JP2825734B2 - Control device for coal drying / classifying device - Google Patents
Control device for coal drying / classifying deviceInfo
- Publication number
- JP2825734B2 JP2825734B2 JP15870393A JP15870393A JP2825734B2 JP 2825734 B2 JP2825734 B2 JP 2825734B2 JP 15870393 A JP15870393 A JP 15870393A JP 15870393 A JP15870393 A JP 15870393A JP 2825734 B2 JP2825734 B2 JP 2825734B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- hot air
- control device
- air flow
- classifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Combined Means For Separation Of Solids (AREA)
- Coke Industry (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、石炭の乾燥・分級装置
における適正流動層の形成と安定搬送を実現するための
制御装置、特に流動層の層厚計測と層厚制御ならびに排
ガス温度制御に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for forming a proper fluidized bed and stably transporting it in a coal drying / classifying apparatus, and more particularly to a bed thickness measurement and bed thickness control of a fluidized bed and an exhaust gas temperature control. Things.
【0002】[0002]
【従来の技術】図3は、従来の制御装置を示したもの
で、石炭は石炭投入装置4から投入され、流動乾燥室1
で石炭を流動層を形成して搬送しながら乾燥し、分級室
2で微・細粒炭は上部に吹き上げながら粗粒炭は下部に
流動層を形成して出側の切出装置9に搬送される。石炭
の流動搬送ならびに乾燥・分級のための熱風流量の操作
は、流動乾燥室1と分級室2に分けて行われている。流
動乾燥室1は、一つの熱風供給管3から熱風が供給さ
れ、石炭の投入装置4から装入された石炭中の微粒炭が
飛散しない程度の0.1〜3.0メートル/秒の空塔速
度で熱風が分散板5から吹き出され石炭の乾燥ならびに
流動化搬送を行なう。このための熱風流量の設定は、熱
風供給管3の熱風流量制御弁22を操作して行なう。分
級室2についても、4〜10メートル/秒の空塔速度の
範囲で適正空塔速度になるように、熱風供給管7の熱風
調整弁25の設定操作を行っている。各熱風流量の設定
操作は、投入石炭の量,石炭中の水分,石炭の粒度分布
などにより運転者が判定し頻繁に行っている。分級室2
から流動搬送された粗粒炭は切出制御装置9のある排出
部に堆積され、投入石炭量,微・細粒炭と粗粒炭の分級
率などにより適正切出量を運転者が推定し、切出制御装
置9を設定操作している。2. Description of the Related Art FIG. 3 shows a conventional control device, in which coal is charged from a coal charging device 4 and a fluidized drying chamber 1 is provided.
The coal is dried while forming a fluidized bed and transported in the classifier 2. The fine and fine coal is blown up in the classification chamber 2 while the coarse coal is formed in the lower part and transported to the cut-out device 9 on the outlet side Is done. The operation of the flow of coal and the flow of hot air for drying and classifying the coal are performed in a fluidized drying chamber 1 and a classifying chamber 2 separately. The fluidized-drying chamber 1 is supplied with hot air from one hot-air supply pipe 3 and has an empty space of 0.1 to 3.0 m / sec to such an extent that the fine coal in the coal charged from the coal input device 4 is not scattered. Hot air is blown from the dispersing plate 5 at the tower speed to carry out drying and fluidization and transportation of the coal. The setting of the hot air flow rate for this purpose is performed by operating the hot air flow control valve 22 of the hot air supply pipe 3. In the classifying chamber 2, the setting operation of the hot air adjusting valve 25 of the hot air supply pipe 7 is performed so that the superficial superficial velocity is within the superficial superficial velocity of 4 to 10 meters / second. The setting operation of each hot air flow rate is frequently performed by the driver who determines the amount of coal input, the moisture in the coal, the particle size distribution of the coal, and the like. Classification room 2
The coarse coal which has been flow-conveyed from is deposited at the discharge section where the cutout control device 9 is located, and the driver estimates the appropriate cutout amount based on the input coal quantity, the classification ratio of fine and fine coal and coarse coal, and the like. The setting operation of the cutout control device 9 is performed.
【0003】[0003]
【発明が解決しようとする課題】しかし、流動乾燥室に
対して、一つ熱風供給装置による熱風流量操作では、流
動搬送方向に適正な空塔速度分布が得られにくいことに
よる堆積あるいは吹き抜けなどの搬送トラブルの多発
と、石炭の装入量,水分などの変動により頻繁に熱風流
量の設定操作をしなければならない問題を抱えている。
また、従来法は、排出ガス中の水分の結露により排出管
内で吹き上げられた微粒炭の付着と、腐食性の強い成分
の結露による腐食促進を防止する手段が取りにくいもの
である。However, when a hot air flow rate operation is performed by a single hot air supply device with respect to a fluidized drying chamber, it is difficult to obtain an appropriate superficial velocity distribution in the flowing and conveying direction. Due to frequent transport troubles and fluctuations in the amount of coal charged, moisture, etc., there is a problem that the setting operation of the hot air flow rate must be frequently performed.
Further, in the conventional method, it is difficult to take a means for preventing the adhesion of the fine coal blown up in the discharge pipe due to the condensation of the moisture in the exhaust gas and the promotion of corrosion due to the condensation of the highly corrosive components.
【0004】本発明は、上記のような問題を解決するた
めになされたもので、流動乾燥室の流動搬送性の向上と
排出ガス中の結露防止による操業トラブルの低減ならび
に運転操作監視作業の省力化を目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been made to reduce the operational troubles by improving the fluid transportability of a fluidized drying chamber and preventing dew condensation in exhaust gas, and to save labor for monitoring operation. For the purpose of
【0005】[0005]
【課題を解決するための手段】本発明による石炭の乾燥
・分級装置の制御装置は、流動乾燥室の熱風供給制御を
三分割し流動搬送性を向上させ、三分割された流動乾燥
室の上流側の二つのセクションに流動化を把握するため
の流動浮遊層の層厚を測定する層厚計を設け、該層厚計
の測定値により該熱風供給管の熱風流量を自動変更する
ことによる流動搬送の安定化と運転操作の省力化、石炭
投入口直下への熱風吹き込みによる排ガス温度の調整を
可能にする層厚制御装置と排ガス温度制御装置を設けた
ものである。即ち本発明の要旨は次の通りである。According to the present invention, there is provided a control apparatus for a coal drying / classifying apparatus in which a hot air supply control of a fluidized drying chamber is divided into three parts to improve a fluid conveyance property, and an upstream of the three divided fluidized drying chambers. The two sections on the side are provided with a thickness gauge for measuring the thickness of the fluidized floating bed for grasping fluidization, and the flow by automatically changing the hot air flow rate of the hot air supply pipe based on the measurement value of the thickness gauge is measured. It is equipped with a layer thickness control device and an exhaust gas temperature control device that enable stabilization of transportation, labor saving of operation operation, and adjustment of exhaust gas temperature by blowing hot air directly below the coal inlet. That is, the gist of the present invention is as follows.
【0006】(1)水平方向に配設した分散板の下方か
ら熱風を吹き上げ、該分散板上に供給した石炭を流動化
しつつ搬送し、上部に熱風を排出する排出管を連結した
流動乾燥室と、該流動乾燥室から搬送された石炭をさら
に排出路側に流動搬送しつつ微・細粒炭を吹き上げて微
・細粒炭と粗粒炭に分級する分級室と、流動搬送された
粗粒炭を排出する粗粒炭切出装置と、前記流動乾燥室と
分級室の底部から熱風を供給する熱風供給装置から構成
される石炭の乾燥・分級装置において、三つに分割され
た流動乾燥室の熱風流量制御装置と、流動搬送される石
炭の流動浮遊層の層厚を計測する層厚計と、石炭投入口
直下に熱風を導入して排出ガス温度を調整する排ガス温
度制御装置を有することを特徴とする石炭の乾燥・分級
装置の制御装置。[0006] (1) A fluidized drying chamber in which hot air is blown up from below a horizontally arranged dispersing plate to convey the coal supplied onto the dispersing plate while fluidizing it, and to which a discharge pipe for discharging the hot air is connected to the upper portion. And a classifying chamber for blowing fine and fine coal while classifying the coal conveyed from the fluidized drying chamber further to the discharge path side to classify the coal into fine and fine coal and coarse coal, In a coal drying / classifying device comprising a coarse-grained coal cutting device for discharging coal and a hot air supply device for supplying hot air from the bottom of the fluidized drying chamber and the classifying chamber, a fluidized drying chamber divided into three A hot air flow rate control device, a layer thickness gauge that measures the layer thickness of the fluidized floating layer of the coal being flow-conveyed, and an exhaust gas temperature control device that adjusts the exhaust gas temperature by introducing hot air just below the coal inlet A control device for a coal drying / classifying device, characterized in that:
【0007】(2)流動乾燥室に供給する熱風流量を、
該流動乾燥室に設けられた層厚計の測定値でもって、熱
風流量の自動変更を可能にした熱風流量制御装置を有す
ることを特徴とする前記(1)項記載の石炭・分級装置
の制御装置。(2) The flow rate of hot air supplied to the fluidized drying chamber is
The control of the coal / classification apparatus according to the above (1), further comprising a hot air flow rate control device capable of automatically changing a hot air flow rate based on a measured value of a layer thickness meter provided in the fluidized drying chamber. apparatus.
【0008】[0008]
【作用】本発明における流動乾燥室の熱風流量制御の三
分割は、より一層流動乾燥性を向上させ、層厚計は流動
搬送状況の指標として寄与し、該層厚計の測定値が大き
くなれば堆積現象と予測し熱風流量を増加するように作
用し、該測定値が小さくなれば吹抜け現象と予測し熱風
流量を減少するように作用する。三分割された各セクシ
ョンの熱風流量制御は、適正流動層の形成と搬送性を維
持しながら、石炭の乾燥と分級の品質を確保するため
に、各セクションの熱風流量の値が適正な管理範囲内に
なるように運転者の判断による操作設定で行われる。石
炭投入量の変更,石炭中の水分変動などの操業条件の変
動による流動搬送状態の変化を各セクションの層厚計で
検知して、セクションごとに堆積あるいは吹き抜けが解
消するように熱風流量を自動変更する。排出ガス中の水
分の結露は排出ガスの温度が結露温度以下になると石炭
投入直下に吹き込む熱風流量を増加し排出ガスの温度を
上昇させることにより防止する。According to the present invention, the three divisions of the hot air flow rate control in the fluidized drying chamber further improve the fluidized drying property, and the thickness gauge contributes as an index of the flow conveying condition, and the measured value of the thickness gauge can be increased. If the measured value is small, it is predicted as a blow-by phenomenon and acts to decrease the hot air flow rate. The hot air flow rate control of each section divided into three sections ensures that the value of the hot air flow rate of each section is within the appropriate control range in order to ensure the quality of coal drying and classification while maintaining proper fluidized bed formation and transportability. It is performed by the operation setting according to the driver's judgment so as to be within. Changes in the flow state due to changes in operating conditions such as changes in coal input and fluctuations in moisture in coal are detected by a layer thickness gauge in each section, and the hot air flow rate is automatically adjusted to eliminate accumulation or blow-by for each section. change. Condensation of water in the exhaust gas is prevented by increasing the flow rate of hot air blown just below the coal input and raising the temperature of the exhaust gas when the temperature of the exhaust gas falls below the condensation temperature.
【0009】[0009]
【実施例】本発明の実施例を図1でもって説明する。流
動乾燥室1における、より一層安定した流動搬送性を得
るために、該流動乾燥室1の熱風流量供給を3つのセク
ション15,16および17に分割し、特に、流動搬送
トラブルの多いAセクション15とBセクション16
に、石炭の流動浮遊層の層厚を測定するための層厚計1
9と20を設け、投入石炭の量,石炭中の水分などの操
業条件を考慮して、流動搬送が可能で堆積あるいは吹き
抜けを起こさないように、式(1)の風量演算式の指標
Fの適正値が、セクションごとに運転者によって決めら
れ、流動乾燥室1の熱風流量制御装置6,10および1
1に対してそれぞれ設定される。該流量制御装置6,1
0および11は指標Fの計算値が設定された適正値にな
るように熱風流量を操作して制御を行う。前述のよう
に、特に、石炭の堆積あるいは吹き抜けトラブルの多い
Aセクション15の流量制御装置6と10については、
層厚計19と20の測定値により、それぞれのセクショ
ンの指標Fの設定値が自動的に変更される。An embodiment of the present invention will be described with reference to FIG. In order to obtain more stable fluid transportability in the fluidized drying chamber 1, the hot air flow rate supply of the fluidized drying chamber 1 is divided into three sections 15, 16 and 17, and in particular, the A section 15 in which the fluid transport trouble often occurs. And B section 16
A layer thickness meter 1 for measuring the layer thickness of the fluidized floating layer of coal
9 and 20, taking into account operating conditions such as the amount of input coal and moisture in the coal, the flow rate can be transported and the index F of the air volume calculation equation of equation (1) can be set so as not to cause accumulation or blow-by. The appropriate value is determined by the driver for each section, and the hot air flow control devices 6, 10 and 1 of the fluidized drying chamber 1 are set.
1 is set for each. The flow control device 6,1
0 and 11 are controlled by operating the hot air flow rate so that the calculated value of the index F becomes a set appropriate value. As described above, in particular, regarding the flow control devices 6 and 10 of the A section 15 in which coal accumulation or blow-through troubles occur frequently,
The set value of the index F of each section is automatically changed based on the measured values of the thickness gauges 19 and 20.
【0010】 F=(K・ρ・U2 )/2・g (1) 式(1)中の、Kは分散板5の開口率,ρは式(2)で
求められる熱風の比重,gは重力の加速度,Uは式
(3)で求められる分散板上の熱風ノズル穴の吐出実流
速である。F = (K · ρ · U 2 ) / 2 · g (1) In the equation (1), K is the aperture ratio of the dispersion plate 5, ρ is the specific gravity of the hot air obtained by the equation (2), g Is the acceleration of gravity, and U is the actual flow velocity of the discharge from the hot air nozzle holes on the dispersion plate, which is obtained by the equation (3).
【0011】 ρ=ρO {273/(273+T)} (2) U=Q{(273+T)/273}/a・3600 (3) 式(2)中のρO は基準状態における熱風の比重,式
(2)と式(3)中のTは熱風の温度で、式(3)中の
Qは熱風流量,aはノズル総面積である。Ρ = ρ O {273 / (273 + T)} (2) U = Q {(273 + T) / 273} / a · 3600 (3) In the equation (2), ρ O is the specific gravity of hot air in the reference state, In the equations (2) and (3), T is the temperature of the hot air, Q in the equation (3) is the hot air flow rate, and a is the total nozzle area.
【0012】分級室2すなわちDセクション18の熱風
流量制御装置8も、同様の指標Fでもって運転者が判定
した適切な値が該制御装置8に操作設定され、安定した
流動搬送・分級特性が得られるように熱風流量制御を行
う。In the classifying chamber 2, that is, the hot air flow control device 8 in the D section 18, an appropriate value determined by the driver using the similar index F is set and operated in the control device 8, so that stable flow conveyance / classification characteristics are obtained. The hot air flow rate is controlled so as to be obtained.
【0013】Aセクションをもとに制御の実施例の詳細
を説明する。熱風流量制御装置6は、石炭投入量,石炭
中の水分などの操業条件から適切な流動搬送,乾燥特性
が得られるように、前述の指標Fで、設定値FSAが運
転者の判断により熱風流量制御装置6に設定され、該制
御装置6は式(1)による計算値FPAが設定値FSA
に一致するように、Aセクションに供給される熱風流量
QAを熱風流量制御弁22により制御する。An embodiment of the control will be described in detail with reference to section A. The hot air flow rate control device 6 determines the set value FSA with the above-described index F based on the hot air flow rate according to the driver's judgment so that appropriate flow conveyance and drying characteristics can be obtained from operating conditions such as the amount of coal input and moisture in the coal. The control unit 6 sets the calculated value FPA according to the equation (1) to the set value FSA.
The hot air flow rate QA supplied to the A section is controlled by the hot air flow control valve 22 so that
【0014】次に図2でもって、層厚計による制御を説
明する。Aセクション15の層厚計19の測定値PVA
が設定値PHAを越えた場合、熱風流量制御装置6に対
する前述の設定値FSAを+α増加し、タイマー設定T
1A時間待って測定値PVAが設定値PHA以下になっ
ているかどうか判定し、設定値PHA以下であればその
ままの状態で制御を続ける。測定値PVAが設定値PH
A以下にならない場合は、設定値FSAをさらに+α増
加し、設定値FSAが上限設定値FSAHになるまで行
うが、測定値PVAが設定値PHA以下になった時点
で、設定値FSAの増加を止めそのままの状態で制御を
続ける。設定値FSAが上限設定値FSAHに達した場
合は、層厚計の信号による設定値の変更制御を停止する
と共に、制御不能として警報を発生する。Next, the control by the layer thickness gauge will be described with reference to FIG. Measured value PVA of layer thickness gauge 19 of A section 15
Exceeds the set value PHA, the aforementioned set value FSA for the hot air flow control device 6 is increased by + α, and the timer setting T
After waiting for 1A time, it is determined whether or not the measured value PVA is equal to or less than the set value PHA. If the measured value PVA is equal to or less than the set value PHA, the control is continued as it is. The measured value PVA is equal to the set value PH.
If the measured value PVA becomes equal to or less than the set value PHA, the set value FSA is further increased by + α, and the set value FSA becomes equal to or less than the set value PHA. Continue control with the stop. When the set value FSA has reached the upper limit set value FSAH, the control for changing the set value based on the signal of the layer thickness gauge is stopped, and an alarm is generated as control is impossible.
【0015】逆に、層厚計19の測定値PVAが、設定
値PLA未満になると熱風流量制御装置6の設定値FS
Aを−α減少し、タイマー設定T2A時間待って、測定
値PVAが設定値PLA以上になればそのままの状態で
制御を継続し、設定値PLA以上にならない場合はタイ
マー設定T2A時間の間隔で設定値FSAを−αステッ
プで繰り返し減少して行き、層厚計19の測定値PVA
が設定値PLA以上になった時点で、その時の状態を維
持して制御を続ける。設定値FSAが下限設定値FSA
Lに達した場合は、層厚計の信号による設定値の変更制
御を停止すると共に、制御不可として警報を発生する。Conversely, when the measured value PVA of the layer thickness gauge 19 becomes smaller than the set value PLA, the set value FS of the hot air flow controller 6 is set.
A is decreased by -α, and after waiting for the timer set time T2A, if the measured value PVA becomes equal to or more than the set value PLA, the control is continued as it is. The value FSA is repeatedly decreased in -α steps, and the measured value PVA of the thickness gauge 19 is obtained.
Becomes equal to or more than the set value PLA, the control is continued while maintaining the state at that time. Set value FSA is lower limit set value FSA
When it reaches L, the control of changing the set value by the signal of the layer thickness gauge is stopped, and an alarm is generated as control is impossible.
【0016】上記の制御動作の中で、タイマー設定時間
T1Aの設定時間内に、設定値PHA以上になった層厚
計19の測定値PVAが、設定値PHA以下になり再度
該PHA以上になっても該設定時間T1A経過するまで
は設定値FSAの加算はしない。また、タイマー設定時
間T2Aの設定時間内に、設定値PLA以下になった層
厚計19の測定値PVAが、設定値PLA以下になり再
度該PLA以上になっても該設定時間T2A経過するま
では設定値FSAの減算はしない。In the above control operation, the measured value PVA of the layer thickness gauge 19 which has become equal to or more than the set value PHA within the set time of the timer set time T1A becomes equal to or less than the set value PHA and again becomes equal to or more than the PHA. However, the set value FSA is not added until the set time T1A has elapsed. Also, even if the measured value PVA of the layer thickness gauge 19 which has become equal to or less than the set value PLA within the set time of the timer set time T2A becomes equal to or less than the set value PLA and becomes equal to or greater than the PLA again, the set time T2A elapses. Does not subtract the set value FSA.
【0017】Aセクション15の実施例では、PHA=
880パスカル(以下、パスカル=Paと記す),PL
A=560Pa,+α=+2%,−α=−2%,FSA
H=2000,FSAL=1500,T1A=5分,T
2A=5分の設定で良好な結果を得た。In the embodiment of section A, PHA =
880 Pascal (hereinafter referred to as Pascal = Pa), PL
A = 560 Pa, + α = + 2%, −α = −2%, FSA
H = 2000, FSAL = 1500, T1A = 5 minutes, T
Good results were obtained with a setting of 2A = 5 minutes.
【0018】Bセクション16の実施例も、Aセクショ
ン15と全く同じ熱風流量制御と層厚計による指標Fの
設定値の自動変更が行え、また、各種設定の値もAセク
ションと同等の値で良好な結果が得られた。In the embodiment of the B section 16 as well, the hot air flow rate control and the automatic change of the set value of the index F by the layer thickness gauge can be performed in exactly the same manner as the A section 15, and the values of various settings are the same as those of the A section. Good results were obtained.
【0019】次に、排ガス温度制御の実施例について述
べる。流動乾燥室1と分級室2に対して、バイパス的に
作用するバイパス熱風ライン27を設け、排ガス温度制
御装置12と熱風流量制御弁26を配し、定常時は、バ
グフィルタ28の出口の湿度検出端30からの測定値H
PVが、目標とする運転者による設定値HSVになるよ
うに、排ガス温度制御装置12は熱風流量制御弁26を
開閉して制御する。バグフィルタ出口の湿度HPVによ
る制御を行っている中で、温度検出端29のバグフィル
タ入り口の温度TPVが上限設定値TSVH以上になる
と、排ガス温度制御装置12を自動から手動に切替え湿
度HPVによる制御を停止し、流量制御弁26に対して
その時の操作出力の値MVからβだけ減算し、該制御弁
26をβだけ閉方向に動作させ、バグフィルタ入り口温
度の異常上昇を抑制してバグフィルタ内の濾布の焼損を
防止する。バグフィルタ入り口温度TPVが設定値TS
VL以下になり正常に復帰すると、排ガス温度制御装置
12を自動モードに戻して通常の湿度制御を続行する。Next, an embodiment of the exhaust gas temperature control will be described. A bypass hot air line 27 acting as a bypass is provided for the fluidized drying chamber 1 and the classifying chamber 2, and an exhaust gas temperature control device 12 and a hot air flow control valve 26 are provided. Measured value H from detection end 30
The exhaust gas temperature controller 12 opens and closes the hot air flow control valve 26 so that the PV becomes the target value HSV set by the driver. During the control by the humidity HPV at the bag filter outlet, when the temperature TPV at the bag filter inlet at the temperature detecting end 29 becomes equal to or higher than the upper limit set value TSVH, the exhaust gas temperature control device 12 is switched from automatic to manual and the control by the humidity HPV is performed. Is stopped, β is subtracted from the value MV of the operation output at that time for the flow control valve 26, and the control valve 26 is operated in the closing direction by β to suppress the abnormal rise of the bag filter inlet temperature, thereby reducing the bag filter. Prevents burning of the filter cloth inside. Bag filter entrance temperature TPV is set value TS
When the temperature returns to VL or less and returns to normal, the exhaust gas temperature controller 12 is returned to the automatic mode and normal humidity control is continued.
【0020】実施例では、TSVH=100℃,TSV
L=90℃,β=2%の設定で良好な結果を得た。In the embodiment, TSVH = 100 ° C., TSVH
Good results were obtained with L = 90 ° C. and β = 2%.
【0021】[0021]
【発明の効果】本発明の実施により、石炭の乾燥・分級
装置の運転操作の作業を大幅に軽減し、作業省力化に多
大の成果を得た。また、流動搬送における石炭の堆積あ
るいは吹き抜けトラブルが少なくなり、排ガス管ライン
の異常温度上昇と結露にトラブルもなくなる。According to the present invention, the operation for operating the coal drying / classifying apparatus is greatly reduced, and a great result is achieved in labor saving. In addition, problems such as coal accumulation or blow-through during fluid conveyance are reduced, and abnormal temperature rise and dew condensation in the exhaust gas pipe line are also eliminated.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の石炭流動乾燥炉の制御装置の概略構成
図。FIG. 1 is a schematic configuration diagram of a control apparatus for a fluidized-flow coal oven of the present invention.
【図2】本発明の制御装置の概略機能概念図。FIG. 2 is a schematic functional conceptual diagram of the control device of the present invention.
【図3】従来の石炭流動乾燥炉の制御装置の概略構成
図。FIG. 3 is a schematic configuration diagram of a control device of a conventional coal fluidized-bed drying furnace.
1…流動乾燥室 16…流動乾燥
炉Bセクション 2…分級室 17…流動乾燥
炉Cセクション 3…Aセクション熱風供給管 18…流動乾燥
炉Dセクション 4…石炭投入装置 19…Aセクシ
ョン層厚計 5…分散板 20…Bセクシ
ョン層厚計 6…Aセクション熱風流量制御装置 21…欠 7…Dセクション熱風供給管 22…Aセクシ
ョン熱風流量制御弁 8…Dセクション熱風流量制御装置 23…Bセクシ
ョン熱風流量制御弁 9…粗粒炭切り出し装置 24…Cセクシ
ョン熱風流量制御弁 10…Bセクション熱風流量制御装置 25…Dセクシ
ョン熱風流量制御弁 11…Cセクション熱風流量制御装置 26…熱風バイ
パス流量制御弁 12…排ガス温度制御装置 27…バイパス
熱風ライン 13…Bセクション熱風供給管 28…バグフィ
ルタ 14…Cセクション熱風供給管 29…温度検出
器 15…流動乾燥炉Aセクション 30…温度検出
器 F…熱風流量の指標(無単位) Q…熱風流量
(Nm3 /h) K…分散板の開口率(無単位) T…熱風温度
(℃) ρO …基準状態の比重(無単位,対空気比) ρ…使用状態の比重(無単位,対空気比) g…重力の加速度(m/S2 ) U…分散板上の熱風ノズルの吐出実流速(m/S) a…ノズル総面積(m2 ) FSA…Aセクションの指標Fの設定値 FPA…Aセクションの熱風流量(QA)による指標F
の計算値 FSAH…Aセクションの指標Fの上限制限値 FSAL…Aセクションの指標Fの下限制限値 QA…Aセクションの熱風流量の測定値(Nm3 /h) PVA…Aセクションの層厚計の測定値(Pa) PHA…Aセクションの層厚制御のHigh側設定値
(Pa) PLA…Aセクションの層厚制御のLow側設定値(P
a) +αA…AセクションのFSAの加算量(%) −αA…AセクションのFSAの減算量(%) T1A…AセクションのFSA加算時の制御タイマー設
定時間(分) T2A…AセクションのFSA減算時の制御タイマー設
定時間(分) HPV…バグフィルタ出口の排ガス湿度の測定値(相対
湿度%) HSV…バグフィルタ出口の排ガス湿度の測定値(相対
湿度%) β…熱風バイパス流量制御弁の開度変更量(%) TPV…バグフィルタ入口の排ガス温度の測定値(℃) TSVH…バグフィルタ入口の排ガス温度の上限設定値
(℃) TSVL…バグフィルタ入口の排ガス温度の下限設定値
(℃)DESCRIPTION OF SYMBOLS 1 ... Fluid drying chamber 16 ... Fluid drying furnace B section 2 ... Classification chamber 17 ... Fluid drying furnace C section 3 ... A section hot air supply pipe 18 ... Fluid drying furnace D section 4 ... Coal charging device 19 ... A section layer thickness gauge 5 ... Dispersion plate 20 ... B section layer thickness gauge 6 ... A section hot air flow control device 21 ... Missing 7 ... D section hot air flow control valve 22 ... A section hot air flow control valve 8 ... D section hot air flow control device 23 ... B section hot air flow Control valve 9 ... Coarse-coal cutting device 24 ... C section hot air flow control valve 10 ... B section hot air flow control device 25 ... D section hot air flow control valve 11 ... C section hot air flow control device 26 ... Hot air bypass flow control valve 12 ... Exhaust gas temperature control device 27 bypass hot air line 13 section B hot air supply pipe 28 bag filter 1 The aperture ratio of ... C section hot air supply pipe 29 ... temperature detectors 15 ... fluidized drying oven A section 30 ... temperature detectors F ... hot air flow indicators (no unit) Q ... hot air flow rate (Nm 3 / h) K ... dispersion plate (No unit) T: Hot air temperature (° C) ρ O : Specific gravity of reference condition (No unit, ratio to air) ρ: Specific gravity of use condition (No unit, Ratio to air) g: Acceleration of gravity (m / S 2) U: Actual discharge velocity of the hot air nozzle on the dispersion plate (m / S) a: Total area of the nozzle (m 2 ) FSA: Set value of index F of section A FPA: Index F by hot air flow rate (QA) of section A
FSAL ... Upper limit value of index F in section A FSAL ... Lower limit value of index F in section A QA ... Measured value of hot air flow rate in section A (Nm 3 / h) PVA ... Measured value (Pa) PHA: High-side set value of layer thickness control of A section (Pa) PLA: Low-side set value of layer thickness control of A section (P
a) + αA... A section FSA addition amount (%) −αA... A section FSA subtraction amount (%) T1A... control timer setting time (FSA subtraction) for A section A FSA subtraction Set time of control timer at time (minutes) HPV: Measured value of exhaust gas humidity at outlet of bag filter (relative humidity%) HSV: Measured value of exhaust gas humidity at outlet of bag filter (relative humidity%) β: Open of hot air bypass flow control valve Degree of change (%) TPV: Measured value of exhaust gas temperature at bag filter inlet (° C) TSVH: Upper limit set value of exhaust gas temperature at bag filter inlet (° C) TSVL: Lower limit set value of exhaust gas temperature at bag filter inlet (° C)
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C10L 5/00 B07B 4/08Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C10L 5/00 B07B 4/08
Claims (2)
風を吹き上げ、該分散板上に供給した石炭を流動化しつ
つ搬送し、上部に熱風を排出する排出管を連結した流動
乾燥室と、該流動乾燥室から搬送された石炭をさらに排
出路側に流動搬送しつつ微・細粒炭を吹き上げて微・細
粒炭と粗粒炭に分級する分級室と、流動搬送された粗粒
炭を排出する粗粒炭切出装置と、前記流動乾燥室と分級
室の底部から熱風を供給する熱風供給装置から構成され
る石炭の乾燥・分級装置において、三つに分割された流
動乾燥室の熱風流量制御装置と、流動搬送される石炭の
流動浮遊層の層厚を計測する層厚計と、石炭投入口直下
に熱風を導入して排出ガス温度を調整する排ガス温度制
御装置を有することを特徴とする石炭の乾燥・分級装置
の制御装置。1. A fluidized drying chamber in which a hot air is blown up from below a horizontally arranged dispersion plate to convey the coal supplied on the dispersion plate while fluidizing the coal, and a discharge pipe connected to an upper portion thereof for discharging the hot air. A classifying chamber for blowing up fine and fine coal while classifying fine coal into fine coal and coarse coal while further transporting the coal conveyed from the fluidized drying chamber to the discharge path side; In the coal drying and classifying apparatus composed of a coarse coal cutting device for discharging coal and a hot air supply device for supplying hot air from the bottom of the fluidized drying chamber and the classifying chamber, the fluidized drying chamber divided into three It has a hot air flow control device, a layer thickness gauge for measuring the layer thickness of the fluidized floating layer of the coal being flow-conveyed, and an exhaust gas temperature control device for adjusting the exhaust gas temperature by introducing hot air just below the coal inlet. Characteristic control device for coal drying and classifying device.
動乾燥室に設けられた層厚計の測定値でもって、熱風流
量の自動変更を可能にした熱風流量制御装置を有するこ
とを特徴とする請求項1記載の石炭・分級装置の制御装
置。2. A hot air flow rate control device which enables automatic change of a hot air flow rate based on a measured value of a layer thickness meter provided in the fluidized drying chamber, wherein the hot air flow rate supplied to the fluidized drying chamber is provided. The control device for a coal and classification device according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15870393A JP2825734B2 (en) | 1993-06-29 | 1993-06-29 | Control device for coal drying / classifying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15870393A JP2825734B2 (en) | 1993-06-29 | 1993-06-29 | Control device for coal drying / classifying device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0711270A JPH0711270A (en) | 1995-01-13 |
JP2825734B2 true JP2825734B2 (en) | 1998-11-18 |
Family
ID=15677517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15870393A Expired - Lifetime JP2825734B2 (en) | 1993-06-29 | 1993-06-29 | Control device for coal drying / classifying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2825734B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101708493B (en) * | 2009-12-29 | 2013-04-03 | 长沙通发高新技术开发有限公司 | Full-boiling cyclone fluidized bed air separating damping machine and new air separating damping technology |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2996963B1 (en) * | 1998-10-27 | 2000-01-11 | 川崎重工業株式会社 | Fluidized bed drying / classifying equipment |
BR9906717A (en) * | 1998-11-02 | 2000-10-17 | Kawasaki Jugogyo Kabushiki Kai | Multi-chamber fluidized bed sorting equipment |
JP5058567B2 (en) * | 2006-11-17 | 2012-10-24 | 新日本製鐵株式会社 | Fluidized drying method and fluidized bed drying apparatus |
JP4691063B2 (en) * | 2007-04-19 | 2011-06-01 | 新日本製鐵株式会社 | Fluidized bed drying classifier |
CN102304376B (en) * | 2011-04-02 | 2013-08-07 | 中冶焦耐(大连)工程技术有限公司 | Full-boiling vibration propelled coal moisture control process |
CN102304377B (en) * | 2011-04-02 | 2013-08-07 | 中冶焦耐(大连)工程技术有限公司 | Full-boiling vibration propelled coal moisture control and grading integrated equipment |
WO2012176726A1 (en) | 2011-06-22 | 2012-12-27 | 株式会社Ihi | Circulating fluidized bed-type gasification furnace and fluid medium flow rate control method |
JP6244811B2 (en) * | 2013-10-22 | 2017-12-13 | 新日鐵住金株式会社 | Fluidized bed apparatus and coal drying classification method using the same |
JP6741393B2 (en) * | 2014-10-20 | 2020-08-19 | 日本製鉄株式会社 | Fluidized bed apparatus and method for dry classification of coal using the same |
-
1993
- 1993-06-29 JP JP15870393A patent/JP2825734B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101708493B (en) * | 2009-12-29 | 2013-04-03 | 长沙通发高新技术开发有限公司 | Full-boiling cyclone fluidized bed air separating damping machine and new air separating damping technology |
Also Published As
Publication number | Publication date |
---|---|
JPH0711270A (en) | 1995-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2825734B2 (en) | Control device for coal drying / classifying device | |
US20160348968A1 (en) | System having a process chamber for workpieces | |
WO2000024530A1 (en) | Fluidized bed-carrying drying classifier | |
JP5058567B2 (en) | Fluidized drying method and fluidized bed drying apparatus | |
WO2000025944A1 (en) | Multi-chamber type fluidized bed-carrying classifier | |
US4518123A (en) | Method for controlling the pulverization and dryness of flammable materials passing through a pulverizer, and method of controlling the pulverizing rate of the pulverizer | |
US20010046420A1 (en) | Pneumatic transport of chargeable resin powder | |
JP2004035913A (en) | Method and device for controlling blowing of granular powder | |
JPS58104839A (en) | Fixed quantity supply mechanism for equipment for continuously supplying fixed quantity of powder | |
JP2825726B2 (en) | Control method for preventing accumulation and blow-by of coal drying and classification equipment | |
JPH077311Y2 (en) | Coal drying / classifying equipment | |
JPS6370008A (en) | Growing fluid medium discharge system | |
JP3625639B2 (en) | Fluidized bed incinerator equipment and combustion control method for fluidized bed incinerator equipment | |
JPS5832136B2 (en) | Airtight discharge device for powder and granular materials | |
JP3605224B2 (en) | Granular material transport device | |
JPH06238184A (en) | Coal delivery quantity controller of vertical mill | |
JPH048337B2 (en) | ||
JPH08258980A (en) | Transporting condition determining method for powder and granular material inside hopper and device thereof | |
JPH0899718A (en) | Pneumatic transporting device | |
JPS6124629B2 (en) | ||
JPS6138984B2 (en) | ||
JPS5818986Y2 (en) | Powder temperature control device | |
JPS63226510A (en) | Method and device for controlling fluidized medium in fluidized-bed combustion furnace | |
JP4142832B2 (en) | Continuous powder temperature controller | |
CA1214444A (en) | Method for controlling the pulverization and dryness of flammable materials passing through a pulverizer, and method of controlling the pulverizing rate of the pulverizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070911 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080911 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090911 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100911 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100911 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110911 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |