JPS60243255A - Manufacture of al-cu-mg alloy material - Google Patents

Manufacture of al-cu-mg alloy material

Info

Publication number
JPS60243255A
JPS60243255A JP9823884A JP9823884A JPS60243255A JP S60243255 A JPS60243255 A JP S60243255A JP 9823884 A JP9823884 A JP 9823884A JP 9823884 A JP9823884 A JP 9823884A JP S60243255 A JPS60243255 A JP S60243255A
Authority
JP
Japan
Prior art keywords
average
rate
cooling
heated
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9823884A
Other languages
Japanese (ja)
Other versions
JPH0623423B2 (en
Inventor
Toshiki Muramatsu
俊樹 村松
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUKAI ALUM KK
Sky Aluminium Co Ltd
Original Assignee
SUKAI ALUM KK
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUKAI ALUM KK, Sky Aluminium Co Ltd filed Critical SUKAI ALUM KK
Priority to JP59098238A priority Critical patent/JPH0623423B2/en
Publication of JPS60243255A publication Critical patent/JPS60243255A/en
Publication of JPH0623423B2 publication Critical patent/JPH0623423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture an Al-Cu-Mg alloy soft material superior in formability by working plastically an Al-Cu-Mg alloy ingot to a material of a prescribed size, heating rapidly said material under a specified condition to soften it then cooling. CONSTITUTION:The ingot contg. by weight, about 1.0-6.0% Cu, about 0.1-2.0% Mg, if necessary 1 or >=2 kinds among about 0.01-1.2% Mn, about 0.01-1.2% Si, about 0.05-0.3% Cr, about 0.005-0.15% TiO, about 0.005-0.20% Zr and the balance Al with inevitable impurities is worked plastically according to usual method. Next, said worked material is heated rapidly to 325-430 deg.C temp. by rising rate faster than the average 11 deg.C/min and softened, then cooled by average <=30 deg.C/hr rate. If necessary, furthermore, heated to 250-430 deg.C, held for <=24hr, and cooled by average <=30 deg.C/hr cooling rate.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は、アルミニウム合金展伸材の製造方法に関する
もので、更I;詳しくは、 A1.−Cu−Mg系合金
軟質材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a wrought aluminum alloy material, and more specifically, A1. The present invention relates to a method for manufacturing a Cu-Mg alloy soft material.

(従来の技術) 一般に高力アルミニウム合金は成形加工性が劣るため軟
質材の状態で加工を施し、その後、溶体化、焼入れ処理
を行なう。本願発明の対象であるAl−Cu−Mg系合
金、たとえばJTS^202’l、2017,2014
なども、その例にもれない。
(Prior Art) In general, high-strength aluminum alloys have poor formability, so they are processed in a soft state, and then subjected to solution treatment and quenching. Al-Cu-Mg alloys that are the subject of the present invention, such as JTS^202'l, 2017, 2014
This is no exception.

この軟質材の製造法として従来からバッチ炉による焼鈍
が行なわれてきたが、この場合加熱速度が遅い(50℃
/Hr未満)ために軟質材の結晶粒は粗大化し、成形性
は低下する。さらに、焼入処理後焼入処理による歪を矯
正するために若千の加工を行なう際にも、結晶粒が大き
いと肌荒れや微小な割れが発生する。特に軟質材で加工
率10〜30%の低加工を受けた部分は、その後の溶体
化・焼入れ工程で著しく粗大な再結晶粒組織となりこの
歪矯正の際に肌荒れ、微小割れがおこり製品の外観品質
上大きな問題となる。
Conventionally, this soft material has been manufactured by annealing in a batch furnace, but in this case the heating rate is slow (50°C
/Hr), the crystal grains of the soft material become coarse and formability deteriorates. Furthermore, even when rough processing is performed after quenching to correct distortion caused by quenching, if the crystal grains are large, surface roughness and minute cracks will occur. In particular, in areas of soft materials that have been subjected to low processing at a processing rate of 10 to 30%, the recrystallized grain structure becomes extremely coarse during the subsequent solution treatment and quenching process, and roughness and microcracks occur during strain correction, resulting in the appearance of the product. This is a big problem in terms of quality.

(発明が解決しようとする問題点) 1 ・本発明は上
記したようなAl−Cu−Mg系合金の軟質材の成形性
、及び溶体化処理時の結晶粒粗大化等について、軟質材
の製造法の点から解決を図らんとするものである。
(Problems to be Solved by the Invention) 1 - The present invention aims to improve the formability of soft materials of Al-Cu-Mg alloys and the coarsening of crystal grains during solution treatment, etc. in the production of soft materials. This is an attempt to resolve the issue from a legal standpoint.

すなわち、軟質材の状態で結晶粒が微細であり、かつ伸
び、エリクセン値等で表わされる成形性が良好でさらに
この状態でどんな加工率の冷間加工を受けてもその後の
溶体化処理によって再結晶粒が粗大にならない^1−C
u−Mg系合金材の製造法を提供するものである。
In other words, the crystal grains are fine in the soft material state, and the formability expressed by elongation and Erichsen values is good, and furthermore, no matter what rate of cold working is applied in this state, it will not be regenerated by subsequent solution treatment. Crystal grains do not become coarse ^1-C
The present invention provides a method for manufacturing a u-Mg alloy material.

発明の構成 (問題点を解決するための手段) 本発明におけるA 1− Cu −Mg系合金軟質材の
製造法i、軟質への調質に、バッチ炉でなく、いわゆる
連続焼鈍炉を用いることを念頭においたもので、1.6
塊を常法に従って塑性加工し所定の寸、法とした材料を
、325〜430℃の温度に平均ti”c/sin (
分の意味以下同じ)よりはやい昇温速度で急速に加熱し
軟化させ、その後平均30℃/Hr(時間の意味、以下
同じ)未満の冷却速度で冷却することを特徴とする成形
性の優れたAl−Cu−軸系合金軟質材の製造方法。
Structure of the Invention (Means for Solving the Problems) A manufacturing method of A1-Cu-Mg based alloy soft material in the present invention i, using a so-called continuous annealing furnace instead of a batch furnace for refining to make it soft. With this in mind, 1.6
The material was plastically worked into a predetermined size and shape according to a conventional method, and then heated to a temperature of 325 to 430°C with an average of ti"c/sin (
Excellent formability, characterized by rapid heating and softening at a temperature increase rate faster than 30°C/Hr (hours, same below), followed by cooling at an average cooling rate of less than 30°C/Hr (hours, same below). A method for producing an Al-Cu-axial alloy soft material.

2、鋳塊を常法に従って塑性加工し所定の寸法とした材
料を、325〜430℃の温度に平均11℃/minよ
りはやい昇温速度で急速に加熱し一軟化させ、その後平
均30℃/Hr以上の冷却速度で冷却し、さらに250
〜430℃に加熱し24時間以内保持し平均30℃/H
r未満の冷却速度で冷却することを特徴とする成形性の
優れたAl−Cu−Mg系合金軟質材の製造方法。
2. The ingot was plastically worked to a predetermined size according to a conventional method, and the material was rapidly heated to a temperature of 325 to 430°C at a heating rate faster than an average of 11°C/min to soften it, and then heated to an average of 30°C/min. Cool at a cooling rate of 250 Hr or more, and
Heated to ~430℃ and held within 24 hours, average 30℃/H
A method for producing an Al-Cu-Mg alloy soft material with excellent formability, characterized by cooling at a cooling rate of less than r.

である。It is.

(作用) 以下本願発明の構成についてその作用とともに詳述する
(Function) The structure of the present invention will be explained in detail below along with its function.

対象となる合金は、硬化要素としてθ相(CuA j2
)、S相(CuMgAl2)を含むAl−Cu−Mg系
合金であり。
The target alloy has θ phase (CuA j2
), an Al-Cu-Mg alloy containing an S phase (CuMgAl2).

前述のJIS^2024,2017,201イなどが含
まれるがこれらに限定されるものではない。
The above-mentioned JIS^2024, 2017, 201i, etc. are included, but are not limited to these.

組成範囲を具体的に示せば、必須成分として。If the composition range is specifically shown, it is an essential component.

Cu1.’0〜6.0%(重量%、以下同じ) 、 M
g(1,1〜2.0%、必要に応じてさらにMnO,Q
l〜L、2%、Si0 、01〜1.2%、 CrO,
005〜0.3%、 TiO,005〜0.15%、 
ZrO,005〜0.20%のうち1種または2種以上
を含有 −し、残部不可避的不純物とA1とよりなる合
金である。
Cu1. '0 to 6.0% (weight%, same below), M
g (1.1-2.0%, further MnO, Q as necessary)
l~L, 2%, Si0, 01~1.2%, CrO,
005~0.3%, TiO, 005~0.15%,
It is an alloy containing one or more of ZrO, 0.005% to 0.20%, and the remainder consisting of unavoidable impurities and A1.

これらの合金成分の添加理由を説明する。The reason for adding these alloy components will be explained.

Cu : Cuは強度を付与する元素であり、含有量が
Cu: Cu is an element that gives strength, and the content is.

1.0%未満セはT4.T6処理後の強度が低下し、ま
た6、0%をこえて含有されると晶出物が増加しT4.
T6処理後の靭性や伸びが低下する。よってCu含有量
は1.0〜6.0%とする。
Less than 1.0% is T4. The strength after T6 treatment decreases, and if the content exceeds 6.0%, crystallized substances increase and T4.
Toughness and elongation decrease after T6 treatment. Therefore, the Cu content is set to 1.0 to 6.0%.

Mg:、Mgは強度を付与する元素であり、含有量が、
0.1%未満ではT4.T6処理後の強度が低下し、ま
た2、0%をこえて含有されるとT4.T6処理後の靭
性や伸びが低下する。よってMg含有量は0.1〜2.
0%とする。
Mg: Mg is an element that imparts strength, and the content is
T4. below 0.1%. The strength after T6 treatment decreases, and if the content exceeds 2.0%, T4. Toughness and elongation decrease after T6 treatment. Therefore, the Mg content is 0.1 to 2.
Set to 0%.

以下は、必要に応じて含有する成分である。The following are the components to be included as necessary.

Mn : Mnは組織を安定化する元素であり、かつ強
度を付惨する元素でもある。含有量が0.013未満で
はこの効果がなく、また1、2%をこえて含有されると
効果が飽和し、かつ巨大晶出物を生じる。よってKn含
有量は0.01〜1.2%とする。
Mn: Mn is an element that stabilizes the structure and is also an element that impairs strength. If the content is less than 0.013, this effect is absent, and if the content exceeds 1 or 2%, the effect is saturated and giant crystallized substances are produced. Therefore, the Kn content is set to 0.01 to 1.2%.

Si : Siは強度を付惨する元素であり、含有量が
、0.01%未満ではこの効果がなく、1.2%をこえ
て含有されると、T4・T6処理後の靭性が低下する。
Si: Si is an element that impairs strength, and if the content is less than 0.01%, this effect is absent, and if the content exceeds 1.2%, the toughness after T4/T6 treatment will decrease. .

よってSi含有量は、0,01〜1.2%とする。Therefore, the Si content is set to 0.01 to 1.2%.

ただし、それほどの強度を必要としない場合や他の元素
の含有で強度レベルを維持できる場合には、Siの含有
は必須ではなく、この場合不可避的不純物として扱う。
However, when such strength is not required or when the strength level can be maintained by containing other elements, the inclusion of Si is not essential, and in this case it is treated as an unavoidable impurity.

Cr : Crは組織を安定化する元素であり、かつ強
度を付与する元素である。含有量がo、oos%未満で
はこの効果がなく、また0、3%をこえて含有されると
巨大晶出物を生じる。よってCr含有量は、0.005
〜0.3%とする。
Cr: Cr is an element that stabilizes the structure and provides strength. If the content is less than 0.00%, this effect will not be achieved, and if the content exceeds 0.3%, giant crystallized substances will be produced. Therefore, the Cr content is 0.005
~0.3%.

Ti : Tiは鋳塊組織を微細化する元素であり、含
有量がo、oos%未満ではこの効果がなく、0.15
%をこえて含有されると巨大晶出物を生じる。よってT
i含有量は、0.005〜0.15%とする。
Ti: Ti is an element that refines the ingot structure, and if the content is less than o, oos%, this effect will not occur, and if the content is less than 0.15
If the content exceeds %, giant crystallized substances will be produced. Therefore, T
The i content is 0.005 to 0.15%.

Zr : Zrは鋳塊組織を微細化し組織を安定化する
元素であり、含有量が0.005%未満ではこの効果が
なく、0.20%をこえて含有されると巨大晶出物を生
じる。よってZr含有量は、 0.005〜0.20%
とする。
Zr: Zr is an element that refines the structure of the ingot and stabilizes it. If the content is less than 0.005%, this effect is absent, and if the content exceeds 0.20%, giant crystallized substances are formed. . Therefore, the Zr content is 0.005-0.20%
shall be.

尚、不可癖的不純物としてのFe、 Siは0.5%ま
で許容される。
Note that Fe and Si as non-habitatable impurities are allowed up to 0.5%.

次に、上記組成を有する合金鋳塊を常法に従って塑性加
工し所定の寸法とする。
Next, the alloy ingot having the above composition is plastically worked to a predetermined size according to a conventional method.

すなわち、鋳塊に熱間加工を施し、あるいはその後さら
に冷間加工を施すことにより所定の寸法にするわけであ
るが、熱間加工のために鋳塊を加熱し、あるいはその前
にさらに均熱処理をすることが多い。この均熱処理は、
”+ Mge Slの固溶及びKn、 Cr、 Zr、
 Tiの析出を目的とするもので、塊鋳を400〜52
0℃で2〜48時間熱処理する。40(Ic未満の温度
では効果が充分でなく、520℃をこえると局部溶解が
発生する。また、加熱も400℃未満では熱間加工性が
低下し、520℃をこえると局部溶解が発生するので4
00〜520℃で熱処理する。
In other words, the ingot is hot-worked and then further cold-worked to achieve the specified dimensions. I often do this. This soaking treatment is
”+ Solid solution of Mge Sl and Kn, Cr, Zr,
The purpose is to precipitate Ti, and the ingot casting is 400 to 52
Heat treatment at 0°C for 2-48 hours. If the temperature is less than 40 (Ic), the effect is not sufficient, and if it exceeds 520°C, local melting will occur.In addition, if heating is less than 400°C, hot workability will decrease, and if it exceeds 520°C, local melting will occur. So 4
Heat treatment at 00-520°C.

また、冷間加工を施す場合、冷間加工前又は冷間加工の
途中で、350〜500℃で中間焼純しても本願発明の
効果は変わらない。
Moreover, when performing cold working, the effect of the present invention does not change even if intermediate sintering is performed at 350 to 500° C. before or during cold working.

このように所定寸法に塑性加工された材料を、325〜
430℃の温度に平均11T:/■inよりはやい昇温
速度で急速に加熱し軟化させる。
The material that has been plastically worked to a predetermined size in this way is
The material is rapidly heated to a temperature of 430° C. at an average heating rate of 11 T:/in to soften it.

加熱温度は、325℃未満では急速加熱時に再結晶が終
了せず加工組織が残るため成形性が低下する。430℃
をこえた温度では、’gw Cuy’Slの固溶量が多
くなり、その後の冷却により不均一な析出がおこるため
、軟質材での成形性が低化し、さらに加工を受けた部分
で次の工程の溶体化処理時に結晶粒が粗大化してしまう
If the heating temperature is lower than 325°C, recrystallization will not be completed during rapid heating and a processed structure will remain, resulting in poor formability. 430℃
At temperatures exceeding 100 gw, the amount of solid solution of 'gw Cuy'Sl increases, and subsequent cooling causes non-uniform precipitation, resulting in poor formability in soft materials and furthermore, in the processed part, the following Crystal grains become coarse during the solution treatment process.

また昇温速度が、平均11℃/winより小さい場合に
は、結晶粒が粗大化して、軟質材での成形性が低下して
しまう。
Further, if the temperature increase rate is lower than an average of 11° C./win, the crystal grains become coarse and the moldability of soft materials deteriorates.

次に1本願第1発明では平均30℃/Hr未満の冷却速
度で冷却する。冷却速度が平均30℃/llr未満の場
合には、完全な軟質材(0材)が得られるので素材の成
形性は良好であるが、冷却速度がこれより大きくなると
、焼きが入り時効硬化するため成形性は低下する。なお
、実際には250℃未満では時効硬化がおこらないから
、冷却速度の管理はこの温度まででよい。
Next, in the first invention of the present application, cooling is performed at an average cooling rate of less than 30° C./Hr. If the cooling rate is less than 30°C/llr on average, a completely soft material (0 material) is obtained, so the material has good formability, but if the cooling rate is higher than this, quenching occurs and age hardening occurs. Therefore, the moldability decreases. Note that since age hardening does not actually occur below 250°C, the cooling rate can be controlled up to this temperature.

昇温速度を前記理由から平均11”C/sinよりはや
くしなくてはならないので、連続焼鈍炉を用いる場合が
多いが、冷却速度を平均30℃/Hr未満にとるという
ことは通常の連続焼゛鈍炉で効率的な生産を行なう場合
不可能に近い。このように冷却速度が平均30℃/)l
r以上になってしまう場合には、本願第2発明の方法を
とれば良い。
Because the heating rate must be faster than an average of 11"C/sin for the reasons mentioned above, a continuous annealing furnace is often used.゛It is almost impossible to perform efficient production in a blunt furnace.In this way, the cooling rate is 30℃/)l on average.
If it becomes more than r, the method of the second invention of the present application may be used.

すなわち、軟化機平均30℃/Hr以上の冷却速度で冷
却し、さらに250〜430℃に再加熱し24時間以内
保持して平均30℃/Hr未満の冷却速度で冷却する。
That is, the softener is cooled at an average cooling rate of 30° C./Hr or more, then reheated to 250 to 430° C., held for less than 24 hours, and cooled at an average cooling rate of less than 30° C./Hr.

この再加熱の場合には昇温速度を管理する必要がないか
らパッチ炉が使え、そのため、冷却速度を平均30℃/
)Ir未満とすることができる。
In this case of reheating, a patch furnace can be used because there is no need to control the temperature increase rate, and therefore the cooling rate can be adjusted to an average of 30°C/30°C.
) Ir.

このように第1段の軟化後の冷却速度がはやい場合でも
、再加熱しその後の冷却速度を遅くすることにより、結
果として成形性の良好なAl−Cu−Mg系合金軟質材
を得ることができる。
Even if the cooling rate after the first stage of softening is fast, it is possible to obtain an Al-Cu-Mg alloy soft material with good formability by reheating and slowing down the subsequent cooling rate. can.

なおこの再加熱の温度は、1段目の急速加熱温度より低
い方が、成形性にとってより好ましい。
Note that it is more preferable for the reheating temperature to be lower than the first stage rapid heating temperature for moldability.

(実施例) 第1表に示すA、B、Cの3種類の合金を半連続鋳造し
、その鋳塊に、490℃X 10Hrの均熱処理を施し
た後、460℃X 3Hrの加熱を施し、熱間圧延を施
し板厚4III11にし、バッチ炉で370℃X 3H
rの中間焼鈍を施し、冷間圧延Cて板厚0.8m+の板
材とした。
(Example) Three types of alloys A, B, and C shown in Table 1 were semi-continuously cast, and the ingots were soaked at 490°C for 10 hours and then heated at 460°C for 3 hours. , hot rolled to a plate thickness of 4III11 and heated in a batch furnace at 370°C for 3 hours.
The material was subjected to intermediate annealing of R and cold rolled to a plate material with a thickness of 0.8 m+.

この材料に対し、本願発明の範囲に入る熱処理又はそれ
以外の熱処理を施し、軟質材にして機械的性質(引張強
さσB、酎力耐0.2、伸びδ、エリクセン値、肌荒れ
の有無)を測定した。また、この軟質材に15%冷間圧
延を施した後、温度の上昇した炉に投入することにより
溶体化処理しくへ合金、B合金で、493℃X 40m
1n 、 C合金で503℃×40ain )水焼入れ
直後180°曲げによる肌荒れの程度を観察した。
This material is subjected to heat treatment within the scope of the present invention or other heat treatment to make it into a soft material with mechanical properties (tensile strength σB, strength resistance 0.2, elongation δ, Erichsen value, presence or absence of rough skin) was measured. In addition, after cold rolling this soft material by 15%, it is subjected to solution treatment by placing it in a heated furnace.
Immediately after water quenching (503° C. x 40 ain) of the 1n, C alloy, the degree of surface roughness due to 180° bending was observed.

これらの熱処理条件、軟質材の機械的性質、軟質材に冷
間加工し溶体化・水焼入れ後の曲げ性を第2表、第3表
、第4表に示す。
Tables 2, 3, and 4 show these heat treatment conditions, mechanical properties of the soft materials, and bendability after cold working, solution heat treatment, and water quenching.

なお、表中、第1段熱処理とは本願第1発明と第2発明
に共通な急速加熱・軟化とその後の゛冷却をさし、第2
段熱処理とは本願第2発明の第1段熱処理後の再加熱と
冷却をさす。
In the table, the first stage heat treatment refers to the rapid heating and softening and subsequent cooling common to the first and second inventions of the present application, and
The stage heat treatment refers to reheating and cooling after the first stage heat treatment of the second invention of the present application.

(発明の効果) 第2表、第3表、第4表から明らかなように、本願発明
の製造法をとった材料は、軟質材の伸び・エリクセン値
が向上し、結晶粒は細かく成形加工時に肌荒れをおこさ
ず、さらに低加工後溶体化処理しても結晶粒の粗大化が
おこらないため、焼入れ後の歪矯正の際、製品外観が良
好である等多くの利点を有する。
(Effects of the Invention) As is clear from Tables 2, 3, and 4, the material manufactured using the manufacturing method of the present invention has improved elongation and Erichsen value of soft materials, and has fine crystal grains that can be molded. Since it does not cause surface roughening and does not cause coarsening of crystal grains even when subjected to low-temperature post-processing solution treatment, it has many advantages such as a good product appearance during distortion correction after quenching.

Claims (1)

【特許請求の範囲】 1、鋳塊を常法に従って塑性加工し所定の寸法とした材
料を、325〜430℃の温度に平均11℃/wIin
 (分の意味以下同じ)よりはやい昇温速度で急速に加
熱し軟化させ、その後平均30℃/Hr(時間の意味、
以下同じ)未満の冷却速度で冷却することを特徴とする
成形性の優れた^1−Cu−Mg系合金軟質材の製造方
法。 2、鋳塊を常法に従って塑性加工し所定の寸法とした材
料を、325〜430℃の温度に平均11℃/minよ
りはやい昇温速度で急速に加熱し軟化させ、その後平均
30℃/’Hr以上の冷却速度で冷却し、さらに250
〜430℃に加熱し24時間以内保持し平均30℃/H
r未満の冷却速度で冷却することを特徴とする成形性の
優れたAl−、Cu−Mg系合金軟質材の製造方法。
[Claims] 1. A material that has been plastically worked into a predetermined size from an ingot according to a conventional method is heated to a temperature of 325 to 430°C at an average rate of 11°C/wIin.
(same meaning below), rapidly heated and softened at a faster heating rate, then averaged 30℃/Hr (meaning time,
A method for producing a ^1-Cu-Mg based alloy soft material with excellent formability, characterized by cooling at a cooling rate of less than (the same applies hereinafter). 2. The ingot was plastically worked to a predetermined size according to a conventional method, and the material was rapidly heated to a temperature of 325 to 430°C at a heating rate faster than an average of 11°C/min to soften it, and then softened by an average of 30°C/min. Cool at a cooling rate of 250 Hr or more, and
Heated to ~430℃ and held within 24 hours, average 30℃/H
A method for producing an Al-, Cu-Mg based alloy soft material with excellent formability, characterized by cooling at a cooling rate of less than r.
JP59098238A 1984-05-16 1984-05-16 Method for manufacturing Al-Cu-Mg alloy soft material Expired - Lifetime JPH0623423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098238A JPH0623423B2 (en) 1984-05-16 1984-05-16 Method for manufacturing Al-Cu-Mg alloy soft material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098238A JPH0623423B2 (en) 1984-05-16 1984-05-16 Method for manufacturing Al-Cu-Mg alloy soft material

Publications (2)

Publication Number Publication Date
JPS60243255A true JPS60243255A (en) 1985-12-03
JPH0623423B2 JPH0623423B2 (en) 1994-03-30

Family

ID=14214377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098238A Expired - Lifetime JPH0623423B2 (en) 1984-05-16 1984-05-16 Method for manufacturing Al-Cu-Mg alloy soft material

Country Status (1)

Country Link
JP (1) JPH0623423B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578997A (en) * 2021-08-03 2021-11-02 南京超明精密合金材料有限公司 Processing technology of super free-cutting precision alloy rod and wire
CN114959388A (en) * 2022-04-18 2022-08-30 聊城市金之桥进出口有限公司 Al-Cu-Mg-Ag type motor rotor aluminum alloy and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161045A (en) * 1981-03-31 1982-10-04 Sumitomo Light Metal Ind Ltd Fine-grain high-strength aluminum alloy material and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161045A (en) * 1981-03-31 1982-10-04 Sumitomo Light Metal Ind Ltd Fine-grain high-strength aluminum alloy material and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578997A (en) * 2021-08-03 2021-11-02 南京超明精密合金材料有限公司 Processing technology of super free-cutting precision alloy rod and wire
CN113578997B (en) * 2021-08-03 2024-02-02 南京超明精密合金材料有限公司 Processing technology of super-easy-cutting precision alloy rod wire
CN114959388A (en) * 2022-04-18 2022-08-30 聊城市金之桥进出口有限公司 Al-Cu-Mg-Ag type motor rotor aluminum alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0623423B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
US4838958A (en) Aluminum-alloy rolled sheet and production method therefor
JPH0617208A (en) Manufacture of aluminum alloy for forming excellent in shape freezability and coating/baking hardenability
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPS6289852A (en) Manufacture of aluminum alloy plate having superior burning hardenability
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPS60243255A (en) Manufacture of al-cu-mg alloy material
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPH05112839A (en) Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JPH0480979B2 (en)
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPS62202061A (en) Manufacture of aluminum alloy material having fine grain
JPS6320437A (en) Aluminum alloy sheet having superior press workability and its manufacture
JPH0122346B2 (en)