JPS60243234A - Method for controlling sintering of sintered ore - Google Patents

Method for controlling sintering of sintered ore

Info

Publication number
JPS60243234A
JPS60243234A JP9849084A JP9849084A JPS60243234A JP S60243234 A JPS60243234 A JP S60243234A JP 9849084 A JP9849084 A JP 9849084A JP 9849084 A JP9849084 A JP 9849084A JP S60243234 A JPS60243234 A JP S60243234A
Authority
JP
Japan
Prior art keywords
raw material
sintered ore
layer
sintering
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9849084A
Other languages
Japanese (ja)
Inventor
Hideomi Yanaka
谷中 秀臣
Hirohisa Hotta
堀田 裕久
Masanori Nagano
長野 誠規
Hidetoshi Noda
野田 英俊
Kazuhiro Furukawa
古川 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9849084A priority Critical patent/JPS60243234A/en
Publication of JPS60243234A publication Critical patent/JPS60243234A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control satisfactorily sintering by determining the grain size distribution of a raw material and the distribution of the rate of reduction of sintered ore by measuring the pressures in the raw material layer in the raw state and sintered ore layer in a pallet of a sintering machine. CONSTITUTION:Pipes 1a, b, c for measuring pressures are inserted through the attaching holes 4a of the side wall 4 of a pallet 2 to the upper layer part, middle layer part and lower layer part of the raw material layer 3 and the pressures Pa, b, c generated in the pipes are conducted to a pressure measuring device 7 through a transmission pipe 5. A calculator 7 processes the pressures and transmits the same to a control element for sintering. On the other hand, the opening degree of a damper in a wind box provided to the position where the pallet 2 passes is changed over to plural stages and the air quantity thereof is measured and is transmitted to the control element for sintering. The control element for sintering determines the grain size distribution in the layer direction and the distribution of the rate of reduction of the sintered ore in the unsintered state of the raw material and the thoroughly sintered state of the raw material from said air quantity and air pressures and controls the sintering in accordance with the determined distributions.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、焼結鉱の焼結制御方法に係り、詳しくは、
焼結機のパレット内に装入された焼結鉱原料層の原料装
入部での圧力を測定して原料の粒度分布をめ、焼結鉱層
の排鉱部での圧力を測定して焼結鉱の還元率分布をめ、
これら粒度分布および還元率分布に基づいて、焼結鉱原
料の焼結制御を行なう焼結鉱の焼結制御方法に関するも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for controlling sintering of sintered ore, and in detail,
The pressure at the raw material charging section of the sintered ore raw material layer charged into the pallet of the sintering machine is measured to determine the particle size distribution of the raw material, and the pressure at the ore discharge section of the sintered ore layer is measured to determine the sintering. Considering the reduction rate distribution of condensation,
The present invention relates to a sintering control method for sintered ore, which controls the sintering of a sintered ore raw material based on these particle size distributions and reduction rate distributions.

〔従来技術とその問題点〕[Prior art and its problems]

従来よシ、焼結機のパレット内に装入された焼結鉱原料
層の粒度偏析や通気度或いは焼結鉱の還元率を測定して
、原料を焼結制御することが行なわれている。
Traditionally, the sintering of raw materials has been controlled by measuring the particle size segregation and permeability of the sintered ore raw material layer charged into the pallet of the sintering machine, or the reduction rate of the sintered ore. .

従来、原料層の粒度偏析は次のようにして測定されてい
る。(1)焼結機を停止して、パレットの進行および原
料の装入を止め、人が原料装入部へ入ってパレット内′
に装入された原料をサンプリングし、その粒度を測定し
て1粒度偏析をめる。(2)パレットに原料が装入され
る前にパレットにサンプラーを載置して、パレットへの
原料装入時にサンプラーに原料を装入させ、次いで原料
装入部と点火炉の間で、クレーンでサンプラーをパレッ
トから引き上げて回収し、サンプラー内の原料の粒度を
測定して、原料層の層方向での粒度偏析を・める。
Conventionally, grain size segregation in a raw material layer has been measured as follows. (1) Stop the sintering machine, stop the pallet from advancing and charging the raw materials, and allow a person to enter the raw material charging section and inside the pallet.
Sample the raw material charged into the container, measure its particle size, and calculate particle size segregation. (2) A sampler is placed on the pallet before the raw material is charged onto the pallet, and the sampler is loaded with the raw material when the raw material is loaded onto the pallet, and then the crane is placed between the raw material charging section and the ignition furnace. The sampler is pulled up from the pallet and collected, and the particle size of the raw material inside the sampler is measured to determine particle size segregation in the layer direction of the raw material layer.

しかし、(1)の方法は、(a)焼結機を停止するため
に操業が乱れ、製造効率が悪化する、(b)サンプリン
グに人手を要す、(C)サンプリングした原料を乾燥し
、篩いで篩分けて粒度を測定するので、粒度の測定に手
間がかかり、1日に1回の割り合いでしか測定ができな
いといった欠点がある。また、(2)の方法は、(a)
原料層のサンプリング箇所が少ない、(b)粒度の測定
が(1)の方法と同じなので、1日に1回の割り合いで
しか測定ができないといった欠点がある。
However, method (1) (a) stops the sintering machine, which disrupts operations and reduces production efficiency, (b) requires labor for sampling, and (C) requires drying of the sampled raw material. Since the particle size is measured by separating the particles with a sieve, it takes time and effort to measure the particle size, and the disadvantage is that the particle size can only be measured once a day. In addition, method (2) is (a)
This method has drawbacks such as the number of sampling points in the raw material layer is small, and (b) measurement of particle size is the same as method (1), so measurement can only be performed once a day.

また、原料層の通気度は、パレット内原料が生原料の状
態にある点火炉前の風箱の圧力(負圧)と風量を測定し
て、圧力と風量の関係からめられている。しかし、この
ようにしてめられた通気度は、パレット内原料層全体に
ついての通気度で、原料層の粒度偏析なとまでは判らな
いように1、原料層内の性状を詳細に反映していない。
In addition, the permeability of the raw material layer is determined from the relationship between pressure and air volume by measuring the pressure (negative pressure) and air volume of the wind box in front of the ignition furnace where the raw materials in the pallet are in the raw raw material state. However, the air permeability determined in this way is the air permeability of the entire raw material layer within the pallet, and does not reflect the details of the properties within the raw material layer so as not to indicate particle size segregation in the raw material layer1. do not have.

焼結鉱の還元率は、焼結工場出側のコンベアー上で成品
焼結鉱を”サンプリングして測定されている。しかし、
このような焼結鉱は、原料として原料層の上層、中層・
および下層といった各層に位置していたものが一緒にな
っておシ、還元率の測定は、どの層に対応した焼結鉱に
ついてのものか判らない。
The reduction rate of sintered ore is measured by sampling the finished sintered ore on the conveyor at the exit of the sintering factory.However,
Such sintered ore is used as a raw material in the upper, middle and upper layers of the raw material layer.
Since the sintered ore located in each layer, such as the sintered ore and the lower layer, are combined together, it is unclear which layer the sintered ore corresponds to in the measurement of the reduction rate.

従って、従来の焼結制御方法では、原料層の粒度分布や
焼結鉱の還元率などが詳しくめられていないので、その
ために、良好な焼結制御を行なうことが困難であった。
Therefore, in the conventional sintering control method, the particle size distribution of the raw material layer, the reduction rate of the sintered ore, etc. are not considered in detail, which makes it difficult to perform good sintering control.

〔発明の目的〕[Purpose of the invention]

この発明は、上述の現状に鑑み、原料装入部での原料の
サンプリングや焼結工場の外での成品焼結鉱のサンプリ
ングをすることなく、パレット内の原料の粒度分布と焼
結鉱の還元率分布とを詳しくめて、良好な焼結制御を可
能にした焼結鉱の焼結制御方法を提供することを目的と
する。
In view of the above-mentioned current situation, this invention aims to improve the particle size distribution of the raw material in the pallet without sampling the raw material at the raw material charging section or sampling the finished sintered ore outside the sintering plant. An object of the present invention is to provide a method for controlling sintering of sintered ore, which enables good sintering control by determining the reduction rate distribution in detail.

〔発明の概要〕[Summary of the invention]

この発明は、焼結機のパレット内に装入された焼結鉱原
料の層内に層方向に互いに間隔をあけて圧力測定用パイ
プを挿入して、前記原料が未焼結の状態のときに、前記
パレットが通過する位置の風箱のダンパー開度を複数段
に切換えて前記風箱の風量を測定すると同時に、前記圧
力測定用パイプにより前記圧力測定用パイプが挿入され
た箇所の前記原料の層内の空気圧を測定し、この風量と
空気圧とから前記原料の未焼結の状態のときの層方向の
粒度分布をめ、次いで、前記原料の焼結が完了して焼結
鉱となった状態のときに、前記パレットが通過する位置
の風箱のダンパー開度を複数段に切換えて前記風箱の風
量を測定すると同時に、前記圧力測定用パイプにより前
記圧力測定用パイプが挿入された箇所の前記焼結鉱の層
内の空気圧を測定し、この風量と空気圧とから前記焼結
鉱の層方向の還元率分布をめ、このようにしてめられた
原料の粒度分布および焼結鉱の還元率分布とに基づいて
、前記原料の焼結制御を行なうことに特徴を有する。
This invention involves inserting pressure measuring pipes at intervals in the layer direction into layers of sintered ore raw material charged in a pallet of a sintering machine, and when the raw material is in an unsintered state. At the same time, the damper opening degree of the wind box at the position where the pallet passes is changed to multiple levels to measure the air volume of the wind box, and at the same time, the pressure measurement pipe is used to measure the raw material at the location where the pressure measurement pipe is inserted. The air pressure in the layer is measured, and the particle size distribution in the layer direction in the unsintered state of the raw material is determined from the air volume and air pressure, and then the raw material is sintered and becomes sintered ore. At the same time, the damper opening degree of the wind box at the position where the pallet passes is changed to multiple stages to measure the air volume of the wind box, and at the same time, the pressure measuring pipe is inserted by the pressure measuring pipe. Measure the air pressure in the layer of the sintered ore at the location, calculate the reduction rate distribution in the layer direction of the sintered ore from the air volume and air pressure, and calculate the particle size distribution of the raw material and the sintered ore determined in this way. The method is characterized in that the sintering of the raw material is controlled based on the reduction rate distribution.

〔発明の構成〕[Structure of the invention]

第1図はこの発明の詳細な説明図である。第1図におい
てla、lbおよびICは焼結機のパレット2内に装入
された焼結鉱原料の層3内の空気圧を測定するための圧
力測定用パイプで、パイプla、lbおよびICは、図
示しないパイプ挿入装置によってパレット2のサイドウ
オール4の取付は孔4aから、それぞれ原料層3の上層
部分の下部、中層部分の下部および下層部分の下部へ挿
入されている。圧力測定用パイプ1a〜ICはステンレ
スなど耐熱性材料のパイプの先端部側面に小孔を設けた
もので、小孔を介してパイプ1a〜1cに発生した圧力
Pa 、 Pb 、 Pcは、パイプ1a〜1cの後端
部に取付けられた硬質樹脂等のパイプからなる伝送管5
によって、パレット2下部に取付けられた圧力測定装置
6へ導かれ、そこで測定される。この測定された圧力P
a 、 PbおよびPcは、FM方式等によって圧力測
定装置6から焼結機の外に設置された計算器7へ送信さ
れ、そこで必要な処理をされる。そして計算器7は焼結
制御要素に対する制御信号を発生する。
FIG. 1 is a detailed explanatory diagram of the present invention. In Fig. 1, la, lb and IC are pressure measuring pipes for measuring the air pressure in the layer 3 of sintered ore raw material charged into the pallet 2 of the sintering machine, and the pipes la, lb and IC are The sidewalls 4 of the pallet 2 are inserted through the holes 4a into the lower part of the upper layer, the lower part of the middle layer, and the lower part of the lower layer of the raw material layer 3, respectively, by means of a pipe insertion device (not shown). The pressure measuring pipes 1a to 1C are made of heat-resistant material such as stainless steel and have a small hole provided on the side surface of the tip thereof, and the pressures Pa, Pb, and Pc generated in the pipes 1a to 1c through the small holes are the ~Transmission pipe 5 made of a hard resin pipe attached to the rear end of 1c
The pressure is guided to a pressure measuring device 6 attached to the bottom of the pallet 2 and measured there. This measured pressure P
a, Pb, and Pc are transmitted from the pressure measuring device 6 to a calculator 7 installed outside the sintering machine using an FM method or the like, and are subjected to necessary processing there. The calculator 7 then generates control signals for the sintering control elements.

圧力測定用パイプ1a〜ICによる圧力の測定は、パレ
ット2内の原料層3が未焼結で未だ生の状態にあるとき
と、原料層3の焼結が完了して焼結鉱となった状態のと
きに行なう。すなわち、第2図に示すように、パイプ1
a〜ICが挿入されたパレット2aが、サージホッパー
8等からなる原料装入部9と点火炉10との間を進行し
ているときと、前記パンツ)2aが、排鉱部11の近く
まで移動し排鉱部11の手前を進行しているときに、測
定が行なわれる。
The pressure is measured by the pressure measurement pipes 1a to IC when the raw material layer 3 in the pallet 2 is unsintered and still in a raw state, and when the raw material layer 3 has been sintered and has become sintered ore. Do it when the situation is That is, as shown in FIG.
a~ When the pallet 2a in which the IC is inserted is moving between the raw material charging section 9 consisting of the surge hopper 8 etc. and the ignition furnace 10, and when the pallet 2a has reached the vicinity of the ore discharge section 11. Measurements are taken while moving and proceeding in front of the ore discharge section 11.

この場合、第3図に示すように、焼結機の風箱12のう
ち、パレット2aが通過する箇所の風箱12aのダンパ
ー13の開度を3段階以上切換えて風量を変化させなが
ら、切−換えの都度パイプ1a〜1cによシ圧力を測定
をする。また、そのときの風量を風箱12.a内に設け
た熱線風速計14により測定する。以上のような測定は
、排鉱部11の手前での測定についても同様である。
In this case, as shown in FIG. 3, the opening degree of the damper 13 of the wind box 12a of the wind box 12a of the sintering machine at the part through which the pallet 2a passes is changed in three or more steps to change the air volume. -Measure the pressure in the pipes 1a to 1c each time the pipes are replaced. Also, the air volume at that time was determined by the wind box 12. Measurement is performed using a hot wire anemometer 14 installed inside a. The above-mentioned measurements also apply to measurements before the ore discharge section 11.

以上のような圧力測定によって、風量V、 、 V2゜
v3・・・(Vi)に対して、第3図に示すように、パ
レット2a内の原料層3の土層の下部での圧力pa1゜
Paz 、 Pa3−(Pai)、中層の下部での圧力
Pb+ 、 Pb2゜Pb3− (Pbi)および下層
の下部での圧力Pc+ 、 Pc2゜Pc3・・・(P
c i )がめられ、これから上層、中層および下層で
の上下間の差圧△Pai =Pai 、△Pbi =p
bi −Pai 、△Pc1=Pci−Pbi (i=
1 、2 、3−)がめられる。
As shown in FIG. 3, the pressure at the bottom of the soil layer of the raw material layer 3 in the pallet 2a is determined by the pressure measurement as shown in FIG. Paz, Pa3- (Pai), pressure at the bottom of the middle layer Pb+, Pb2゜Pb3- (Pbi) and pressure at the bottom of the bottom layer Pc+, Pc2゜Pc3... (P
c i ) is established, and from this the differential pressure between the upper and lower layers in the upper, middle and lower layers △Pai =Pai, △Pbi =p
bi −Pai , △Pc1=Pci−Pbi (i=
1, 2, 3-) are observed.

ここで、生の状態の原料層3の上層、中層および下層各
層における圧力損失△Pは、 Ergun の式を用い
て次のように表わせる。
Here, the pressure loss ΔP in each of the upper layer, middle layer, and lower layer of the raw material layer 3 in the raw state can be expressed as follows using Ergun's formula.

) ・・・■ 但し、△P:原料層各層の圧力損失、 L :原料層各層の高さ、 U :空気の風速、 ρ :空気の密度、 μ :空気の粘性係数、 ε :原料層各層の空隙率、 φ :原料粒子の形状係数、 dp:原料粒子の粒子径。)...■ However, △P: pressure loss of each layer of raw material layer, L: Height of each layer of raw material layer, U: Air wind speed, ρ: density of air, μ: Viscosity coefficient of air, ε :Porosity of each layer of raw material layer, φ: Shape factor of raw material particles, dp: Particle diameter of raw material particles.

上記の式のうち、原料層各層の高さLは既知であ凱また
、空気の風速Uは風量Vとノくレント床面積SとからU
=V/Sによりまるので、例えば原料層上層での差圧△
Pa1.△Paz 、△Pa3.・・・とそのときの風
量V、 、 V2. V3・・・とから■式が解けて、
■式の未知の係数a、bがまる。未知の係数a。
In the above equation, the height L of each raw material layer is known, and the air wind speed U can be calculated from the air volume V and the rent floor area S.
= V/S, so for example, the differential pressure △ at the upper layer of the raw material layer
Pa1. △Paz, △Pa3. ...and the air volume at that time V, , V2. From V3..., the ■ formula is solved,
■The unknown coefficients a and b of the equation are rounded. unknown coefficient a.

bが決まれば、上記0式の空気の密度ρ、空気の粘性係
数μは既知であるので、0式から、原料層上層における
形状係数φと粒子径dpの積φdpと空隙率εがまる。
Once b is determined, the density ρ of air and the viscosity coefficient μ of air in the above equation 0 are known, so from equation 0, the product φdp of the shape coefficient φ and the particle diameter dp and the porosity ε in the upper layer of the raw material layer are calculated.

同様にして、原料層中層での差圧△Pb+ 、ΔPbz
Similarly, the differential pressure in the middle layer of the raw material layer △Pb+, ΔPbz
.

ΔPb3・・・と前記風量V、 、 V2. V3・・
・とから、原料層中層におけるφdpとεが、原料層下
層での差圧△pet 。
ΔPb3... and the air volume V, , V2. V3...
・From this, φdp and ε in the middle layer of the raw material layer are the differential pressure Δpet in the lower layer of the raw material layer.

△PC2、△PC,!・・・と前記風量V、 、 V2
. V3・・・とから、原料層中層でのφapとεがま
る。
△PC2, △PC,! ...and the air volume V, , V2
.. From V3..., φap and ε at the middle layer of the raw material layer are rounded.

また、上記と同様にして、排鉱部11の手前での圧力と
風量との測定から、パンツ)2a内の焼結鉱の上層、中
層および下層各層における形状係数と粒子径の積φdp
と空隙率εがまる。
In addition, in the same manner as above, from the measurement of the pressure and air volume in front of the ore discharge section 11, the product of the shape factor and particle diameter φdp in the upper, middle, and lower layers of sintered ore in the pant) 2a
and the porosity ε is equal.

以上のようにしてErgunO式の係数a、bおよびφ
dp、εがめられた生の状態の原料層(未焼結)と焼結
鉱層(未焼結)についての結果のi例を第1表に示す。
As described above, the coefficients a, b and φ of the ErgunO equation are
Table 1 shows examples of the results for the raw material layer (unsintered) and the sintered ore layer (unsintered) in which dp and ε were determined.

この形状係数φと粒子径dpの積φdpと空隙率εのう
ち、生の状態の原料層についてはφdpが、焼結鉱層に
ついてはεが重要となる。すなわち、φdpにより、パ
レット内に装入された原料の層方向の粒度偏析(原料の
粗粒分と細粒分とが層方向に偏在すること)を推定する
ことができる。第1表によれば、原料層(未焼結)のφ
dpは、上層はど小さく下層はど大きくなっており、原
料は偏析状態を呈している。
Of the product φdp of the shape factor φ and the particle diameter dp and the porosity ε, φdp is important for the raw material layer in a raw state, and ε is important for the sintered ore layer. That is, from φdp, it is possible to estimate the particle size segregation in the layer direction of the raw material charged into the pallet (the uneven distribution of coarse grains and fine grains of the raw material in the layer direction). According to Table 1, φ of the raw material layer (unsintered)
The dp is small in the upper layer and large in the lower layer, and the raw material exhibits a segregated state.

第 1 表 焼結鉱層の空隙率εは、第4図に示すように焼結鉱の還
元率と一定の関係があシ、εによって焼結鉱の還元率を
推定できる。空隙率εが高いほど焼結鉱の還元率が高く
なる。
Table 1 The porosity ε of the sintered ore layer has a certain relationship with the reduction rate of the sintered ore, as shown in FIG. 4, and the reduction rate of the sintered ore can be estimated from ε. The higher the porosity ε, the higher the reduction rate of the sintered ore.

以上のことから、生の状態の原料層についてはφdpを
めて、層方向の粒度分布をめ、この粒度分布が、焼結鉱
製造の操業解析から得られた最適粒度分布となるように
制御を行なう。焼結鉱層については空隙率ε、そして還
元率をめて、層方向の還元率分布をめ、この還元率分布
が、同様に操業解析から得られた最適還元率分布となる
ように制御を行なう。粒度分布を制御する要素としては
、装入シュートの角度、ロールフィーダーの回転数など
がある。また、還元率を制御する要素としては、原料層
中のカーざン偏析、コークス粒度、点火炉での点火強度
などがある。従って、これらの制御要素を調整して、原
料の粒度分布および焼結鉱の還元率分布を制御する焼結
制御を行なう。
From the above, for the raw material layer in the raw state, φdp is determined, the grain size distribution in the layer direction is determined, and this grain size distribution is controlled so that it becomes the optimal grain size distribution obtained from the operational analysis of sinter production. Do the following. For the sintered ore layer, determine the porosity ε and the reduction rate, determine the reduction rate distribution in the layer direction, and control so that this reduction rate distribution becomes the optimal reduction rate distribution similarly obtained from the operation analysis. . Factors that control particle size distribution include the angle of the charging chute and the rotation speed of the roll feeder. Elements that control the reduction rate include carbon segregation in the raw material layer, coke particle size, and ignition strength in the ignition furnace. Therefore, these control elements are adjusted to perform sintering control that controls the particle size distribution of the raw material and the reduction rate distribution of the sintered ore.

〔発明の効果〕〔Effect of the invention〕

この発明は、焼結機パレット内の生の状態の原料層と焼
結鉱層との圧力を測定し、そのときの風箱の風量とから
、原料の粒度分布と焼結鉱の還元率分布とをめているの
で、従来性なっていた、原料装入部での原料のサンプリ
ングや焼結工場の外での成品焼結鉱のサンプリングが不
要となるだけでなく、粒度分布や還元率分布が詳しくめ
られるので、良好な焼結制御が行なえる。
This invention measures the pressure between the raw raw material layer and the sintered ore layer in the sintering machine pallet, and determines the particle size distribution of the raw material and the reduction rate distribution of the sintered ore from the air volume of the wind box at that time. This not only eliminates the need for sampling the raw material at the raw material charging section and sampling the finished sintered ore outside the sintering plant, but also improves particle size distribution and reduction rate distribution. Since it can be observed in detail, good sintering control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するだめの説明図、第2
図はこの発明の方法において行なう原料層および焼結鉱
層の圧力測定の焼結機上での測定位置を示す図、第3図
はこの発明の方法において行なう原料層の圧力測定を示
す説明図−・第4図は焼結鉱層の空隙率と焼結鉱の還元
率との関係を示すグラフである。図面において、 1a〜1c・・・圧力測定用パイプ、 2.2a・・・パレット、3・・・原料層、4・・・サ
イドウオール、4a・・・取付は孔、5・・・伝送管、
 6・・・圧力測定装置、7・・・計算B、 8・・・
サーソホッパー、9・・・原料装入部、10・・・点火
炉、11・・・排鉱部、 12 、12a・・・風箱、
13・・・ダンパー、 14・・・熱線風速計。 ゛出
願人 日本鋼管株式会社、 代理人 潮 谷 奈津夫 (他2名)
Figure 1 is an explanatory diagram for explaining the invention in detail;
The figure is a diagram showing the measurement positions on the sintering machine for pressure measurement of the raw material layer and sintered ore layer performed in the method of the present invention, and FIG. 3 is an explanatory diagram showing the pressure measurement of the raw material layer performed in the method of the present invention. - Figure 4 is a graph showing the relationship between the porosity of the sintered ore layer and the reduction rate of the sintered ore. In the drawings, 1a to 1c...Pipe for pressure measurement, 2.2a...Pallet, 3...Raw material layer, 4...Side wall, 4a...Mounting hole, 5...Transmission pipe ,
6...Pressure measuring device, 7...Calculation B, 8...
Thurso hopper, 9... Raw material charging section, 10... Ignition furnace, 11... Ore discharge section, 12, 12a... Wind box,
13... Damper, 14... Hot wire anemometer. Applicant: Nippon Kokan Co., Ltd., Agent: Natsuo Shioya (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] 焼結機のパレット内に装入された焼結鉱原料の層内に層
方向に互いに間隔をあけて圧力測定用パイプを挿入して
、前記原料が未焼結の状態のときに、前記パレットが通
過する位置の風箱のダンパー開度を複数段に切換えて前
記風箱の風量を測定すると同時に、前記圧力測定用パイ
プによシ前記圧力測定用パイプが挿入された箇所の前記
原料の層内の空気圧を測定し、この風量と空気圧とから
前記原料の未焼結の状態のときの層方向の粒度分布をめ
、次いで、前記原料の焼結が完了して焼結鉱となった状
態のときに、前記パレット、が通過する位置の風箱のダ
ンパー開度を複数段に切換えて前記風箱の風量を測定す
ると同時に、前記圧力測定用パイプにより前記圧力測定
用パイプが挿入された箇所の前記焼結鉱の層内の空気圧
を測定し、この風量と空気圧とから前記焼結鉱の層方向
の還元率分布をめ、このようにしてめられた原料の粒度
分布および焼結鉱の還元率分布とに基づいて、前記原料
の焼結制御を行なうことを特徴とする焼結鉱の焼結制御
方法。
Pressure measuring pipes are inserted at intervals in the layer direction into the layers of sintered ore raw material charged into a pallet of a sintering machine, and when the raw materials are in an unsintered state, At the same time, the air volume of the wind box is measured by changing the damper opening degree of the wind box at the position where the pressure measurement pipe passes through multiple stages, and at the same time, the layer of the raw material at the location where the pressure measurement pipe is inserted is measured by the pressure measurement pipe. Measure the air pressure inside, calculate the particle size distribution in the layer direction when the raw material is in an unsintered state from this air volume and air pressure, and then calculate the state in which the raw material has completed sintering and has become sintered ore. At the same time, the damper opening degree of the wind box at the position where the pallet passes is changed to multiple stages to measure the air volume of the wind box, and at the same time, the pressure measurement pipe is inserted into the location where the pressure measurement pipe is inserted. The air pressure in the layer of the sintered ore is measured, and the reduction rate distribution in the layer direction of the sintered ore is calculated from the air volume and air pressure, and the particle size distribution of the raw material determined in this way and the sintered ore are calculated. 1. A sintering control method for sintered ore, characterized in that sintering of the raw material is controlled based on a reduction rate distribution.
JP9849084A 1984-05-18 1984-05-18 Method for controlling sintering of sintered ore Pending JPS60243234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9849084A JPS60243234A (en) 1984-05-18 1984-05-18 Method for controlling sintering of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9849084A JPS60243234A (en) 1984-05-18 1984-05-18 Method for controlling sintering of sintered ore

Publications (1)

Publication Number Publication Date
JPS60243234A true JPS60243234A (en) 1985-12-03

Family

ID=14221089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9849084A Pending JPS60243234A (en) 1984-05-18 1984-05-18 Method for controlling sintering of sintered ore

Country Status (1)

Country Link
JP (1) JPS60243234A (en)

Similar Documents

Publication Publication Date Title
CN207600891U (en) A kind of material size on-line detector
GB2067461A (en) Process for the manufacture of dry-pressed mouldings and apparatus for carrying out this process
CA1062907A (en) Continuous powder feed system for maintaining a uniform powder coating thickness on objects being coated by electrostatic fluidized beds
JPS60243234A (en) Method for controlling sintering of sintered ore
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
US3802677A (en) Device for the permeability control of the layer of material to be sintered in plants for sintering ores, in particular iron ores
DE102014102345A1 (en) DEVICE FOR MEASURING THE DENSITY AND / OR TRANSMISSION OF BULK, AND METHOD THEREFOR
CN106987710B (en) A kind of online pre-control method of pelletizing production technique and device
CN205949030U (en) Three -roller automatic feeding device
JPS6133413A (en) Method of adjusting degree of filling of conveying means
CN109470609A (en) A kind of material size on-line detector and its detection method
JPS57209743A (en) Method and device for treating recovered sand
TW379249B (en) Process for the complete filling without any emissions of horizontal chamber coking ovens
JPS58104839A (en) Fixed quantity supply mechanism for equipment for continuously supplying fixed quantity of powder
JP6897751B2 (en) Blast furnace operation method
CA1143132A (en) Feeding of casting powder
CN220484191U (en) Flow changing device for improving flow characteristics of bulk materials
US3800141A (en) Method and a device for measuring a moisture content of granular inorganic material
JPS60211021A (en) Method for controlling sintering of ore to be sintered
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JPS60184641A (en) Method for measuring air permeability of raw material on pallet of sintering machine
JPS58213836A (en) Method for determining optimum extent of operation under operational condition during operation of sintering apparatus
JPS5938289B2 (en) Method for producing sintered ore
JPS5993842A (en) Sintering method of iron ore raw material
JPH05186811A (en) Method for operating blast furnace