JPS6024285A - Production of pipe-shaped clad material - Google Patents

Production of pipe-shaped clad material

Info

Publication number
JPS6024285A
JPS6024285A JP13017583A JP13017583A JPS6024285A JP S6024285 A JPS6024285 A JP S6024285A JP 13017583 A JP13017583 A JP 13017583A JP 13017583 A JP13017583 A JP 13017583A JP S6024285 A JPS6024285 A JP S6024285A
Authority
JP
Japan
Prior art keywords
pipe
ceramic
space
outside
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13017583A
Other languages
Japanese (ja)
Inventor
Akihiro Isato
伊里 昭寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13017583A priority Critical patent/JPS6024285A/en
Publication of JPS6024285A publication Critical patent/JPS6024285A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain a pipe-shaped clad material by fitting an inside pipe into an output pipe and heating the pipes under the static pressure exerted thereto from the space in the inside pipe or the outside space of the outside pipe thereby joining diffusively the inside and outside pipes. CONSTITUTION:A ceramic 7 to be formed as an inside layer is made to a prescribed size and a metal 8 to be formed as an outside layer is so manufactured as to project from both ends of the ceramic 7 in order to provide caps 12 for pressurizing a space 11 to serve as a pressurizing part. The outside of the ceramic 7 in contact with the metal 8 is subjected to a surface treatment 9. The metal 8 is so combined with the ceramic 7 as to project above and below therefrom and an outside cylinder 10 for pressurization is so set on the outside of the metal 8 as to enable pressurization of the space 11 by a pressure medium. The caps 12 are attached to the top and bottom parts of the space 11 and the pressure medium is supplied into the space through a gas feed hole 15 to maintain the pressure. A packing material 13 is packed to the inside of the ceramic 7. The assembly is heated in a vacuum atmosphere while the space 11 is kept pressurized to accomplish diffusion joining. The assembly is cooled upon completion of the pressurization. The material 13 of the ceramic 7 and the outside cylinder for pressurization on the outside of the metal 8 are removed. The top and bottom of the metal 8 are machined away to the position of the ceramic 7.

Description

【発明の詳細な説明】 本発明はパイプ状クラツド材の製法に関し、IP!Iに
静圧下、拡散接合により、脆いパイプ状材料をもクラッ
ドしうる方法を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a pipe-shaped cladding material, and relates to a method for manufacturing a pipe-shaped cladding material. The present invention aims to provide a method for cladding even brittle pipe-shaped materials by diffusion bonding under static pressure.

パイプ状クラツド材の製法には下記のような方法がある
There are the following methods for manufacturing pipe-shaped cladding materials.

(1)−清洗 この爆着法には外管駆動方式と、内管駆動方式がある。(1) - Cleaning This explosive bonding method includes an outer tube drive method and an inner tube drive method.

この方法の特色は火薬の爆発力を用いてごく短時間に衝
撃的に接合管を被接合管に衝突させることによって接合
管と被接合管を接合させるものである。第1図は外管駆
動方式のパイプ状クラツド材の製造方法で外側より爆着
させる進行状態概要を示す。人は外側に爆薬をセットし
た爆着前の状態、Bけ爆薬を爆発させ、内管と外管が#
1#ホ中央部まで爆着された状態、C#″i爆着が完了
した状態を示す。第2図は内管に爆薬を充填し内側より
爆着させる内管駆動方式の概要を示す。
The feature of this method is that the pipe to be joined and the pipe to be joined are joined by impacting the pipe to be joined against the pipe to be joined in a very short period of time using the explosive force of gunpowder. FIG. 1 shows an overview of the progress of explosive bonding from the outside in a method for manufacturing pipe-shaped cladding materials using an external tube drive method. A person sets an explosive on the outside before detonation, detonates a B grade explosive, and the inner tube and outer tube are #
The state in which explosive bonding has been completed up to the center of 1#E and the state in which explosive bonding in C#''i has been completed is shown. Fig. 2 shows an outline of the inner tube drive system in which explosives are filled into the inner tube and explosive bonding is carried out from the inside.

第1図、第2図において、1Fi内管、2は外管、3は
内管1と外管2を爆着させる爆薬。
In FIGS. 1 and 2, 1Fi is the inner tube, 2 is the outer tube, and 3 is the explosive that causes the inner tube 1 and the outer tube 2 to explode.

4は爆薬3を点火させるための雷管を示す。4 indicates a detonator for igniting the explosive 3.

5は充填物、6F’i空隙、7は保鰻管である。5 is a filling, 6F'i void, and 7 is an eel preservation tube.

例えば、外管駆動方式によりパイプ状クラツド材を製造
する場合について説明する。充填物5を内管1に充填し
、内管1の外側に空隙6を設けて外管2をセットする。
For example, a case will be described in which a pipe-shaped cladding material is manufactured using the outer tube drive method. The inner tube 1 is filled with a filler 5, a gap 6 is provided outside the inner tube 1, and the outer tube 2 is set.

外管2の外側及び上部に爆薬5と雷管4をセットする。An explosive 5 and a detonator 4 are set on the outside and upper part of the outer tube 2.

雷管4にて爆薬3に点火し、被接合管の内管IK接合管
の外管2を爆着させていく。爆着完了の状態は、第1図
−Crc示しているが、火薬の爆発力を用いて衝撃的に
接合するため衝撃力に弱い例えばセラミック等を接合す
ることができない。又、接合時に被接合管は大きな変形
をうけるため被接合管は、延性を有する材料に限られる
。又衝撃力を強めるため被接合管と接合管の間に空隙を
設けておく必要がありこのため爆着法では3本以上の管
を一度に接合することができない0 (2)引抜き法(圧延の変形) この方法の特色は引き抜き加工することにより、複数の
パイプを接合することである。
The explosive 3 is ignited by the detonator 4, and the inner tube of the tube to be welded and the outer tube 2 of the IK jointed tube are explosively bonded. The state of completed explosive bonding is shown in FIG. 1-Cr, but since the explosive force of explosives is used to impact the bond, it is not possible to bond materials that are weak against impact, such as ceramics. Further, since the pipes to be joined undergo large deformation during joining, the pipes to be joined are limited to materials having ductility. In addition, in order to strengthen the impact force, it is necessary to provide a gap between the pipes to be joined and the pipes to be joined, and for this reason, the explosion bonding method cannot join three or more pipes at once. (2) Drawing method (rolling) (Variation) The feature of this method is that multiple pipes are joined by drawing.

第3図に引抜き法によるパイプ状クラツド材の接合状態
を示す0 1.2Vi接合したいパイプ、3は引抜キ用ダイス、4
Fi充填用砂を示す。
Figure 3 shows the joining state of pipe-shaped cladding materials by the drawing method. 0 1.2Vi pipes to be joined, 3 a drawing die, 4
Fi filling sand is shown.

ダイス3にパイプ1.2を通すことにより、パイプ径は
AからB丑で減少する。この径減少過程でパイプ1と2
はそれぞれ外側・内側から圧縮力を受けて接合する。
By passing the pipe 1.2 through the die 3, the pipe diameter decreases from A to B. During this diameter reduction process, pipes 1 and 2
are joined by receiving compressive force from the outside and inside, respectively.

しかし該方法は材質としては、塑性変形し易い材質同士
の接合に限られるという欠点がある。
However, this method has the disadvantage that it is limited to joining materials that are easily plastically deformed.

(3) 肉盛り法 この方法の特色はパイプ母材の一ヒに肉盛り溶接してい
く工法である。
(3) Overlay method The feature of this method is that overlay welding is performed on one piece of the pipe base material.

第4図に本工法によるパイプ状りラッド拐の接合状態を
示す。AJ′i、内面肉盛シ法、Bは外面肉盛り法であ
る。1は素材パイプ、2は肉盛層を示す。
Figure 4 shows the state of joining of pipe-shaped rad holes using this construction method. AJ′i is the inner surface build-up method, and B is the outer surface build-up method. 1 indicates the material pipe, and 2 indicates the overlay layer.

しかし該方法は、母材、溶接材の組み合せが限られ、小
径パイプの内面肉盛溶接は施工しにくいという欠点があ
る。
However, this method has the drawback that the combinations of base metals and welding materials are limited, and it is difficult to perform internal overlay welding of small-diameter pipes.

(4)鋳込み法 パイプの内側又は外側に溶けた金属を流し込んだ後機械
加工しパイプ状クラツド材を作る工法である。
(4) Casting method This is a method of pouring molten metal into the inside or outside of a pipe and then machining it to create a pipe-shaped cladding material.

第5図に鋳込み法によるパイプ状クラツド材の製造方法
を示す。Aは内側鋳込み法、Bは外側鋳込み法である。
FIG. 5 shows a method of manufacturing a pipe-shaped cladding material by a casting method. A is an inside casting method, and B is an outside casting method.

1は素材パイプを示す。内側にクラツド材を鋳込む場合
はパイプ1の内側に溶けた金属を流し込む。外側にクラ
ツド材を鋳込む場合は鋳型3とパイプ1の間に溶けた金
属を流し込む。
1 indicates a material pipe. When casting clad material inside, pour molten metal into the inside of pipe 1. When casting clad material on the outside, molten metal is poured between the mold 3 and the pipe 1.

しかし該方法は母材・鋳造材の組み合せが限られ、熱衝
撃が大きい為、脆い材質には使えないという欠点がある
However, this method has the disadvantage that it cannot be used for brittle materials because the combinations of base material and cast material are limited and the thermal shock is large.

そこで本発明者は脆いパイプ状材料についてもクラッド
しうる方法を開発すべく鋭意研究の結果、パイプ状クラ
ツド材を製造するに当勺外管と内管の隙間を極力小にな
るように内管を外管に嵌合し、静圧下において高温加熱
して拡散接合(又は共晶拡散接合)することが合目的で
あるとの知見を得、これに基づいて本発明を完成するに
至った。
Therefore, as a result of intensive research to develop a method for cladding even brittle pipe-shaped materials, the inventors of the present invention found that when producing pipe-shaped cladding materials, the inner tube was designed to minimize the gap between the outer tube and the inner tube. We have found that it is useful to fit the tube into the outer tube and heat it at high temperature under static pressure to perform diffusion bonding (or eutectic diffusion bonding), and based on this, we have completed the present invention.

すなわち本発明は拡散接合による複数材料のパイプ状り
ラッド拐の製造において、クラッド用原材料である内管
を、クラッド用原材料である外管に嵌合してなるものを
、内管の管内部空間並びに外管外部空間のうちのいずれ
か一方又は両方に圧力媒体を適用して静圧を加えながら
、真空又は非酸化性1囲気中で高温に加熱して、内管と
外管を拡散接合させることを特徴とするパイプ状クラツ
ド材の製造法である。
That is, in the production of pipe-shaped cladding made of multiple materials by diffusion bonding, the present invention involves fitting an inner tube, which is a raw material for the cladding, into an outer tube, which is a raw material for the cladding. Also, applying a pressure medium to one or both of the external spaces of the outer tube to apply static pressure and heating to a high temperature in a vacuum or a non-oxidizing atmosphere to diffusion bond the inner tube and the outer tube. This is a method for producing a pipe-shaped cladding material.

本発明にいう圧力媒体とは、流体を云い不活性なガス体
、液体いずれでもよい。また拡散接合とは固相拡散接合
と液相拡散接合(例えば共晶拡散接合)の両方を意味す
る。
The pressure medium referred to in the present invention refers to a fluid, and may be either an inert gas or a liquid. Further, diffusion bonding means both solid phase diffusion bonding and liquid phase diffusion bonding (eg, eutectic diffusion bonding).

本発明の拡散接合は内管の管内部空間又は外管外部空間
より静圧を加えながら加熱することによって行いうるが
、一方からの静圧だけでは管材に引張応力が作用するの
で、内管の管内部空間と外管外部空間の両方から静圧を
加えるのが好ましい。このように両方から静圧を加える
と管材の変形や割れを気にぜず、かなりの応力をクラツ
ド管の接合面に負荷できるという効果を奏しうる。
The diffusion bonding of the present invention can be performed by heating while applying static pressure from the inner space of the inner tube or the outer space of the outer tube, but static pressure from only one side causes tensile stress to act on the tube material. Preferably, static pressure is applied from both the inner tube space and the outer tube outer space. Applying static pressure from both sides in this way has the effect of allowing a considerable amount of stress to be applied to the joint surface of the clad pipe without worrying about deformation or cracking of the pipe material.

また拡散接合の作業を容易化するため、内管の管内部空
間に充填物をつめておき、外管外部空間より静圧をかけ
るようにすることもでき、外管の外方に外管よシも内径
の大きい外筒を設け、外管と外筒の間の空間に充填物を
つめておき、内管の管内部空間に静圧を加えるようにす
ることもできる。
In addition, to facilitate diffusion bonding, it is possible to fill the inner space of the inner tube with a filler and apply static pressure from the outer space of the outer tube. It is also possible to provide an outer tube with a large inner diameter, fill the space between the outer tube and the outer tube with a filler, and apply static pressure to the inner space of the inner tube.

本発明は以下に更に詳細に説明するが、本発明はセラミ
ックと金属のパイプ状クラツド材、脆い金属同志のクラ
ツド材を初め、あらゆる材料のパイプ状クラツド材の製
作に適用しうる。
The present invention will be described in more detail below, but the present invention is applicable to the fabrication of tubular cladding of any material, including ceramic and metal tubular cladding, brittle metal-on-metal cladding.

又、本発明において必要に応じて使用される充填物はケ
イ砂などの耐熱性粒子が好ましい。
Further, the filler used as necessary in the present invention is preferably heat-resistant particles such as silica sand.

以下、第6図A−D及び第7図E−Hに基き例えばセラ
ミック材とニッケル等の金属を接合し、パイプ状クラツ
ド材を製造する具体例について説明する。
Hereinafter, a specific example of manufacturing a pipe-shaped cladding material by joining a ceramic material and a metal such as nickel will be explained based on FIGS. 6A-D and 7E-H.

第6図のA−DYi、内層にセラミック、外層に金属を
接合する手順を示す。又第7図のE〜Hに内層に金属、
外層にセラミックを接合する手順を示す。
A-DYi in FIG. 6 shows a procedure for joining ceramic to the inner layer and metal to the outer layer. In addition, metal is included in the inner layer in E to H in Fig. 7.
The procedure for bonding ceramic to the outer layer is shown.

第6図、第7図において、7は、第6図では内層となシ
、第7図で?J外層となるセラミック材、8け、第6図
では外層となり、第7図では内層となるニッケル等の金
属である。9は、セラミック7の外面又は内面に行うメ
タライジング等の表面処理、10は第6図に示す加圧部
となる空間11の外側に設けた例えばパイプの加圧用外
筒、11)は、真空加熱で加圧さtlセラミックと金属
8を接合する加圧部となる空間、12は、加圧部となる
空間11の上下に設けた加圧用フタ、13i、i充填物
、14は第7図に示す保護用外筒、15は圧力媒体の送
気孔である。
In Figures 6 and 7, 7 is the inner layer in Figure 6 and 7 in Figure 7? J The ceramic material that becomes the outer layer is a metal such as nickel, which becomes the outer layer in FIG. 6 and the inner layer in FIG. 7. Reference numeral 9 indicates a surface treatment such as metallization performed on the outer or inner surface of the ceramic 7; 10 indicates a pressurizing cylinder, such as a pipe, provided outside the space 11 which becomes the pressurizing section shown in FIG. 6; and 11) indicates a vacuum A space which becomes a pressure part for joining the tl ceramic and metal 8 which are pressurized by heating, 12 is a pressure lid provided above and below the space 11 which becomes a pressure part, 13i, i filling, 14 is FIG. In the protective outer cylinder shown in , 15 is an air supply hole for the pressure medium.

第6図A−Dの具体例を説明するとA図に示すように内
層となる士ラミック7を所定寸法にし、外層となる金属
8を、加圧部となる空間11の加圧用フタ12を設ける
ためセラミック7の両端より突出するように製作する。
To explain the specific example of FIGS. 6A to 6D, as shown in FIG. Therefore, it is manufactured so that it protrudes from both ends of the ceramic 7.

セラミック7と金属8の嵌合時のスキは極力少くする。The gap when the ceramic 7 and metal 8 are fitted is minimized.

セラミック7の金属8と接する外面は金属8との濡れ性
を改善するためメタライジング等の表面処理9を行う。
The outer surface of the ceramic 7 in contact with the metal 8 is subjected to surface treatment 9 such as metallization to improve wettability with the metal 8.

B図に表面処理の状態を示す。Figure B shows the state of surface treatment.

次に、金属8をセラミック7の上、下に突出するように
組合せ、加圧部となる空間11を圧力媒体で加圧できる
ように金属8の外側に加圧用外筒10をセットする。加
圧部となる空間11の上、下部には加圧用フタ12を取
付は圧縮機からの圧力媒体を送気孔15より供給し圧力
を保つようにする。セラミック7の内側には、充填物1
3を詰める00図に接合前の状態を示す。
Next, the metal 8 is assembled so as to protrude above and below the ceramic 7, and the pressurizing outer cylinder 10 is set on the outside of the metal 8 so that the space 11 which becomes the pressurizing part can be pressurized with a pressure medium. Pressurizing lids 12 are attached to the upper and lower parts of the space 11 serving as the pressurizing section, and pressure medium from the compressor is supplied through the air supply hole 15 to maintain the pressure. Inside the ceramic 7, there is a filling 1.
Figure 3 shows the state before joining.

次に、加圧部となる空間11を加圧した状態で、図示し
ない真空雰囲気中加熱をし拡散接合を行う。共晶拡散接
合の場合はあらかじめ接合面にメッキ又はインサート金
属をはさんでおく。
Next, while the space 11 serving as the pressurizing section is pressurized, heating is performed in a vacuum atmosphere (not shown) to perform diffusion bonding. In the case of eutectic diffusion bonding, plating or insert metal is placed on the bonding surface in advance.

加圧完了後、冷却させセラミック7の内側に充填した充
填物13及び金属8の外側にある加圧用外筒を除去し、
金属8の上、下をセラミック7の位置まで例えば削シ取
り、D図の状態で拡散接合が完了する。
After the pressurization is completed, the filler 13 filled inside the ceramic 7 and the pressurizing outer cylinder outside the metal 8 are removed,
For example, the top and bottom of the metal 8 are scraped down to the position of the ceramic 7, and diffusion bonding is completed in the state shown in Fig. D.

第7図のE −Hについて説明すると、E図に示すよう
に外層となるセラミック7を所定寸法にし、内層と々る
金属8を加圧部となる空間11の加圧用フタ12を設け
るため、セラミック70両端より突出るように製作する
。セラミック7の内面にはF図に示すようにメタライジ
ング等の表面処理9を行う。
To explain E-H in Fig. 7, as shown in Fig. E, the outer layer ceramic 7 is made to a predetermined size, and the inner layer metal 8 is provided with a pressurizing lid 12 for the space 11 which becomes the pressurizing part. It is manufactured so that it protrudes from both ends of the ceramic 70. The inner surface of the ceramic 7 is subjected to surface treatment 9 such as metallization as shown in Figure F.

次に、セラミック7の内側即ち加圧部となる空間11を
加圧できるように送気孔15をあけたフタ12で蓋い、
セラ2ツク7の外側に、充填物13を詰め、保護用外筒
14を設ける。組合せた状態をG図に示す。次に、金属
8の内側の加圧部となる空間11を加圧した状態で、図
示しない真空雰囲気中加熱を行い、セラミック7と金属
8を拡散接合させる。冷却後加圧治具及び保護用外筒1
4.充填物13を除去し、金属8の上、下をセラミック
7の位置まで例えば削り取、9H図の状態で拡散接合が
完了する。
Next, cover the inside of the ceramic 7, that is, the space 11 that becomes the pressurizing part, with a lid 12 with an air hole 15 opened so that the space 11 can be pressurized.
A filler 13 is filled on the outside of the cellar 2 shell 7, and a protective outer cylinder 14 is provided. Figure G shows the combined state. Next, heating is performed in a vacuum atmosphere (not shown) while pressurizing the space 11 serving as a pressurizing section inside the metal 8, thereby diffusion bonding the ceramic 7 and the metal 8. Pressure jig after cooling and protective outer cylinder 1
4. The filler 13 is removed, and the upper and lower parts of the metal 8 are scraped off to the position of the ceramic 7, and the diffusion bonding is completed in the state shown in Fig. 9H.

なお本発明の実施例として拡散接合のみで説明したがあ
らかじめ接合面にメッキ、又はインサート金属をはさむ
ことにより共晶拡散接合も行えると共にあらゆる金属に
応用できる。
Although only diffusion bonding has been described as an embodiment of the present invention, eutectic diffusion bonding can also be performed by plating or insert metal on the bonding surface in advance, and the present invention can be applied to any metal.

なお、第6図、第7図において、11には圧力媒体を送
給し、13には充填物をつめるように説明したが、11
に充填物をつめ、13に圧力媒体を送給するようにして
もよぐ、あるいは両者とも圧力媒体を送給するようにし
てもよい。
In addition, in FIGS. 6 and 7, it has been explained that pressure medium is supplied to 11 and filler is filled to 13, but 11
13 may be filled with a filler and pressure medium may be fed to 13, or both may be filled with pressure medium.

そのような場合、それぞれのフタの部分には圧縮機から
の不活性媒体である圧力媒体を送給しうるように当然送
気孔15が設けられる。更に第6図、第7図においては
、加圧用外筒10゜保護用外筒14を設けているが、内
管の肉厚が厚くて剛性であれば、内管の内部空間にかけ
られた圧力は、反作用により外管から内管へにも圧力を
かけることとなるのでこれらは必須のものではなく、セ
ラミック7と金属8の嵌合体を直接、非酸化性雰囲気中
の高温容器中に入れても十分その目的を達成しうる。
In such a case, an air supply hole 15 is naturally provided in each lid portion so that pressure medium, which is an inert medium, from the compressor can be supplied. Furthermore, in FIGS. 6 and 7, the pressure outer tube 10° and the protective outer tube 14 are provided, but if the inner tube is thick and rigid, the pressure applied to the inner space of the inner tube will be reduced. These are not essential as pressure is also applied from the outer tube to the inner tube due to the reaction, and the fitted body of ceramic 7 and metal 8 is placed directly in a high temperature container in a non-oxidizing atmosphere. can also fully achieve its purpose.

実施例 外管として、引掻60m、内径50 w+1.長さ1.
000mmの炭1鋼鋼管内に、外径50*+*、内径4
5mm、長さ1100IIII+1の無酸素銅鋼管(内
管)を嵌合した。
As an exception pipe, scratch 60m, inner diameter 50w+1. Length 1.
000mm carbon 1 steel pipe, outer diameter 50**+*, inner diameter 4
An oxygen-free copper steel pipe (inner pipe) of 5 mm and length 1100III+1 was fitted.

内管(銅)が塑性変形するに要する圧力をPcとすると
、 Pc =σ5tn(b/a) σ8;素拐の降伏応力(900℃における銅の降伏応力
は約1kg/調2) a;内管半径に\では45均/2) b;内管外径に\でVi5om/2) 従ってPc中0.1kg/簡2中10kg/鐸2である
If the pressure required for the inner tube (copper) to plastically deform is Pc, then Pc = σ5tn (b/a) σ8; Yield stress of copper (yield stress of copper at 900°C is approximately 1 kg/key 2) a; 45 yen/2 for the tube radius) b; Vi5om/2 for the inner tube outer diameter) Therefore, 0.1 kg in Pc/10 kg in 2 tubes/2.

又、鋼と銅を接合するに要する圧力は、900℃でs 
kcg/cm”あれば十分であるので、この場合15 
kg/an” (10kg/crn” + 5 kg/
cn+” )の圧力があれば外管と内管は十分に拡散接
合される。
Also, the pressure required to join steel and copper is s at 900°C.
kcg/cm" is sufficient, so in this case 15
kg/an” (10 kg/crn” + 5 kg/
If there is a pressure of cn+"), the outer tube and the inner tube can be sufficiently diffusion bonded.

前記嵌合管を不活性ガス「囲気下にある900℃の炉の
中に入れ、内管の内部空間に不活性ガス(Ar)を内管
内壁に15kg/儒鵞の圧力が加わる状態で15〜60
分間保持したところ、内管と外管は十分に拡散接合され
念。
The fitting tube was placed in a furnace at 900°C under an inert gas atmosphere, and an inert gas (Ar) was applied to the inner wall of the inner tube for 15 minutes with an inert gas (Ar) applied to the inner wall of the inner tube. ~60
After holding for a minute, the inner tube and outer tube were fully bonded by diffusion.

本発明は下記の効果を奏する。The present invention has the following effects.

(1) 加圧と加熱及び接合部の雰囲気制御を行うこと
によシバイブ状クラツド材を静的に製造できる。
(1) Shivive-like cladding materials can be manufactured statically by applying pressure, heating, and controlling the atmosphere at the joint.

(2)パイプ状クラツド材を静的に製造できるため例え
ばセラミック等の脆い材料と金属の組合せによるパイプ
状クラツド材の製造が可能となる。
(2) Since the pipe-shaped cladding material can be manufactured statically, it becomes possible to manufacture the pipe-shaped cladding material by combining a brittle material such as ceramic and metal.

(3)拡散接合の最適温度を調整することにより3層以
上のパイプを一度に接合することが可能となる。
(3) By adjusting the optimum temperature for diffusion bonding, it becomes possible to bond three or more layers of pipes at once.

(4)金属と金属の組合せによるパイプ状クラツド材製
造も可能である0
(4) It is also possible to manufacture pipe-shaped cladding materials by combining metals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は従来法によるパイプ状クラツド材の製
法を説明するもので、第1図、第2図は爆着法、第3図
は引抜き法、第4図は肉盛り法、第5図は鋳込み法であ
る、第6図及び第7図は本発明の拡散接合法の実施態様
を説明する図である0 復代理人 内 1) 明 復代理人 萩 原 亮 − 咽 はつ 狭
Figures 1 to 5 explain the manufacturing method of pipe-shaped cladding materials using conventional methods. Figure 5 shows the casting method, and Figures 6 and 7 are diagrams explaining embodiments of the diffusion bonding method of the present invention. Narrow

Claims (1)

【特許請求の範囲】[Claims] 拡散接合による複数材料のパイプ状クラツド材の製造に
おいて、クラッド用原材料である内管を、クラッド用原
材料である外管に嵌合してなるものを、内管の管内部空
間並びに外管外部空間のうちのいずれか一方又は両方に
圧力媒体を適用して静圧を加えながら、真空又は非酸化
性芥囲気中で高温に加熱して、内管と外管を拡散接合さ
せることを特徴とするパイプ状クラツド材の製造法。
In manufacturing pipe-shaped cladding materials made of multiple materials by diffusion bonding, the inner tube, which is the raw material for the cladding, is fitted to the outer tube, which is the raw material for the cladding, and the inner tube space of the inner tube and the outer tube outer space are The inner tube and the outer tube are diffusion bonded by applying static pressure to one or both of them by applying a pressure medium and heating them to a high temperature in a vacuum or a non-oxidizing atmosphere. Manufacturing method for pipe-shaped cladding material.
JP13017583A 1983-07-19 1983-07-19 Production of pipe-shaped clad material Pending JPS6024285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13017583A JPS6024285A (en) 1983-07-19 1983-07-19 Production of pipe-shaped clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13017583A JPS6024285A (en) 1983-07-19 1983-07-19 Production of pipe-shaped clad material

Publications (1)

Publication Number Publication Date
JPS6024285A true JPS6024285A (en) 1985-02-06

Family

ID=15027831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13017583A Pending JPS6024285A (en) 1983-07-19 1983-07-19 Production of pipe-shaped clad material

Country Status (1)

Country Link
JP (1) JPS6024285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102208449B1 (en) * 2019-10-08 2021-01-27 한국핵융합에너지연구원 Gas pressure casting method using porous tube for diffusion bonding copper to monoblock tungsten, and method for manufacturing laminated parts using nuclear fusion reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102208449B1 (en) * 2019-10-08 2021-01-27 한국핵융합에너지연구원 Gas pressure casting method using porous tube for diffusion bonding copper to monoblock tungsten, and method for manufacturing laminated parts using nuclear fusion reactor

Similar Documents

Publication Publication Date Title
US3025596A (en) Braze bonding of concentric tubes and shells and the like
CA2021628C (en) Method of manufacturing dual alloy turbine disks
US9561559B2 (en) Method and machine for forge welding of tubular articles and exothermic flux mixture and method of manufacturing an exothermic flux mixture
EP0090762B1 (en) Method of welding by hot isostatic pressing
JPS5841925B2 (en) Wire drawing die and its manufacturing method
US5611477A (en) Shot sleeve and method of making
JPH0224623B2 (en)
CN1301204A (en) Bimetallic plate
JPS6024285A (en) Production of pipe-shaped clad material
US4029254A (en) Method of diffusion bonding and brazing of materials
EP0053554B2 (en) Process for the manufacture of bottoms for metallurgical vessels
US4210269A (en) Method for diffusion bonding sheet claddings to superalloy substrates
JPH0143802B2 (en)
US3116548A (en) Method of bonding metal members
US3684003A (en) Thermit pipe welding mold
Chernenko Friction welding AD1 aluminium to 12Kh18N10T steel
JPS597433A (en) Forming method of amorphous forming body
US3256599A (en) Method of making magnesium-bonded laminated articles
US4809902A (en) Method of welding using particle acceleration
US4815652A (en) Method for forming composite metal articles
JPH0692023B2 (en) Manufacturing method of composite structure pipe with branch pipe
CN116100125A (en) Repairing process for defects of casting superalloy guide structural member
SU1616788A1 (en) Method of producing combined articles
JPH07251250A (en) Roll for continuous casting and manufacture thereof
JPS6250521B2 (en)