JPS6222406B2 - - Google Patents

Info

Publication number
JPS6222406B2
JPS6222406B2 JP16171681A JP16171681A JPS6222406B2 JP S6222406 B2 JPS6222406 B2 JP S6222406B2 JP 16171681 A JP16171681 A JP 16171681A JP 16171681 A JP16171681 A JP 16171681A JP S6222406 B2 JPS6222406 B2 JP S6222406B2
Authority
JP
Japan
Prior art keywords
magnetic flux
excitation
measured
magnetic
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16171681A
Other languages
Japanese (ja)
Other versions
JPS5861433A (en
Inventor
Kyoshi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16171681A priority Critical patent/JPS5861433A/en
Publication of JPS5861433A publication Critical patent/JPS5861433A/en
Publication of JPS6222406B2 publication Critical patent/JPS6222406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 本発明は、すでに荷重が加えられてしまつてい
る建造物や橋桁等の磁性体金属材料に発生してい
る応力、あるいは溶接やガス切換を行なつたがた
めに発生した磁性体金属材料内部の残留応力等の
ような、すでに金属材料自体に発生してしまつて
いる応力の絶対値を精度よく確実に測定するよう
にした応力測定法に関するものである。
[Detailed Description of the Invention] The present invention deals with stress occurring in magnetic metal materials such as buildings and bridge girders that have already been subjected to loads, or due to welding or gas switching. The present invention relates to a stress measurement method that accurately and reliably measures the absolute value of stress that has already occurred in the metal material itself, such as residual stress inside the magnetic metal material.

一般に、金属磁性体の透磁率はそれぞれの材
質、組成によつて固有の値を有し、また同じ材
質、組成の材料であつても、荷重を加えると引張
応力が発生している個所ではその応力の増大に比
例して高くなり、他方、圧縮応力が発生している
個所では逆に、その応力の増大に比例して低くな
る性質を有している。この性質を利用して応力が
作用している個所に磁力を与え、金属磁性体内を
通過する磁束の変化量を計測することによつて発
生した応力値を測定することが知られている。
In general, the magnetic permeability of magnetic metal materials has a unique value depending on the material and composition, and even if the materials are the same and have the same composition, the magnetic permeability will be lower in places where tensile stress is generated when a load is applied. It has the property that it increases in proportion to the increase in stress, and conversely decreases in proportion to the increase in stress in areas where compressive stress is generated. It is known to take advantage of this property to apply magnetic force to a location where stress is acting, and to measure the generated stress value by measuring the amount of change in the magnetic flux passing through the metal magnetic body.

この原理を応用した従来の測定法としては、例
えば特公昭39−2178号公報や特公昭51−44425号
公報があるが、前者は、磁性材料薄板または相互
に堆積した複数の薄板よりなる測定用本体鉄心に
二対の平行する貫通孔を開け、それぞれに巻線を
施して励磁用コイル及び測定用コイルとし、この
鉄心を被測定材料表面に近接させると、励磁され
た磁束は鉄心を通り被測定材料を流れる磁路を閉
合し、被測定材料上の負荷に従つて誘発されると
ころの鉄心内を流れる磁束の変化を該測定用コイ
ルで検出することによつて被測定材料中に発生し
た応力を測定せんとしたものであり、後者は、同
一馬蹄型鉄心に励磁用コイル及び測定用コイルを
巻いて該鉄心の磁極を被測定材料表面に当接する
と、励磁用コイルで付勢された励磁束は鉄心を経
て被測定材料内を通る磁路を閉合し、被測定材料
上の負荷に従つて誘発されるところの鉄心本体内
部を流れる磁束の変化を同一鉄心の一部に巻かれ
た測定用コイルで検出することによつて被測定材
料内部に発生している応力を測定せんとしたもの
である。
Conventional measurement methods applying this principle include, for example, Japanese Patent Publication No. 39-2178 and Japanese Patent Publication No. 51-44425. Two pairs of parallel through-holes are made in the core of the main body, and wires are wound in each to form an excitation coil and a measurement coil. When these cores are brought close to the surface of the material to be measured, the excited magnetic flux passes through the core and flows through the surface of the material being measured. The magnetic flux generated in the material to be measured is closed by closing the magnetic path flowing through the material to be measured, and detecting with the measuring coil the change in the magnetic flux flowing in the iron core, which is induced according to the load on the material to be measured. The purpose of this test was to measure stress, and in the latter case, when an excitation coil and a measurement coil are wound around the same horseshoe-shaped iron core, and the magnetic pole of the iron core is brought into contact with the surface of the material to be measured, the excitation coil is energized. The excitation flux closes the magnetic path passing through the core and inside the material to be measured, and changes in the magnetic flux flowing inside the core body, which is induced according to the load on the material to be measured, are reflected in the magnetic flux that is wound around a part of the same core. The purpose is to measure the stress generated inside the material to be measured by detecting it with a measuring coil.

しかしながら、上述したように、従来の応力測
定法はいずれも同一鉄心本体自体に励磁用コイル
と測定用コイルの両方を巻き、一方の励磁用コイ
ルで付勢した励磁束が、鉄心を経て被測定材料を
通る磁路を閉合したときの鉄心内部を通る磁束量
が負荷に従つて変化するその差を測定用コイルで
計測せんとする測定法であるが、残念ながらこの
ときの鉄心に流れる磁束の変化量の差は極めて小
さく、検出することが困難であるばかりか、被測
定材料表面に少しでも凹凸があつたりすると磁極
との間に空隙ができそれだけでノイズが発生し磁
束量が激しく変動するのでもはや測定することす
ら不可能という事態を招いていた。上記技術はこ
の欠点を解消せんとして改善をこころみてはいる
が、測定原理そのものは変わらないので問題点を
根本的に解消するには至らず、いまだに実用化さ
れていないのが現状である。
However, as mentioned above, in all conventional stress measurement methods, both an excitation coil and a measurement coil are wound around the same core body, and the excitation flux energized by one excitation coil passes through the core to the measurement target. This measurement method uses a measurement coil to measure the difference in the amount of magnetic flux passing through the core when the magnetic path passing through the material is closed depending on the load, but unfortunately, the amount of magnetic flux flowing through the core at this time is Not only is the difference in the amount of change extremely small and difficult to detect, but even the slightest unevenness on the surface of the material to be measured creates a gap between the material and the magnetic pole, which in itself generates noise and causes the amount of magnetic flux to fluctuate drastically. This resulted in a situation where it was no longer even possible to measure it. Efforts have been made to improve the above technology in order to eliminate this drawback, but since the measurement principle itself remains the same, the problem has not been fundamentally resolved, and the current situation is that it has not yet been put into practical use.

本発明は、従来の上記のような欠点を解決する
ことを目的としてなされたもので、従来のよう
に、変動の激しい鉄心本体内を流れる磁束量を直
接計測するという方法をとらず、本発明は、馬蹄
型状の励磁用磁石の磁極を被測定用材料表面に当
接させたときの励磁束量がほゞ励磁用磁石本体を
経て被測定材料中を流れる磁束量と、励磁用磁石
本体外及び被測定材料外の空間を流れる磁束量と
の和として求められ、かつ、それらの間には、互
いに反比例の関係にあり、さらには、上記外空間
を流れる磁束量はノイズ等によつて阻害影響され
ることがきわめて少なく、安定した値を示し、か
つ、材料に加えられた負荷によるその差も大きい
という本発明者の実験・研究の結果にもとづいて
なされ、上記空間を流れる磁束の変化量を計測す
ることによつて材料中に発生した応力の絶対値を
精度よく測定せんとしたところに特徴を有する。
The present invention was made with the aim of solving the above-mentioned drawbacks of the conventional technology. is the amount of excitation flux when the magnetic pole of the horseshoe-shaped excitation magnet comes into contact with the surface of the material to be measured, and the amount of magnetic flux flowing through the material to be measured via the excitation magnet body, and the amount of magnetic flux flowing through the material to be measured via the excitation magnet body. It is determined as the sum of the amount of magnetic flux flowing in the outside space and the space outside the material to be measured, and there is an inversely proportional relationship between them.Furthermore, the amount of magnetic flux flowing in the outside space is determined by noise, etc. Changes in the magnetic flux flowing through the space described above are based on the results of the inventor's experiments and research, which show that there is very little interference, that the value is stable, and that the difference is large depending on the load applied to the material. The feature is that the absolute value of the stress generated in the material can be accurately measured by measuring the amount.

以下、本発明の実施の態様を例示図にもとづい
て説明すると、第1図に示す第1実施例では、馬
蹄型状の永久磁石1の両端に構成した2個の磁極
2,3の間に、磁力線により作用する素子、例え
ば、ホール素子やSDME素子などからなる磁束検
知素子4を配設する。本実施例による磁束検知素
子4は、第1図に示すように、イ−ロ方向に一定
の直流電圧を与えておくと、この磁束検知素子4
を通過する磁束量の大きさに比例して、A−B方
向に電圧が発生する性質を有している。
Hereinafter, embodiments of the present invention will be described based on illustrative drawings. In the first embodiment shown in FIG. , a magnetic flux sensing element 4 made of an element that acts on lines of magnetic force, such as a Hall element or an SDME element, is provided. As shown in FIG.
It has the property of generating a voltage in the A-B direction in proportion to the amount of magnetic flux passing through it.

上記構成によれば、被測定材料5の表面に永久
磁石1の2個の磁極2,3を当接させる。被測定
材料5中を流れる磁束の変化量は発生した応力の
大きさに比例するから、例えば、被測定材料5に
引張応力が発生している場合、その個所では透磁
率が高く、磁束の通過量が増大しており、他方被
測定材料5外の空間、すなわち磁束検知素子4を
通過する磁束量は逆の相関関係により減少してB
−B方向に発生する電圧は減少する。磁性体から
なる被測定材料5の透磁率は、その材質、組成に
よつてそれぞれ固有の値を有するものであるか
ら、その被測定材料5と同じ材質および組成の材
料に作用している応力の大きさに対応する電圧値
をあらかじめ測定しておけば、逆に、上記の磁束
検知素子4に発生した電圧値にもとづいて応力値
を求めることができる。
According to the above configuration, the two magnetic poles 2 and 3 of the permanent magnet 1 are brought into contact with the surface of the material to be measured 5. Since the amount of change in the magnetic flux flowing through the material to be measured 5 is proportional to the magnitude of the stress generated, for example, if tensile stress is generated in the material to be measured 5, the magnetic permeability is high at that location, making it difficult for the magnetic flux to pass through. On the other hand, the amount of magnetic flux passing through the space outside the material to be measured 5, that is, the magnetic flux sensing element 4, decreases due to an inverse correlation.
The voltage generated in the -B direction decreases. The magnetic permeability of the material to be measured 5 made of a magnetic substance has a unique value depending on its material and composition. Conversely, if the voltage value corresponding to the magnitude is measured in advance, the stress value can be determined based on the voltage value generated in the magnetic flux sensing element 4 described above.

また、本発明は、第2実施例として第2図に示
すように、励磁用磁石1として、残留磁気がほと
んど残らない材料でできた馬蹄型状の鉄心に入力
コイル6を巻いて構成し、この入力コイル6に適
当な周波数の一定強度の交番電圧を与える発振機
(図示せず)を接続した構成でも実施できる。第
1実施例と同様に磁束検知素子4に発生した電圧
値を測定すれば、被測定材料5内に発生した応力
値を測定することができる。
Further, as shown in FIG. 2 as a second embodiment of the present invention, the excitation magnet 1 is constructed by winding an input coil 6 around a horseshoe-shaped iron core made of a material with almost no residual magnetism. It can also be implemented in a configuration in which an oscillator (not shown) is connected to the input coil 6 to provide an alternating voltage of a constant intensity at an appropriate frequency. As in the first embodiment, by measuring the voltage value generated in the magnetic flux sensing element 4, the stress value generated in the material to be measured 5 can be measured.

さらにまた、本発明は、第3実施例として、第
3図に示すように、第2実施例の巻線をほどこし
た鉄心からなる励磁用磁石1を用い、他方、磁束
検知素子4として、残留磁気がほとんど残らない
材質でできた、好ましくは、リング形状の鉄心に
出力コイル7を巻き、この出力コイル7に検出機
(図示せず)を接続した構成でも実施できる。励
磁用磁石1と磁束検知素子4との配設状態は前記
第1、2実施例といずれも同様である。
Furthermore, as a third embodiment of the present invention, as shown in FIG. It is also possible to implement a configuration in which the output coil 7 is wound around a preferably ring-shaped iron core made of a material that hardly retains magnetism, and a detector (not shown) is connected to the output coil 7. The arrangement of the excitation magnet 1 and the magnetic flux sensing element 4 is the same as in the first and second embodiments.

以上要するに、本発明は、励磁用馬蹄型磁石1
の両端に構成した励磁用磁極2,3を被測定材料
5表面に当接し、これによつて励磁された磁束量
のうち、被測定材料5外でかつ、該励磁用馬蹄型
磁石1本体外の両励磁用磁極2,3間空間を流れ
る磁束量を計測するようにした磁束検知素子4を
該励磁用磁極2,3間に配設し、上記空間を流れ
る磁束の変化量にもとづいて被測定材料5内部に
発生している応力を測定することを特徴とする。
In summary, the present invention provides an excitation horseshoe-shaped magnet 1
The excitation magnetic poles 2 and 3 configured at both ends of the excitation magnet 1 are brought into contact with the surface of the material to be measured 5, and of the magnetic flux excited by this, the amount of magnetic flux that is outside the material to be measured 5 and outside the body of the excitation horseshoe magnet 1 is A magnetic flux sensing element 4 is arranged between the excitation magnetic poles 2 and 3 to measure the amount of magnetic flux flowing in the space between the excitation magnetic poles 2 and 3, and the magnetic flux detection element 4 measures the amount of magnetic flux flowing in the space between the excitation magnetic poles 2 and 3. It is characterized by measuring the stress generated inside the measurement material 5.

従つて、本発明の測定法によれば、その磁束の
変化の差が大きいから、読み取り容易で精度の高
い計測が可能となる。
Therefore, according to the measuring method of the present invention, since the difference in the change in magnetic flux is large, easy-to-read and highly accurate measurement is possible.

また、ノイズ等の外部要因によつて阻害影響さ
れることがないから安定した計測ができる。
In addition, stable measurement can be performed because it is not inhibited by external factors such as noise.

さらにまた、簡単な構成であるから設備コスト
も安価にすむ等、産業上有用な応力測定法である
といえる。
Furthermore, it can be said that it is an industrially useful stress measuring method because it has a simple configuration and the equipment cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施の態様を例示するもので、第
1図はその第1実施例を示す斜視図、第2図は第
2実施例を示す正面図、第3図は第3実施例を示
す正面図である。 1……励磁用馬蹄型磁石、2,3……励磁用磁
極、4……磁束検知素子、5……被測定材料。
The drawings illustrate embodiments of the present invention; FIG. 1 is a perspective view showing the first embodiment, FIG. 2 is a front view showing the second embodiment, and FIG. 3 is a front view showing the third embodiment. FIG. 1... Horseshoe magnet for excitation, 2, 3... Magnetic pole for excitation, 4... Magnetic flux detection element, 5... Material to be measured.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁用馬蹄型磁石1の両端に構成した励磁用
磁極2,3を被測定材料5表面に当接し、これに
よつて励磁された磁束量のうち、被測定材料5外
で、かつ、該励磁用馬蹄型磁石1本体外の両励磁
用磁極2,3間空間を流れる磁束量を計測するよ
うにした磁束検知素子4を該励磁用磁極2,3間
に配設し、上記空間を流れる磁束の変化量にもと
づいて被測定材料5内部に発生している応力を測
定することを特徴とする透磁率式応力測定法。
1 The excitation magnetic poles 2 and 3 configured at both ends of the excitation horseshoe magnet 1 are brought into contact with the surface of the material to be measured 5, and of the magnetic flux excited thereby, the amount of magnetic flux that is outside the material to be measured 5 and is A magnetic flux sensing element 4 is disposed between the excitation magnetic poles 2 and 3 to measure the amount of magnetic flux flowing in the space between the excitation magnetic poles 2 and 3 outside the excitation horseshoe-shaped magnet 1 body, and the magnetic flux flowing in the space is arranged between the excitation magnetic poles 2 and 3. A magnetic permeability stress measurement method characterized by measuring the stress generated inside the material to be measured 5 based on the amount of change in magnetic flux.
JP16171681A 1981-10-08 1981-10-08 Magnetic permeability type stress measuring method Granted JPS5861433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16171681A JPS5861433A (en) 1981-10-08 1981-10-08 Magnetic permeability type stress measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16171681A JPS5861433A (en) 1981-10-08 1981-10-08 Magnetic permeability type stress measuring method

Publications (2)

Publication Number Publication Date
JPS5861433A JPS5861433A (en) 1983-04-12
JPS6222406B2 true JPS6222406B2 (en) 1987-05-18

Family

ID=15740515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16171681A Granted JPS5861433A (en) 1981-10-08 1981-10-08 Magnetic permeability type stress measuring method

Country Status (1)

Country Link
JP (1) JPS5861433A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731088B2 (en) * 1987-04-30 1995-04-10 富士通株式会社 Pressure sensor
JP5003351B2 (en) * 2007-08-23 2012-08-15 Jfeスチール株式会社 Quality inspection method and apparatus for minute surface defects in magnetic metal strip
CN104198094A (en) * 2014-08-29 2014-12-10 中国矿业大学 Four-probe iron-based metal-glass magnetic-survey stressed magnetic-core sensor

Also Published As

Publication number Publication date
JPS5861433A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
JPS6122289Y2 (en)
SU973040A3 (en) Method and apparatus for measuring parameters of mechanical load on ferromagnetic body
PL130932B1 (en) Apparatus for non-destructive testing of elongated ferromagnetic articles
JP2841153B2 (en) Weak magnetism measurement method and device, and nondestructive inspection method using the same
JPS6352345B2 (en)
JP6352321B2 (en) Non-contact stress measuring method and measuring apparatus by composite resonance method
JPS6222406B2 (en)
GB913780A (en) Method of obtaining an electrical signal proportional to the cross-sectional area of a magnetic tube or rod
JPH10332745A (en) Electric current sensor
JPH11281678A (en) Current sensor
JP2606043Y2 (en) Eddy current flaw detector
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JPH0474677B2 (en)
JPH0424670B2 (en)
JP2617570B2 (en) Magnetic measuring device
Yoshida et al. Precise current sensor by means of small-angle magnetization rotation using amorphous wire and its industrial application
RU2810894C1 (en) Magnetoelastic sensor for determining mechanical stress in ferromagnetic materials
JP2514550B2 (en) Magnetic force type stress measurement method for non-ferrous metal materials
JPH1068744A (en) Direct current sensor
JP2000055940A (en) Dc current sensor
SU885938A1 (en) Magnetic field strength measuring method
JPH09257598A (en) Stress measuring method utilizing magnetic distortion effect and device thereof
JPH0836038A (en) Method for measuring magnetic permeability
SU1002994A1 (en) Open-shaped specimen magnetic parameters measuring device
JP2663767B2 (en) Transformation rate measuring method and apparatus