JPS6138984B2 - - Google Patents
Info
- Publication number
- JPS6138984B2 JPS6138984B2 JP57043271A JP4327182A JPS6138984B2 JP S6138984 B2 JPS6138984 B2 JP S6138984B2 JP 57043271 A JP57043271 A JP 57043271A JP 4327182 A JP4327182 A JP 4327182A JP S6138984 B2 JPS6138984 B2 JP S6138984B2
- Authority
- JP
- Japan
- Prior art keywords
- drying
- moisture value
- fine powder
- value
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 36
- 238000001035 drying Methods 0.000 claims description 25
- 239000000843 powder Substances 0.000 claims description 17
- 239000000428 dust Substances 0.000 claims description 10
- 239000003245 coal Substances 0.000 description 11
- 238000001514 detection method Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000571 coke Substances 0.000 description 4
- 238000004939 coking Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Drying Of Solid Materials (AREA)
- Coke Industry (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Description
本発明は、乾燥室内のスクリーン上へ湿潤材料
を供給すると共に、前記スクリーン下方から乾燥
用熱風を送り、湿潤材料を流動化させながら乾燥
させ、そして乾燥材料を乾燥室内から取出すと共
に、排風を集塵機に流して微粉材料を回収する湿
潤材料乾燥設備に関するものである。
かかる従来の湿潤材料乾燥設備において水分値
制御は、乾燥機出口において排ガス温度を検知
し、設定値と比較して熱風発生炉の燃料供給量を
調節し、熱風温度を変えることにより行なつてい
る。この場合、水分設定値は乾燥機の達成目標水
分値に見合つた排ガス温度が採用される。例えば
石炭乾燥において、コークス炉に投入される粉炭
は、製造されたコークスの品質を均一にするため
に、また粉塵対策として一定水分の粉炭がよい。
ところが乾燥機排出コンベアより得られる石炭粒
(以下、大塊と呼ぶ)と一次集塵機で回収される
石炭粒(以下、回収微粉と呼ぶ)とでは、次表に
示すように水分値に大きな違いが見られ、また時
間経過(〜)によつても異なる。
The present invention supplies a wet material onto a screen in a drying chamber, sends drying hot air from below the screen, dries the wet material while fluidizing it, takes out the dry material from the drying chamber, and removes the exhaust air. This relates to wet material drying equipment that collects fine powder materials by flowing them into a dust collector. In such conventional wet material drying equipment, the moisture value is controlled by detecting the exhaust gas temperature at the dryer outlet, comparing it with a set value, adjusting the amount of fuel supplied to the hot air generating furnace, and changing the hot air temperature. . In this case, as the moisture setting value, an exhaust gas temperature that matches the target moisture value of the dryer is adopted. For example, in coal drying, the pulverized coal fed into the coke oven should preferably have a constant moisture content in order to make the quality of the produced coke uniform and as a countermeasure against dust.
However, there is a large difference in moisture content between the coal particles obtained from the dryer discharge conveyor (hereinafter referred to as large lumps) and the coal particles recovered by the primary dust collector (hereinafter referred to as recovered fine powder), as shown in the following table. It also varies with the passage of time (~).
【表】
したがつて、処理材料の粒度構成によつては、
最終的に排出コンベア上で得られる乾燥石炭の水
分値は始めの設定値と異なり、当初の目標値が達
成できない。そこで最近では、たとえば特開昭53
−49366号公報に見られるように、乾燥粉砕機に
送り込む前のコークス原料炭に対して水分と秤量
との測定を行なつて、両測定値を入熱量演算装置
に入力すると共に、乾燥粉砕機から出てきたコー
クスの水分測定を行なつて、その測定値を入熱量
演算装置にフイードバツクし、以つて乾燥粉砕機
への入熱量を算出する方式が提供されている。し
かし、この従来方式によると、送り込み側におけ
る秤量の測定であることから、入熱量のコントロ
ールは非常にむずかしいものとなる。すなわちコ
ークス原料炭は、ホツパーへ投入する前には野積
みなどされているため含有水分の変動が激しく、
それに応じて秤量の測定値も大きく変動すること
から、入熱量のコントロールは容易に、かつ応答
性良く行なえない。
本発明は、乾燥材料輸送装置と微粉材料輸送装
置に夫々重量検出器を設けると共に、取出された
乾燥材料ならびに回収された微粉材料の水分値を
検出する水分値検出器を夫々設け、これら重量検
出器ならびに水分値検出器からの信号を比較して
平均水分値を算出する演算器を設け、この演算器
からの平均水分値信号と、乾燥室内の排ガス温度
検出器で検出した温度とを、乾燥用熱風の温度設
定値を制御する制御器に与えるように構成した湿
潤材料乾燥設備を提供するものであり、かかる構
成によると、湿潤材料の粒度構成により大塊と回
収微粉との量が大きく変化する場合にも、また湿
潤材料の乾燥機入口での水分値が大きく変動する
場合にも、目標とする水分値を精度良く達成でき
る。
以下、本発明の一実施例を図面に基づいて説明
する。1は乾燥機で、その下端には熱風発生炉2
が連通し、さらに熱風発生炉2には燃料供給管3
と一次空気供給管4と二次空気供給管5とが連通
している。前記乾燥機1内には乾燥室が形成さ
れ、この乾燥室内のスクリーン上へ粉炭(湿潤材
料)6が原料サージビン7から供給される。供給
された粉炭6は、前記スクリーン上を一端から他
端へ流動して行くのであるが、その流動中におい
て熱風発生炉2からの乾燥用熱風がスクリーン下
方から送り込まれ、以つて粉炭は乾燥される。乾
燥機1の他端からは乾燥された大塊(乾燥材料)
8が取出され、そして第1排出コンベア(乾燥材
料輸送装置)9に渡される。前記乾燥機1の上部
は一次集塵機10に連通し、以つて乾燥室からの
排風を一次集塵機10に流して微粉を回収し得る
ようにしている。一次集塵機10で回収された微
粉11は第2排出コンベア(微粉材料輸送装置)
12に取出され、そして第1排出コンベア9に合
流される。一次集塵機10からの排風は二次集塵
機13に入り、そして排風機に至る。
前記両排出コンベア9,12には夫々重量検出
器14,15が設けられ、その検出信号Y1,Y2
が演算器16にインプツトされる。また大塊8な
らびに微粉11からサンプリング8a,11aが
取出され、これらは水分値検出器17,18に
夫々供給される。これら水分値検出器17,18
からの検出信号X1,X2%も演算器16にインプ
ツトされる。演算器16においてはインプツトさ
れた信号に基づいて平均水分値を演算する。すな
わち、ここで湿式ベースを例にとると、
となる。これにより全排出物の平均水分値を算出
する。この値を設備の目標設定値と比較し、そし
て制御器19へ平均水分値信号Zを与える。一方
制御器19では熱風発生炉2の排ガス温度が一定
の設定値になるように、燃料供給管3中に設けた
弁20を信号Aで制御し、以つて熱風発生炉2へ
の燃料供給量をコントロールしている。すなわち
制御器19へ演算器16より送られた信号Zによ
り排ガス温度設定値をコントロールする。さらに
詳しく述べれば、制御器19における初めの設定
値をSとしたとき、〔S≠Z)ならば新たに設定
値をZに変更するとともに、排ガス温度検出器2
1より検出した温度TをZと比較し、〔T−Z>
O〕ならば弁20絞るための信号Aが与えられ、
〔T−Z<O〕ならば弁20を開けるための信号
Aが与えられる。
本発明は次のような実施例も可能である。
Γ 大塊8および微粉11の水分値を連続的に検
知できる検出器(例えば中性子水分計)を排出
シユートに夫々設置して、正確な水分値を得
る。この水分値と重量検出器で得られる信号を
演算器16へ入れる。
Γ 熱源として熱風発生炉を設けず、温度一定の
排ガスなどを利用する場合は、排ガスと二次空
気取入口にダンパを設け、両ダンパの開閉度を
調節して、風量は一定で温度が変化するような
制御を行なう。
以上述べた本発明によると、乾燥処理して出て
くる乾燥材料と微粉材料との夫々の重量検出値と
水分検出値を基にして演算器で平均水分値を算出
し、この平均水分値と排ガスの温度検出値を制御
器に与えて、それに基づいて乾燥用熱風の温度設
定値を制御することから、湿潤材の粒度構成によ
り大塊と回収微粉との量が大きく変化する場合に
も、あるいは湿潤材料の乾燥機入口での水分値が
変更する場合にも、目標とする水分値を応答性良
く、かつ精度よく達成できる。[Table] Therefore, depending on the particle size composition of the processing material,
The moisture value of the dry coal finally obtained on the discharge conveyor differs from the initially set value, and the initial target value cannot be achieved. Therefore, recently, for example,
As seen in Publication No. 49366, moisture and weight are measured on the coking coal before it is sent to the dry pulverizer, and both measured values are input into the heat input calculation device, and the dry pulverizer A method has been proposed in which the moisture content of the coke discharged from the coke is measured, the measured value is fed back to a heat input calculation device, and the heat input to the drying and crushing machine is calculated. However, according to this conventional method, since the weight is measured on the feeding side, it is extremely difficult to control the amount of heat input. In other words, coking coal is piled up in the open before being fed into the hopper, so its moisture content fluctuates dramatically.
Since the measured value of the weighing value also varies greatly accordingly, the amount of heat input cannot be controlled easily and with good responsiveness. The present invention provides a weight detector for each of the dry material transport device and the fine powder material transport device, and also provides a moisture value detector for detecting the moisture value of the taken out dry material and the collected fine powder material, and detects the weight of these devices. A computing unit is provided to calculate the average moisture value by comparing the signals from the drying chamber and the moisture value detector, and the average moisture value signal from this computing unit and the temperature detected by the exhaust gas temperature detector in the drying chamber are used to calculate the average moisture value. The present invention provides wet material drying equipment configured to supply a temperature setting value of hot air to a controller that controls the temperature, and with such a configuration, the amount of large agglomerates and recovered fine powder varies greatly depending on the particle size structure of the wet material. The target moisture value can be achieved with high precision even when the moisture value of the wet material at the dryer entrance fluctuates greatly. Hereinafter, one embodiment of the present invention will be described based on the drawings. 1 is a dryer, and at the bottom is a hot air generator 2.
The hot air generating furnace 2 is connected to a fuel supply pipe 3.
The primary air supply pipe 4 and the secondary air supply pipe 5 are in communication with each other. A drying chamber is formed in the dryer 1, and powdered coal (wet material) 6 is supplied from a raw material surge bin 7 onto a screen in the drying chamber. The supplied pulverized coal 6 flows on the screen from one end to the other, and while it is flowing, drying hot air from the hot air generating furnace 2 is sent from below the screen, thereby drying the pulverized coal. Ru. From the other end of the dryer 1 is a dried mass (dried material).
8 is removed and passed to a first discharge conveyor (dry material transport device) 9. The upper part of the dryer 1 communicates with a primary dust collector 10, so that the exhaust air from the drying chamber can be passed through the primary dust collector 10 to collect fine powder. The fine powder 11 collected by the primary dust collector 10 is transferred to a second discharge conveyor (fine powder material transport device).
12 and merged into the first discharge conveyor 9. The exhaust air from the primary dust collector 10 enters the secondary dust collector 13 and then reaches the exhaust fan. Both discharge conveyors 9 and 12 are provided with weight detectors 14 and 15, respectively, and their detection signals Y 1 and Y 2
is input to the arithmetic unit 16. Further, samples 8a and 11a are taken out from the large mass 8 and the fine powder 11, and these are supplied to moisture value detectors 17 and 18, respectively. These moisture value detectors 17, 18
Detection signals X 1 and X 2 % are also input to the arithmetic unit 16. The calculator 16 calculates an average moisture value based on the input signal. In other words, if we take the wet base as an example, becomes. This calculates the average moisture value of all waste. This value is compared to the equipment target setting and provides an average moisture value signal Z to the controller 19. On the other hand, the controller 19 controls the valve 20 provided in the fuel supply pipe 3 using the signal A so that the exhaust gas temperature of the hot air generating furnace 2 becomes a constant set value, thereby controlling the amount of fuel supplied to the hot air generating furnace 2. is controlled. That is, the exhaust gas temperature set value is controlled by the signal Z sent from the calculator 16 to the controller 19. More specifically, when the initial setting value in the controller 19 is S, if [S≠Z], the setting value is changed to Z, and the exhaust gas temperature detector 2
Compare the temperature T detected from 1 with Z, and find [T-Z>
O], then a signal A is given to throttle the valve 20,
If [T-Z<O], a signal A for opening the valve 20 is given. The following embodiments of the present invention are also possible. Γ A detector (for example, a neutron moisture meter) capable of continuously detecting the moisture value of the large lump 8 and the fine powder 11 is installed in each discharge chute to obtain an accurate moisture value. This moisture value and the signal obtained from the weight detector are input to the calculator 16. Γ If you do not install a hot air generator as a heat source and use exhaust gas with a constant temperature, install a damper at the exhaust gas and secondary air intake, and adjust the opening/closing degree of both dampers to keep the air volume constant and the temperature change. control such that According to the present invention described above, an average moisture value is calculated by a calculator based on the weight detection value and moisture detection value of the dry material and the fine powder material that come out of the drying process, and this average moisture value and Since the temperature detection value of the exhaust gas is given to the controller and the temperature set value of the drying hot air is controlled based on it, even when the amount of large lumps and recovered fine powder changes greatly depending on the particle size composition of the wetting material, Alternatively, even if the moisture value of the wet material at the dryer entrance changes, the target moisture value can be achieved with good responsiveness and accuracy.
図面は本発明の一実施例を示し、第1図は説明
図、第2図はフローチヤートである。
1……乾燥機、2……熱風発生炉、3……燃料
供給管、6……粉炭(湿潤材料)、8……大塊
(乾燥材料)、9……第1排出コンベア(乾燥材料
輸送装置)、10……一次集塵機、11……微
粉、12……第2排出コンベア(微粉材料輸送装
置)、14,15……重量検出器、16……演算
器、17,18……水分値検出器、19……制御
器、20……弁、21……排ガス温度検出器。
The drawings show one embodiment of the present invention, with FIG. 1 being an explanatory diagram and FIG. 2 being a flowchart. 1... Dryer, 2... Hot air generator, 3... Fuel supply pipe, 6... Powdered coal (wet material), 8... Large lump (dry material), 9... First discharge conveyor (dry material transportation) device), 10...Primary dust collector, 11...Fine powder, 12...Second discharge conveyor (fine powder material transport device), 14, 15...Weight detector, 16...Calculator, 17, 18...Moisture value Detector, 19...Controller, 20...Valve, 21...Exhaust gas temperature detector.
Claims (1)
ると共に、前記スクリーン下方から乾燥用熱風を
送り、湿潤材料を流動化させながら乾燥させ、そ
して乾燥材料を乾燥室内から取出すと共に、排風
を集塵機に流して微粉材料を回収する湿潤材料乾
燥設備において、乾燥材料輪送装置と微粉材料輸
送装置に夫々重量検出器を設けると共に、取出さ
れた乾燥材料ならびに回収された微粉材料の水分
値を検出する水分値検出器を夫々設け、これら重
量検出器ならびに水分値検出器からの信号を比較
して平均水分値を算出する演算器を設け、この演
算器からの平均水分値信号と、乾燥室内の排ガス
温度検出器で検出した温度とを、乾燥用熱風の温
度設定値を制御する制御器に与えるように構成し
たことを特徴とする湿潤材料乾燥設備。1. The wet material is supplied onto the screen in the drying chamber, and hot air for drying is sent from below the screen to dry the wet material while fluidizing it.The dry material is taken out from the drying chamber, and the exhaust air is sent to the dust collector. In wet material drying equipment that collects fine powder materials, a weight detector is installed in each of the dry material transportation device and the fine powder material transportation device, and a moisture value detector is installed to detect the moisture value of the removed dry material and the recovered fine powder material. A calculator is provided for calculating the average moisture value by comparing the signals from the weight detector and the moisture value detector, and detects the average moisture value signal from the calculator and the exhaust gas temperature in the drying chamber. 1. A wet material drying equipment characterized in that the temperature detected by the drying device is configured to be applied to a controller that controls a temperature setting value of hot air for drying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4327182A JPS58158487A (en) | 1982-03-17 | 1982-03-17 | Drying facility for damp material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4327182A JPS58158487A (en) | 1982-03-17 | 1982-03-17 | Drying facility for damp material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58158487A JPS58158487A (en) | 1983-09-20 |
JPS6138984B2 true JPS6138984B2 (en) | 1986-09-01 |
Family
ID=12659153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4327182A Granted JPS58158487A (en) | 1982-03-17 | 1982-03-17 | Drying facility for damp material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58158487A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545734Y2 (en) * | 1986-06-30 | 1993-11-25 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291991A (en) * | 1987-05-26 | 1988-11-29 | Mitsubishi Heavy Ind Ltd | Drying of coal |
JP2512567B2 (en) * | 1989-10-16 | 1996-07-03 | 株式会社中山製鋼所 | Wet coal moisture conditioning method for coke oven charging coal conditioning facility |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5349366A (en) * | 1976-10-18 | 1978-05-04 | Nippon Steel Corp | Automatic moisture controller for material coal fed to coke oven |
-
1982
- 1982-03-17 JP JP4327182A patent/JPS58158487A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5349366A (en) * | 1976-10-18 | 1978-05-04 | Nippon Steel Corp | Automatic moisture controller for material coal fed to coke oven |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0545734Y2 (en) * | 1986-06-30 | 1993-11-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS58158487A (en) | 1983-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4077763A (en) | Method for regulating combustion processes, particularly for the production of cement in a rotary kiln | |
CN108672025B (en) | A kind of multi-state optimal decoupling control method of steel ball coal-grinding pulverized coal preparation system | |
JPS6138984B2 (en) | ||
US2916215A (en) | Air systems for dry material reduction mills and controls therefor | |
CN104728854B (en) | Pulverized coal preparation system and method with air-blew pulverized coal heat measurement and control functions | |
JPH0398917A (en) | Method and device for operating plant | |
JP2825734B2 (en) | Control device for coal drying / classifying device | |
JPH077311Y2 (en) | Coal drying / classifying equipment | |
JPS6124629B2 (en) | ||
US2931718A (en) | Method and apparatus for automatically measuring and controlling moisture in a sinter mix or the like | |
Genç | Optimization of a fully air-swept dry grinding cement raw meal ball mill closed circuit capacity with the aid of simulation | |
JPH10253251A (en) | Control method and device for fluidized bed drying machine | |
KR20010063555A (en) | Continuous measuring device of fuel size for sintering | |
JPH1038257A (en) | Method for estimating stable combustion by coal property | |
JPH06299176A (en) | Method for preventing coal from accumulating and blowing through in drier and classifier of coal | |
McCarthy | Design and characterization of an apparatus for agglomeration testing during flash pyrolysis in entrained flow reactors | |
SU507660A1 (en) | Method for automatic control of fluid bed roasting | |
JPH10185792A (en) | Method and apparatus for measurement of fineness, method and apparatus of control of pulverization process as well as powder manufacturing apparatus | |
JPS60230035A (en) | Moisture measuring instrument | |
JP3205210B2 (en) | Moisture control method for coal humidity control equipment | |
JP2998234B2 (en) | Mill output measurement device | |
JPS5925746B2 (en) | Continuous granulation and sintering method for fly attachment | |
WO2023180191A1 (en) | Feedback control loop for pneumatic conveying | |
JPS6129766Y2 (en) | ||
SU1543208A1 (en) | Method of automatic control of loose material granulating and drying process in drum drier |