JPS5993842A - Sintering method of iron ore raw material - Google Patents

Sintering method of iron ore raw material

Info

Publication number
JPS5993842A
JPS5993842A JP20395082A JP20395082A JPS5993842A JP S5993842 A JPS5993842 A JP S5993842A JP 20395082 A JP20395082 A JP 20395082A JP 20395082 A JP20395082 A JP 20395082A JP S5993842 A JPS5993842 A JP S5993842A
Authority
JP
Japan
Prior art keywords
raw material
sintering
permeability
air permeability
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20395082A
Other languages
Japanese (ja)
Other versions
JPS6234812B2 (en
Inventor
Hiroshi I
井硲 弘
Tadao Maehana
前花 忠夫
Hideo Mabuchi
馬渕 秀男
Seizo Eguchi
江口 成三
Koji Ano
浩二 阿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20395082A priority Critical patent/JPS5993842A/en
Publication of JPS5993842A publication Critical patent/JPS5993842A/en
Publication of JPS6234812B2 publication Critical patent/JPS6234812B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To measure directly the air permeability of a sintering raw material with a relatively simple mechanism and to control the same by detecting the air permeability with a permeability measurement device provided in the negative pressure section on the suction side for hot air of a sintering device and increasing or decreasing the amt. of the water to be added to the sintering raw material. CONSTITUTION:The raw material powder and granules supplied from a raw material hopper 5 to a kneader 6 are kneaded and humidified together with the water supplied through a flowmeter 7 and a water feed valve 8, and the mixture is sent as a sintering raw material A successively into a sintering device. The juncture 13a of a permeability measurement device 13 is connected, via a flow rate control valve 10, a pressure gauge 11, and an airflow meter 12, to a pipeline 9 for measuring gas permeability connected to the proper place of a hot air induction duct 4. A part of the material A is sampled and packed into a packing part 13b of the device 13 which is open at the top surface and has a fine meshed metallic screen 14 in the bottom. The valve 10 is controlled to maintain the specified suction pressure measured with the gauge 11 and thereafter the quantity of the air permeating the inside of the layer packed with the raw material is measured with the meter 12. A permeability index is calculted by a prescribed equation, and the calculated value and an optimum air permeability is compared, according to the difference whereof, the amt. of the water to be added to the device 6 is increased or decreased.

Description

【発明の詳細な説明】 本発明は鉄鉱石原料の焼結方法に関し、詳細には、焼成
原料への添加水分量をコントロールすることによってそ
の通気度を適正に調節し、焼結を可及的均一に、且つ効
率良く行なう方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for sintering iron ore raw materials, and in particular, by controlling the amount of water added to the raw material for sintering, the air permeability of the raw material is appropriately adjusted, and sintering is made as possible as possible. It relates to a method that can be carried out uniformly and efficiently.

高炉装入用の粉粒状鉄鉱石は、適量の粉粒状コークスや
石灰石、バインダー及び返鉱を適量の水と共にドラムミ
キサー等に投入して混錬調湿した後、焼結装置で焼結さ
れ、更に1次破砕、冷却、2次破砕、篩分けの各工程を
たどシ、最終的に5〜50mmφ程度の分布を有する焼
結鉱とされる。
Powdered iron ore for blast furnace charging is made by putting appropriate amounts of coke, limestone, binder, and return ore into a drum mixer, etc. together with an appropriate amount of water, mixing and conditioning the moisture, and then sintering it in a sintering device. The sintered ore is further processed through the steps of primary crushing, cooling, secondary crushing, and sieving, and is finally made into sintered ore having a diameter distribution of about 5 to 50 mm.

ここで一般的な焼結装置は第1図(概略縦断面図)に示
す通シであシ混錬調湿を終えた焼結原料Aは原料供給部
1から、矢印方向へ回動するグレート2上へ供給され、
焼結装置80着火部8a、焼結部8b、冷却部8cを順
次通過する過稈で所定の処理を受け、更に図示しない破
砕工程及び篩分は工程等で後処理を受けて適正粒度の焼
結鉱となる。
Here, the general sintering apparatus is a through-hole shown in FIG. 2 is supplied onto the
The overculm of the sintering device 80 passes through the ignition section 8a, the sintering section 8b, and the cooling section 8c in order and undergoes a predetermined treatment, and the culm is further processed in a crushing process (not shown) and the sieve is subjected to post-processing in a process etc. to sinter to an appropriate particle size. It becomes condensation.

即ち焼結工程では原料装入HAの上方から下方に向けて
空電を流し、着火部3aで焼結原料中のコークスを着火
する。そして焼結部8bでは着火燃焼によシ発生した熱
風の通過によシ順次下MiJ(141へ向けてコークス
が着火燃焼し、焼結反応が進行する。焼結を終えた後は
順次冷却部8Cへ移行して冷却され、図示しない後処理
工程へ送られる。図中4は熱風誘引ダクトを示す。
That is, in the sintering process, static electricity is applied from above to below the raw material charging HA, and coke in the sintering raw material is ignited in the ignition section 3a. Then, in the sintering section 8b, the coke is ignited and burned toward the lower MiJ (141) by passing the hot air generated by the ignition combustion, and the sintering reaction progresses. 8C, where it is cooled and sent to a post-processing step (not shown).In the figure, 4 indicates a hot air induction duct.

ところで焼結反応を効率良く進行させるうえで焼結原料
の通気性が極めて重要であることは良く知られておシ、
最適の通気性を確保すべく44々の提案がなされている
。通気性に影響を及ぼす因子としては、原料の粒度構成
、バインダーの棹類、返鉱比、水分添加量、原料の充填
率等が挙げられるが、中でも水分含有率は通気性に著し
く影響することが確認されておシ(第2図:焼結原料の
水分含有率と通気性の関係を示すグラフ)、添加水分量
の管理は不可欠なものとされている。こうした状況のも
とて例えば特公昭51−17921号公報に開示される
様な技術が提案された。この方法は、焼結原料の送給ラ
インにバイパスを設け、原料の一部を連続的に抜き出し
てその気孔率又は比表面積を測定し、この測定値から適
正水分量を算出して原料への添加水分量を設定する一方
、前記送給ラインから更に原料の一部を連続的に抜き出
し、現実の原料含有水分量を測定しこれを前記設定値と
比較して該設定値を補正し、原料に添加する水分量を自
動的に制御することによって、焼結原料の通気性を適正
にコントロールしようとするものである。この公告発明
は、焼結原料の気孔率と適正水分量との間に一次直線的
な関係があるという知見を基に成されたものであシ、通
気性制御手段としては極めて効果的なものと考えられる
By the way, it is well known that the permeability of the sintering raw material is extremely important for the efficient progress of the sintering reaction.
Forty-four proposals have been made to ensure optimal breathability. Factors that affect air permeability include the particle size structure of raw materials, binder rods, return ratio, amount of water added, filling rate of raw materials, etc. Among them, water content has a significant effect on air permeability. It has been confirmed that (Figure 2: graph showing the relationship between moisture content and air permeability of sintering raw materials), it is essential to control the amount of added moisture. Under these circumstances, a technique was proposed, for example, as disclosed in Japanese Patent Publication No. 17921/1983. In this method, a bypass is installed in the feed line of the sintering raw material, a part of the raw material is continuously extracted and its porosity or specific surface area is measured, and the appropriate moisture content is calculated from this measurement value and then added to the raw material. While setting the amount of added moisture, a part of the raw material is continuously extracted from the feed line, the actual moisture content of the raw material is measured, and this is compared with the set value to correct the set value, The aim is to appropriately control the air permeability of the sintering raw material by automatically controlling the amount of water added to the sintering material. This announced invention was made based on the knowledge that there is a linear relationship between the porosity of the sintering raw material and the appropriate moisture content, and is extremely effective as a means for controlling air permeability. it is conceivable that.

しかしながらこの方性では、焼結原料の一部を抜き出し
てこれを一旦乾燥した後気孔率や比表面積を測定してそ
れから適正水分量を算出すると共に、実際の水分含有意
も測定してこれらを比較しなければならず、制御装置が
著しく複雑になるという欠点がある。しかも焼結原料の
乾燥及びhiU定に相当の時間を要するので即応性に欠
ける面がある。
However, in this method, a part of the sintering raw material is extracted and once dried, the porosity and specific surface area are measured, and then the appropriate moisture content is calculated, and the actual moisture content is also measured and compared. This has the disadvantage that the control device is significantly more complex. Moreover, since it takes a considerable amount of time to dry the sintering raw material and to determine the hiU, there is a lack of quick response.

本発明者等は上記の様な事情に着目し、比較的簡単なe
I!樹で焼結原料の通気性を直接的に測定して適正に制
御することができ、しかも連続操業にも十分に適用でき
る即応性を確保し得る様な技術を確立しようとして研究
を進めてきた。本発明はこうした研究の結果完成された
ものであって、その構成は、焼結装置の熱風誘引側負圧
系に、圧力計及び風量計を配設した通風ラインを介して
通気度測定装置を接続し、該測定装置に焼結原料の一部
を充填してその上面を大気に開放させ、前記ワインを前
記負圧糸方向へ流れる気流の圧力及び風量から焼結原料
の通気性を検知し、それに応じて焼結原料への水添加量
を増減することによシ、焼結原料の通気度を調整すると
ころに要旨が存在する。
The present inventors focused on the above-mentioned circumstances, and developed a relatively simple e-
I! We have been conducting research in an effort to establish a technology that can directly measure and properly control the air permeability of sintered raw materials using wood, and that can also be sufficiently responsive to continuous operation. . The present invention was completed as a result of such research, and its configuration is such that an air permeability measuring device is connected to the negative pressure system on the hot air induction side of the sintering device through a ventilation line equipped with a pressure gauge and an airflow meter. A part of the sintering raw material is connected to the measuring device, the upper surface of the measuring device is opened to the atmosphere, and the air permeability of the sintering raw material is detected from the pressure and air volume of the airflow flowing through the wine in the direction of the negative pressure thread. The gist lies in adjusting the air permeability of the sintering raw material by increasing or decreasing the amount of water added to the sintering raw material accordingly.

以下実施例図面を参照しつつ本発明の構成及び作用効果
を説明する。尚本発明における最大の特徴は、前述の様
に通気性制御機構を簡素化すると共に即応性を毘めた点
にあるが、この他、焼結原料の水分含有率が通気度に最
も大きく影響するという事実をたくみに利用し、他の外
乱要因(焼結原料の粒径、返鉱比、バインダーや石灰粉
の配合率等の反V+ )による通気度の変動を、水分添
加量の増減によって適正に調整可能とした□点にも大き
な特徴を有している。
The configuration and effects of the present invention will be explained below with reference to the drawings. The greatest feature of the present invention is that, as mentioned above, the air permeability control mechanism is simplified and quick response is ensured.In addition, the moisture content of the sintering raw material has the greatest effect on air permeability. By skillfully taking advantage of the fact that It also has a major feature in that it can be adjusted appropriately.

第8図は本発明の実施例を示す概略全体図であシ、原料
ホッパー5から混錬装置6へ供給された原料粉粒体は、
流量計7及び給水弁8を経て供給される水と共に混錬調
湿され、得られた焼結原料Aは原料供給部lから順次焼
結装置へ送シ込まれる。本発明ではこの焼結原料Aの一
部を採取して以下べ詳述する通気度測定装置に充填し、
焼結原料Aの通気性を直接測定すると共に、それに応じ
て混錬・装置6への加水量を増減し、通気度が適正値と
なる様に調整する。即ち本発明では、熱風誘引シュート
16又はダクト4の適所に通気度測定用管路9を接続し
、これに流量調節弁lO1圧力計11及び風量計12を
介して通気度測定装置18を接続する。該測定装置1B
は例えば第4図(縦断面図)に示す様な構造に設計され
ておシ、前記管路9に接続される吸引接続部113aと
焼結原料充填部18bとで構成され、該充填部18bの
底部には焼結原料Aの粒径よシも小さい網目の金網14
(多孔板等でも勿論かまわない)が配置されると共に、
上部は大気に開放されている。そして通気度の測定に当
っては、該測定装置18の焼結原料充填部18bに混錬
調湿済みの焼結原料Aを一定量装入し、圧力計11を指
針として一定の吸引圧となる様に流量調節弁10の開度
を調節した後、風量計12によって原料充填層内の通過
風量を測定する2、そして下記式によシ焼結原料の通気
度指数を算出する。
FIG. 8 is a schematic overall view showing an embodiment of the present invention, in which the raw material powder and granules supplied from the raw material hopper 5 to the kneading device 6 are
The sintering raw material A obtained by kneading and controlling the humidity together with water supplied through the flow meter 7 and the water supply valve 8 is sequentially fed into the sintering apparatus from the raw material supply section 1. In the present invention, a part of this sintering raw material A is collected and filled into an air permeability measuring device, which will be described in detail below.
The air permeability of the sintering raw material A is directly measured, and the amount of water added to the kneading device 6 is increased or decreased accordingly to adjust the air permeability to an appropriate value. That is, in the present invention, the air permeability measurement pipe line 9 is connected to an appropriate location of the hot air induction chute 16 or the duct 4, and the air permeability measuring device 18 is connected to this via the flow rate control valve lO1 pressure gauge 11 and air flow meter 12. . The measuring device 1B
is designed to have a structure as shown, for example, in FIG. At the bottom of the sintering material A, there is a wire mesh 14 with a mesh smaller in particle size than the sintering raw material A.
(Of course, a perforated plate etc. is also acceptable) is placed, and
The upper part is open to the atmosphere. To measure the air permeability, a certain amount of kneaded and humidity-controlled sintering raw material A is charged into the sintering raw material filling part 18b of the measuring device 18, and a constant suction pressure is maintained using the pressure gauge 11 as a guide. After adjusting the opening degree of the flow rate control valve 10 so that the amount of air passing through the raw material packed bed is adjusted using the air flow meter 12, the air permeability index of the sintered raw material is calculated according to the following formula.

通気度指数(JPU) −((通過風量)/(吸引面積))X((層1πさ)/
(吸引圧力))0・6 吸引面積: ((0,196)  π/4)m2層高さ
 :m′ 吸引圧カニffmH2O 風量: N、n37= 同熱風吸引ダクト4内は、焼結を効率良く進行させる為
の誘引空気量を確保すべ(一般に−800〜−1600
m1H20程度の負圧に保たれておシ、負圧度は焼結装
置長手方向のダクト位置によって若干変わる(一般に焼
結装置の前方側ダクト部の負圧度は品(、後方側ダクト
部の負圧度は低い)が、との負圧度が低すぎると測定精
度が低下し、一方負圧度が高すぎると測定操作性が低下
する傾向があるので、通91度測定用管絡9の接続位置
は前記負圧度が−800〜1200rnmH20、よシ
好ましくは−1000羽H20前後になっているダクト
位置が最適である。
Air permeability index (JPU) - ((passing air volume) / (suction area))
(Suction pressure)) 0.6 Suction area: ((0,196) π/4) m2 Layer height: m' Suction pressure crab ffmH2O Air volume: N, n37 = Inside the hot air suction duct 4, sintering is performed efficiently. It is necessary to secure the amount of induced air for good progress (generally -800 to -1600
Negative pressure is maintained at about m1H20, and the degree of negative pressure varies slightly depending on the position of the duct in the longitudinal direction of the sintering device (generally, the degree of negative pressure in the front duct of the sintering device is However, if the degree of negative pressure is too low, the measurement accuracy tends to decrease, while if the degree of negative pressure is too high, the measurement operability tends to decrease. The optimal connection position is a duct position where the degree of negative pressure is -800 to 1200 nmH20, preferably around -1000 nmH20.

この様にして焼結原料Aの通気度指数を求めた後は、そ
の値と予め求めておいた最適通気度を比較し、その差に
応じて原料混錬装置6への加水量を増減することによっ
て焼結原料への通気度が前記最適通気度となる様に調整
する。淘最適通気度は原料の種類(両地等)や粒径、配
合比等によって若干変わるので、予備実験で事前に決め
ておけばよいが、通常は前記JPU指数で20〜80が
よい。こうした操作は手作業で行なってもよいが、図示
した如く、流量調節弁10、圧力計11、風量計12と
流量調節弁8及び流量計7を、比較演算機能を備えた制
御装置15に接続して自動制御できる様にすれば、通気
度の変動に応じた加水量の調節を自動的且つ正確に、し
かも迅速に行なうことができるので好ましい。何れにし
ても焼結原料Aの通気度測定に要する時間は長くとも1
0分程度以内であシ、この操作を一定時間毎に行なうこ
とによって焼結原料の通気度を最適状態に維持すること
ができる。周光に説明した様に通気度は原料の粒径、石
灰粉等の配合比の変更或いは返鉱比によって変わるが、
こうした変動要素を制御する場合は、その前後において
通気度調整操作を頻繁に繰シ返しておけばよく、通気度
がほぼ安定化した後は通常の調整操作頻度に戻せばよい
After determining the air permeability index of the sintered raw material A in this manner, compare that value with the optimum air permeability determined in advance, and increase or decrease the amount of water added to the raw material kneading device 6 according to the difference. By doing so, the air permeability to the sintering raw material is adjusted to the above-mentioned optimum air permeability. Since the optimum air permeability varies slightly depending on the type of raw material (both materials, etc.), particle size, blending ratio, etc., it may be determined in advance through preliminary experiments, but it is usually 20 to 80 according to the JPU index. These operations may be performed manually, but as shown in the figure, the flow rate control valve 10, pressure gauge 11, air flow meter 12, flow rate control valve 8, and flow meter 7 are connected to a control device 15 equipped with a comparison calculation function. It is preferable that the amount of water added can be automatically, accurately, and quickly adjusted in response to changes in air permeability. In any case, the time required to measure the air permeability of sintered raw material A is at most 1
The permeability of the sintering raw material can be maintained at an optimum state by performing this operation at regular intervals, although it may take less than about 0 minutes. As I explained to Shuko, the permeability changes depending on the particle size of the raw materials, the mixing ratio of lime powder, etc., or the return ore ratio.
In order to control such variable factors, it is sufficient to frequently repeat the air permeability adjustment operation before and after the change, and after the air permeability has become almost stable, the frequency of the air permeability adjustment may be returned to the normal adjustment operation frequency.

ちなみに第5図は配合原料のうち微粒鉱粉の量を増配し
たときの制御例を示す実績グラフであシ、白抜き矢印の
位置で本発明に係る通気度調整を行なっている。この結
果からも明らかな様に、配合水分量がはIY同じであっ
ても微粒鉱粉の増配によって通気度は急激に低下してく
る(白抜き矢印の直前)が、混錬装置への給水量を増大
して焼結原料の含水率を1柾すれば、通気度は適正値に
復帰し、良好な焼結状況を熱ることができる。
Incidentally, FIG. 5 is a performance graph showing an example of control when the amount of fine ore powder among the blended raw materials is increased, and the air permeability adjustment according to the present invention is performed at the position of the white arrow. As is clear from this result, even if the blended water content is the same as IY, the air permeability decreases rapidly due to an increase in the amount of fine ore powder (immediately before the white arrow). If the amount is increased and the water content of the sintering raw material is reduced to 1 sq., the air permeability returns to an appropriate value and a good sintering condition can be achieved.

本発明は概略以上の様に構成されておシ、その効果を要
約すれば次の通シである。
The present invention is roughly constructed as described above, and its effects can be summarized as follows.

[11焼結原料自体の通気度を測定しその変動に応じて
加水量を調節し適正通気度に戻す方法であるから、1塾
機構が簡単で極めて実際的である。
[11] Since this is a method of measuring the air permeability of the sintering raw material itself and adjusting the amount of water added according to its fluctuations to restore the appropriate air permeability, the 1-juku mechanism is simple and extremely practical.

(2)通気度測定用送風源として焼結装置の負圧系をそ
のまま利用するので、格別の送風源が不要であると共に
、焼結装置内における通風条件にeまぼ近似した条件で
通気度測定を行なうことができるめで制御精度が高い。
(2) Since the negative pressure system of the sintering equipment is directly used as the air source for air permeability measurement, there is no need for a special air source, and the air permeability can be measured under conditions that closely approximate the ventilation conditions inside the sintering equipment. It is possible to perform measurements and has high control accuracy.

(3)通気度測定及び加水量調節の操作を極めて短時間
で行なうことができるので即応性が亮く、連続焼結に極
めて適している。
(3) Since the air permeability measurement and water addition amount adjustment can be carried out in a very short time, the method has excellent quick response and is extremely suitable for continuous sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄鉱石の焼結装置を例示する概略縦断面飄第2
図は焼結原料の水分量と通電性の関係を示すグラフ、8
g8図は本発明の実施例を示す概略全体図、第4図は通
気度測定装置を例示する縦断面図、第5図は操業例を示
す実験グラフである。 1・・・焼結原料供給部 2・・・グレート8a・・・
着火部     8b・・・焼結部3C・・・冷却部 
    4・・・熱風誘引ダクト7・・・流量計   
  8・・・流量調節弁9・・・通気度測定用管路 10・・・流量調節弁   11・・・圧力針12・・
・風量計     18・・・通慨度測定装置噌 と 
幻  ま
Figure 1 is a schematic longitudinal cross-section diagram illustrating an iron ore sintering device.
The figure is a graph showing the relationship between the moisture content of the sintering raw material and the electrical conductivity.
Fig. g8 is a schematic overall view showing an example of the present invention, Fig. 4 is a longitudinal cross-sectional view illustrating an example of the air permeability measuring device, and Fig. 5 is an experimental graph showing an example of operation. 1...Sintering raw material supply section 2...Grate 8a...
Ignition part 8b...Sintering part 3C...Cooling part
4... Hot air induction duct 7... Flow meter
8...Flow rate control valve 9...Air permeability measurement pipe line 10...Flow rate control valve 11...Pressure needle 12...
・Air flow meter 18...Performance measuring device
Illusion

Claims (1)

【特許請求の範囲】[Claims] 高炉装入用鉄鉱石原料の焼結を行なうに当シ、焼結装置
の熱風誘引側負圧系に、圧力計及び風量計を配設した通
風ワインを介して通気度測定装置を接続し、該測定装置
に焼結原料を充填してその上面を大気に開放させ、前記
フィンを前記負圧系方向へ流れる気流の圧力及び風量か
ら焼結原料の通気性を検知し、それに応じて焼結原料へ
の水添加量を増減することによシ、焼結原料の通気度を
調整することを特徴とする鉄鉱石原料の焼結方法。
In order to sinter the iron ore raw material for blast furnace charging, an air permeability measuring device is connected to the negative pressure system on the hot air induction side of the sintering device via a ventilator equipped with a pressure gauge and an air flow meter. The measuring device is filled with the sintering raw material and its upper surface is opened to the atmosphere, and the air permeability of the sintering raw material is detected from the pressure and air volume of the airflow flowing through the fins in the direction of the negative pressure system, and the sintering is performed accordingly. A method for sintering iron ore raw material, characterized by adjusting the permeability of the sintered raw material by increasing or decreasing the amount of water added to the raw material.
JP20395082A 1982-11-19 1982-11-19 Sintering method of iron ore raw material Granted JPS5993842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20395082A JPS5993842A (en) 1982-11-19 1982-11-19 Sintering method of iron ore raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20395082A JPS5993842A (en) 1982-11-19 1982-11-19 Sintering method of iron ore raw material

Publications (2)

Publication Number Publication Date
JPS5993842A true JPS5993842A (en) 1984-05-30
JPS6234812B2 JPS6234812B2 (en) 1987-07-29

Family

ID=16482353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20395082A Granted JPS5993842A (en) 1982-11-19 1982-11-19 Sintering method of iron ore raw material

Country Status (1)

Country Link
JP (1) JPS5993842A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114502A (en) * 1973-03-07 1974-11-01
JPS545804A (en) * 1977-06-16 1979-01-17 Sumitomo Metal Ind Ltd Method of controlling permeability fr sintering material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114502A (en) * 1973-03-07 1974-11-01
JPS545804A (en) * 1977-06-16 1979-01-17 Sumitomo Metal Ind Ltd Method of controlling permeability fr sintering material

Also Published As

Publication number Publication date
JPS6234812B2 (en) 1987-07-29

Similar Documents

Publication Publication Date Title
Loo et al. Effect of iron ores and sintering conditions on flame front properties
CA1066886A (en) Method and apparatus for reducing the moisture content of tobacco
CN107894342A (en) A kind of electric precipitator performance experimental system
CN107166948B (en) The grain dry laminar flow amount of crop dryer and the control method of heating load
US3802677A (en) Device for the permeability control of the layer of material to be sintered in plants for sintering ores, in particular iron ores
JPS5993842A (en) Sintering method of iron ore raw material
Loo et al. Fundamental factors determining laboratory sintering results
JPS5738228A (en) Regulating apparatus for particle size
CN108627538A (en) Full-scale ventilation restricted clearance burning heat release rate measurement method
CN108398026B (en) A kind of sintering process homogeneity detection system and method
KR840005216A (en) Internal diagnostic method of rotary kiln
WO2014013775A1 (en) Method for producing sinter
Loo et al. Fundamental insights into the sintering behaviour of goethitic ore blends
JP2022039966A (en) Manufacturing method of sintered ore and production apparatus of sintered ore
SE434958B (en) PROCEDURE AND DEVICE FOR INSTALLING A CHARGING SUGMENT OR IN A STATIONER OR HUGE SUGGESTING PAN ASTADKOMMA A CHARGE WITH HIGH PERMEABILITY AND STABLE STRUCTURE
US3265377A (en) Method of and apparatus for regulating the speed of sintering strands
JP2004285401A (en) Method for reducing quantity of dust in main exhaust gas in sintering process
JPS6124629B2 (en)
JPS6138984B2 (en)
JPH08127822A (en) Operation of sintering
JPS6329248Y2 (en)
JPS5782433A (en) Manufacture of sintered ore
JPH08134554A (en) Granulation of raw material for sinter
JPS6213539A (en) Method of sintering by humidification
JP2019167615A (en) Charging method of raw material for bell-less blast furnace