996-07-10 |
Family
ID=17556526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27551392A Expired - Lifetime JP2514550B2 (en) | 1992-09-18 | 1992-09-18 | Magnetic force type stress measurement method for non-ferrous metal materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2514550B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103968974B (en) * | 2014-05-15 | 2015-10-07 | 爱德森(厦门)电子有限公司 | A kind of band coating ferromagnetic metal workpiece non-demolition stress quantitative detecting method |
-
1992
- 1992-09-18 JP JP27551392A patent/JP2514550B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
近角聡信(外4名)編「磁性体ハンドブック」第2刷(昭53−7−20)朝倉書店P.45−48 |
Also Published As
Publication number | Publication date |
---|---|
JPH06102104A (en) | 1994-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61258161A (en) | Noncontacting magnetic stress and temperature detector | |
JPS6352345B2 (en) | ||
JP2514550B2 (en) | Magnetic force type stress measurement method for non-ferrous metal materials | |
Datta et al. | Saturation and engineering magnetostriction of an iron‐base amorphous alloy for power applications | |
US5122743A (en) | Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation | |
JPH04210B2 (en) | ||
JP2803917B2 (en) | Magnetic anisotropy detection method for steel sheet | |
JP4192333B2 (en) | Method for measuring transformation layer thickness of steel | |
JPH01163686A (en) | Magnetic sensor | |
JPS6222406B2 (en) | ||
Seavey Jr | Galvanomagnetic effects in ferromagnetic resonance | |
RU179750U1 (en) | Device for local monitoring of the content of ferromagnetic phases in austenitic steels | |
JPH0836038A (en) | Method for measuring magnetic permeability | |
SU885938A1 (en) | Magnetic field strength measuring method | |
JPS5633521A (en) | Device for measuring stress | |
JPH0414735B2 (en) | ||
SU699458A2 (en) | Device for testing specimens of magnetically-hard materials and permanent magnets | |
SU822088A1 (en) | Method of measuring magnetic field intensity in local specimen region | |
JPH02280007A (en) | Position sensor | |
SU896585A1 (en) | Method and device for determining perfection rate of crystallographic texture in certain portions of integral sheets of magnetic materials | |
Seely | Magnet measuring for the user | |
RU1826050C (en) | Method for control of ferromagnetic articles | |
SU900227A1 (en) | Device for measuring magnetic field strength | |
JPS62105069A (en) | Magnetic field detecting method | |
JPH02311776A (en) | Apparatus and method for measuring magnetic characteristics of steel material |