JPS6024174B2 - Fe-based sintered alloy for valve seats - Google Patents

Fe-based sintered alloy for valve seats

Info

Publication number
JPS6024174B2
JPS6024174B2 JP7408180A JP7408180A JPS6024174B2 JP S6024174 B2 JPS6024174 B2 JP S6024174B2 JP 7408180 A JP7408180 A JP 7408180A JP 7408180 A JP7408180 A JP 7408180A JP S6024174 B2 JPS6024174 B2 JP S6024174B2
Authority
JP
Japan
Prior art keywords
alloy
valve
valve seats
content
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7408180A
Other languages
Japanese (ja)
Other versions
JPS56169754A (en
Inventor
雅史 川口
智美 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7408180A priority Critical patent/JPS6024174B2/en
Publication of JPS56169754A publication Critical patent/JPS56169754A/en
Publication of JPS6024174B2 publication Critical patent/JPS6024174B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、すぐれた耐熱性、耐摩耗性、被削性、およ
び自己潤滑性を有し、特に内燃機関における弁座の製造
に使用するのに適したFe基糠結合金に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a Fe-based bran having excellent heat resistance, wear resistance, machinability, and self-lubricating properties, and which is particularly suitable for use in manufacturing valve seats in internal combustion engines. It concerns bond money.

従来、例えば内燃機関駆動用燃料として有鉛ガソリンが
使用され、前記有給ガソリンにおいては、これが熱焼す
る際に、ガソリン中に含有させたアルキル鉛から無機鉛
が生成し、この生成無機鉛の一部が弁および弁座に付着
することから、弁および弁座の耐酸化性、自己潤滑性、
および耐摩耗性が著しく改善されるようになるなどガソ
リン中の鉛の効果には大なるものがあった。
Conventionally, for example, leaded gasoline has been used as a fuel for driving an internal combustion engine, and when the gasoline is burned, inorganic lead is produced from the alkyl lead contained in the gasoline, and part of the produced inorganic lead is Since the part adheres to the valve and valve seat, it improves the oxidation resistance, self-lubricating property, and
The effects of lead in gasoline were significant, such as significantly improving wear resistance.

しかし排気ガス規制により有鉛ガソリンの使用が困難に
なりつつある現状では、弁および弁座の酸化および摩耗
の抑制、並びに自己潤滑性の付与を、前記有鉛ガソリン
における鉛効果に期待することはできず、したがって弁
座自体の材質向上をはかることによって、これらの問題
解決をはかる鏡向にあるのが現状である。
However, in the current situation where it is becoming difficult to use leaded gasoline due to exhaust gas regulations, it is difficult to expect the lead effect in leaded gasoline to suppress oxidation and wear of valves and valve seats, and provide self-lubricating properties. Therefore, the current trend is to try to solve these problems by improving the material of the valve seat itself.

そこで、本発明者等は、上述のような観点から、無鉛ガ
ソリンを使用した場合にも、その機能を十分に発揮する
内燃機関用弁座を得べく材質面より研究を行なった結果
、C:0.5〜3%、Cr:1〜20%、S:0.05
〜2%、Mo:0.1〜5%、B:0.005〜1%を
含有し、必要に応じてP:0.1〜2%およびSi:0
.05〜2%のうちの1種または2種を含有し、さらに
必要に応じてNi:0.1〜5%およびCo:0.1〜
5%のうちの1種または2種を含有し、残りがFeと不
可避不純物からなる組成(以上重量%、以下%はすべて
重量%を意味する)を有するFe基嫌結合金は、素地と
の密着性が良好で自己潤滑性を有する硫化物相が素地の
結晶粒界に均一の分散した組織をもつため、これを特に
内燃機関における弁座の製造に使用した場合、無鉛ガソ
リン、軽油、およびL.P.Gなどの燃料使用に際して
も、すぐれた耐熱性、耐摩耗性、および自己潤滑性を示
し、さらに弁座製造に際してはすぐれた被削性を示すな
ど有用な特性を有することを見出したのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research in terms of materials in order to obtain a valve seat for an internal combustion engine that fully performs its functions even when unleaded gasoline is used.As a result, C: 0.5-3%, Cr: 1-20%, S: 0.05
~2%, Mo: 0.1~5%, B: 0.005~1%, and optionally P: 0.1~2% and Si: 0.
.. Ni: 0.1-5% and Co: 0.1-5% as necessary.
5%, and the rest is Fe and unavoidable impurities. The sulfide phase, which has good adhesion and self-lubricating properties, has a uniformly dispersed structure at the grain boundaries of the substrate, so when it is used in the manufacture of valve seats for internal combustion engines, it is suitable for use with unleaded gasoline, diesel oil, and L. P. They discovered that it has useful properties such as excellent heat resistance, wear resistance, and self-lubricating properties when used as a fuel such as G, and also exhibits excellent machinability when manufacturing valve seats.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成範囲を上記の通りに限定した理由を
説明する。
This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below.

{a)C C成分には素地に固溶して合金素地を強化するほか、炭
化物を形成して合金の耐摩耗性を向上させる作用がある
が、その含有量が0.5%未満では前記作用に所望の効
果が得られず、一方3%を越えて含有させると、合金の
腕化が著しくなると共に硬さ上昇が著しくなって、相手
材たる弁への攻撃性が増大することから、その含有量を
0.5〜3%と定めた。
{a) C The C component has the effect of not only strengthening the alloy base by forming a solid solution in the base but also forming carbides and improving the wear resistance of the alloy, but if its content is less than 0.5%, the above-mentioned On the other hand, if the content exceeds 3%, the alloy will become stiff and the hardness will increase significantly, increasing the aggressiveness of the valve as a mating material. Its content was determined to be 0.5 to 3%.

【b} Cr Cr成分にはCと反応して炭化物を形成し、もって合金
の耐摩耗性を向上させるほか、素地に固溶して、その耐
熱性を向上させる作用があるが、その含有量が1%未満
では前記作用に所望の効果が得られず、一方20%を越
えて含有させると、合金強度の急激な低下および硬さの
上昇を招いて弁損傷を著しく早めることから、その含有
量を1〜2o%と定めた。
[b} Cr The Cr component not only reacts with C to form carbides and thereby improves the wear resistance of the alloy, but also has the effect of forming a solid solution in the base material and improving its heat resistance. If the content is less than 1%, the desired effect cannot be obtained, while if the content exceeds 20%, the alloy strength will rapidly decrease and the hardness will increase, which will significantly accelerate valve damage. The amount was determined to be 1-2o%.

‘c’S S成分はFe成分と反応して自己潤滑性および快削性を
付与するための硫化物を形成するが、その含有量が0.
05%未満では、所望の自己潤滑性および快削性を合金
に付与することができず、一方2%を越えて含有させる
と、合金強度が低下するようになることから、その含有
量を0.05〜2%と定めた。
'c'S The S component reacts with the Fe component to form sulfides that provide self-lubricating properties and free-cutting properties, but the content is 0.
If the content is less than 0.05%, the desired self-lubricating properties and free machinability cannot be imparted to the alloy, while if the content exceeds 2%, the alloy strength will decrease. It was set at .05 to 2%.

‘dl Mo Mo成分にはCr成分と同様に素地に固落して前記素地
の耐熱性を向上させるほか、Cと反応し炭化物を形成し
て合金の耐摩耗性を向上させ、さらに合金の暁入性を改
善する作用があるが、その含有量が0.1%未満では前
記作用に所望の効果が得られず、一方5%を越えて含有
させると、合金強度が低下するようになることから、そ
の含有量を0.1〜5%と定めた。
'dl Mo Like the Cr component, the Mo component not only solidifies into the base material and improves the heat resistance of the base material, but also reacts with C to form carbides to improve the wear resistance of the alloy. However, if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 5%, the alloy strength will decrease. , its content was determined to be 0.1 to 5%.

【e’B B成分には競結中に液相を発生して糠緒を活性化し、安
定した炭化物の生成と密度の上昇を可能とする作用があ
るが、その含有量が0.005%未満では前記作用に所
望の効果が得られず、一方1%を越えて含有させると、
合金腕化が著しくなるこから、その含有量を0.005
〜1%と定めた。
[e'B The B component has the effect of generating a liquid phase during competition and activating the bran cord, making it possible to generate stable carbides and increase the density, but its content is 0.005%. If the content is less than 1%, the desired effect cannot be obtained; on the other hand, if the content exceeds 1%,
Since the alloy arms become remarkable, its content is reduced to 0.005.
It was set at ~1%.

‘f’ PおよびSiこれらの成分にはBとの共存にお
いて、凝結をより活性化する均等的作用があるが、P:
0.1%禾満およびSi:0.05%未満の含有では、
これら成分含有による改善効果が得られず、一方P:2
%およびSi:2%をそれぞれ越えて含有させると、合
金の腕化が著しくなることから、それぞれP:0.1〜
2%、Si:0.05〜2%と定めた。
'f' P and Si These components have an equal effect of activating coagulation in coexistence with B, but P:
When the content is 0.1% and Si: less than 0.05%,
No improvement effect was obtained by containing these components, while P:2
% and Si: If the content exceeds 2%, the formation of arms in the alloy will become significant.
2%, and Si: 0.05 to 2%.

(g) NiおよびCONiおよびCo成分には合金素
地に園溶して、その強度および耐熱性を高める均等的作
用があるので、特に合金素地を強化する必要がある場合
に含有されるが、その含有量がそれぞれ0.1%未満で
は前記作用に所望の向上効果が現われず、一方それぞれ
5%を越えて含有さてもより一段の向上効果は見られず
経済的でないことから、NiおよびCoの含有量を、そ
れぞれ0.1〜5%と定めた。
(g) Ni and CONNi and Co have the uniform effect of melting into the alloy base and increasing its strength and heat resistance, so they are included especially when it is necessary to strengthen the alloy base. If the content is less than 0.1% each, the desired effect of improving the above-mentioned action will not appear, while if the content exceeds 5% each, no further improvement effect will be seen and it is not economical. The content was determined to be 0.1 to 5%, respectively.

なお、この発明のFe基競結合金は、通常の粉末冶金法
にしたがって通常の製造条件にて製造することができる
が、原料粉末に関して、特にSについては、0.2〜4
0%S含有のFe一S合金粉末や表面を硫化物で被覆し
たものからなる被覆Fe粉末、またBについては、5〜
30%B含有のFe−B合金粉末などの使用が望ましく
、さらにCr、Mo、P、およびSiについては、これ
ら成分単体粉末やフェロアロィ粉末などとして使用する
ことができる。また、この発明のFe基凝結合金は7.
0夕/塊以上の密度をもつことが望ましく、これは、7
.0夕/仇未満の密度では所望のすぐれた耐摩耗性およ
び強度を確保することができないという理由からである
The Fe-based competitive alloy of the present invention can be manufactured under normal manufacturing conditions according to normal powder metallurgy methods.
For Fe-S alloy powder containing 0% S, coated Fe powder whose surface is coated with sulfide, and for B,
It is desirable to use Fe-B alloy powder containing 30% B, and Cr, Mo, P, and Si can be used as single powders of these components or ferroalloy powders. Moreover, the Fe-based condensation alloy of this invention is 7.
It is desirable to have a density of 0 m/clump or more, which is 7
.. This is because if the density is less than 0/2, the desired excellent abrasion resistance and strength cannot be ensured.

つぎに、この発明のFe基糠結合金を実施例により比較
例と対比しながら説明する。
Next, the Fe-based bran alloy of the present invention will be explained using examples and comparing with comparative examples.

実施例 原料粉末として、粒度一10仇hashのFe粉末(ア
トマィズ鉄粉で希釈)、天然黒鉛粉末、粒度一20〃m
のMo粉末、粒度一10伍hashの36%Sの含有の
Fe−S合金粉末、粒度一10仇hashの20%B含
有のFe−B合金粉末、粒度一10仇hashの26%
Pの含有のFe−P合金粉末、粒度一100hashの
77%Si含有のFe−Si合金粉末、粒度−20〃m
のCo粉末、および粒度−200hashのNi粉末を
用意し、これら原料粉末を第1表に示される最終成分組
成をもつようにそれぞれ配合し、混合し、この結果得ら
れた混合粉末より成形圧力:的on/のにて庄粉体を成
形し、ついで前記圧粉体をアンモニア分解ガス雰囲気中
にて温度:500℃に30第1表分間加熱保持して混合
時に配合した潤滑剤を除去した後、真空中、温度:11
50〜120030に6び分間保持して競結し、引続い
て急冷して競入れを行ない、さらに大気中にて温度:5
80qoに60分間加熱保持の焼戻しを施すことによっ
て本発明暁結合金1〜19および比較競結合金1〜8を
それぞれ製造した。
Example raw material powders include Fe powder (diluted with atomized iron powder) with a particle size of 10 mm, natural graphite powder, and a particle size of 120 mm.
Mo powder, Fe-S alloy powder containing 36% S with particle size 110mash, Fe-B alloy powder containing 20% B with particle size 110mash, 26% of particle size 110mash
P-containing Fe-P alloy powder, particle size -100hash, 77% Si-containing Fe-Si alloy powder, particle size -20〃m
Prepare a Co powder of After molding the compacted powder in an ammonia decomposition gas atmosphere at a temperature of 500°C for 30 minutes to remove the lubricant added during mixing. , in vacuum, temperature: 11
50 to 120030 for 6 minutes, then rapidly cooled and soldered, and then heated in the atmosphere at a temperature of 5
Akatsuki alloys 1 to 19 of the present invention and comparative competitive alloys 1 to 8 were manufactured by subjecting them to tempering at 80 qo and holding heat for 60 minutes.

さらに、比較の目的で、弁座の製造に主として用いられ
ているマルテンサィト系の耐熱鋼であるJIS・SUH
−4に相当する組成を有する合金を比較合金9として製
造し、その組成を第1表に合せて示した。
Furthermore, for the purpose of comparison, JIS/SUH, which is a martensitic heat-resistant steel mainly used for manufacturing valve seats, is shown below.
An alloy having a composition corresponding to -4 was manufactured as Comparative Alloy 9, and its composition is shown in Table 1.

ついで、この結果得られた本発明焼結合金1〜19およ
び比鮫焼結合金1〜8トさらに比較合金9の密度、硬さ
(ロックウェル硬さCスケール)、および抗折力を測定
し、この測定結果を第1表に合せて示した。
Next, the density, hardness (Rockwell hardness C scale), and transverse rupture strength of the resulting sintered alloys 1 to 19 of the present invention and Hisame sintered alloys 1 to 8 and comparative alloy 9 were measured. The measurement results are also shown in Table 1.

さらに、上記本発明煉結合金1〜19および比較糠結合
金1〜8、さらに比較合金9から製造された弁座のそれ
ぞれについて、実用試験にシュミレートさせた自動温度
制御付偏0カム駆動式の熱間繰返し衝撃を行なう弁−弁
座摩耗試験を用い、雰囲気:プロパンガス燃焼雰囲気、
弁材質:オーステナィト系弁用鋼、弁温度:90000
、弁座温度:35000、ストローク:6.8肋、運転
回転数:300仇.p.m、運転時間:5胡時間の条件
にて摩耗耐久性試験を行ない、試験後における弁および
弁座の摩耗深さを測定した。
Furthermore, for each of the valve seats manufactured from the above-mentioned brick alloys 1 to 19 of the present invention, comparative bran alloys 1 to 8, and comparative alloy 9, a bias-zero cam drive type with automatic temperature control was simulated in a practical test. A valve-valve seat wear test with repeated hot impacts was used; atmosphere: propane gas combustion atmosphere;
Valve material: Austenitic valve steel, valve temperature: 90000
, Valve seat temperature: 35000, Stroke: 6.8 degrees, Operating speed: 300 degrees. p. A wear durability test was conducted under the conditions of 5 hours of operation, and the depth of wear of the valve and valve seat after the test was measured.

この測定結果も第1表に合せて示した。第1表に示され
る結果から、本発明暁結合金1〜19で製造された弁座
においては、いずれも摩耗がきわめて少なく、かつ相手
村である弁の摩耗も少ないものであるのに対して、いず
れもこの発明の範囲から外れた成分組成を有する比鮫焼
結合金1〜8および従来弁座用として用いられている比
較合金9はいずれも弁座摩耗の大きいものであった。
The measurement results are also shown in Table 1. From the results shown in Table 1, all of the valve seats manufactured using Akatsuki Metals 1 to 19 of the present invention had extremely little wear, and the wear of the other valves was also low. All of the Hisame Sintered Alloys 1 to 8, which have compositions outside the scope of the present invention, and Comparative Alloy 9, which has been conventionally used for valve seats, had large valve seat wear.

上述のように、この発明のFe基暁結合金は、残留オー
ステナィト相を含む焼戻しマルテンサィト相の素地中に
、素地との密着性が良好な硫化物と炭化物とが均一に分
散した組織を有するので、耐熱性、耐摩耗性、自己潤滑
性、および被削性のすぐれたものであり、したがって、
特に無鉛ガソリン、軽油、および液化プロパンガスなど
の弁および弁座保護化合物の生成がない燃料を使用する
内燃機関の弁座として使用した場合にもきわめてすぐれ
た高温摩耗耐久性を示すなど工業上有用な特性を具備す
るものである。
As mentioned above, the Fe-based alloy of the present invention has a structure in which sulfides and carbides, which have good adhesion to the matrix, are uniformly dispersed in the matrix of the tempered martensitic phase containing the retained austenite phase. Therefore, it has excellent heat resistance, wear resistance, self-lubricating property, and machinability.
It exhibits excellent high-temperature wear resistance and is industrially useful, especially when used as valve seats in internal combustion engines that use fuels such as unleaded gasoline, diesel oil, and liquefied propane gas that do not produce valve and valve seat protective compounds. It has the following characteristics.

Claims (1)

【特許請求の範囲】 1 C:0.5〜3%、Cr:1〜20%、S:0.0
5〜2%、Mo:0.1〜5%、B:0.005〜1%
を含有し、残りがFeと不可避不純物からなる組成(以
上重量%)を有することを特徴とする弁座用Fe基焼結
合金。 2 C:0.5〜3%、Cr:1〜20%、S:0.0
5〜2%、Mo:0.1〜5%、B:0.005〜1%
を含有し、さらにP:0.1〜2%およびSi:0.0
5〜2%のうちの1種または2種を含有し、残りがFe
と不可避不純物からなる組成(以上重量%)を有するこ
とを特徴とする弁座用Fe基焼結合金。 3 C:0.5〜3%、Cr:1〜20%、S:0.0
5〜2%、Mo:0.1〜5%、B:0.005〜1%
を含有し、さらにP:0.1〜2%およびSi:0.0
5〜2%のうちの1種または2種と、Ni:0.1〜5
%およびCo:0.1〜5のうちの1種または2種を含
有し、残りがFeと不可避不純物からなる組成(以上重
量%)を有することを特徴とする弁座用Fe基焼結合金
[Claims] 1 C: 0.5-3%, Cr: 1-20%, S: 0.0
5-2%, Mo: 0.1-5%, B: 0.005-1%
1. An Fe-based sintered alloy for a valve seat, characterized in that it has a composition (by weight %) with the remainder consisting of Fe and unavoidable impurities. 2 C: 0.5-3%, Cr: 1-20%, S: 0.0
5-2%, Mo: 0.1-5%, B: 0.005-1%
further contains P: 0.1-2% and Si: 0.0
Contains one or two of 5 to 2% Fe, with the remainder being Fe.
An Fe-based sintered alloy for a valve seat, characterized in that it has a composition (the above weight %) consisting of and unavoidable impurities. 3 C: 0.5-3%, Cr: 1-20%, S: 0.0
5-2%, Mo: 0.1-5%, B: 0.005-1%
further contains P: 0.1-2% and Si: 0.0
One or two of 5-2% and Ni: 0.1-5
% and Co: 0.1 to 5, and the remainder is Fe and unavoidable impurities (weight %). .
JP7408180A 1980-06-02 1980-06-02 Fe-based sintered alloy for valve seats Expired JPS6024174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7408180A JPS6024174B2 (en) 1980-06-02 1980-06-02 Fe-based sintered alloy for valve seats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7408180A JPS6024174B2 (en) 1980-06-02 1980-06-02 Fe-based sintered alloy for valve seats

Publications (2)

Publication Number Publication Date
JPS56169754A JPS56169754A (en) 1981-12-26
JPS6024174B2 true JPS6024174B2 (en) 1985-06-11

Family

ID=13536851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7408180A Expired JPS6024174B2 (en) 1980-06-02 1980-06-02 Fe-based sintered alloy for valve seats

Country Status (1)

Country Link
JP (1) JPS6024174B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221192B2 (en) * 1993-10-18 2001-10-22 三菱マテリアル株式会社 Valve seat for intake
JP3340614B2 (en) * 1996-03-28 2002-11-05 山陽特殊製鋼株式会社 Fe or Ni-based heat-resistant solidified body with excellent high-temperature strength
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
GB2451898A (en) * 2007-08-17 2009-02-18 Federal Mogul Sintered Prod Sintered valve seat

Also Published As

Publication number Publication date
JPS56169754A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
CN114672738B (en) High performance iron-based alloys for engine valve train applications, methods of making and uses thereof
KR101316474B1 (en) Valve seat of engine and manufacturing method therof
KR920007937B1 (en) Fe-sintered alloy for valve seat
WO2015141331A1 (en) Valve seat constituted of iron-based sintered alloy
JPS6033344A (en) Wear resistance sintered alloy
JPS6024174B2 (en) Fe-based sintered alloy for valve seats
JPS6144152A (en) Manufacture of wear resistant sintered alloy
JPH0555593B2 (en)
JPS6032711B2 (en) Fe-based sintered alloy for valve seats
JPS6389643A (en) Wear-resistant ferrous sintered alloy
JPH0116905B2 (en)
JPH0116296B2 (en)
JP2001234305A (en) Sintered member
JPH0115583B2 (en)
JPS60255958A (en) Wear resistant sintered alloy
JP3454322B2 (en) Valve seat for internal combustion engine
JPS5828342B2 (en) Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
JPS60159154A (en) Wear resistant sintered sliding material
JP2842868B2 (en) Iron-based sintered alloy for valve seat
JPS58130260A (en) Sintered fe alloy for valve seat
CA1068130A (en) Iron base sintered alloy for valve seat
JPH03134139A (en) Iron-base sintered alloy for valve seat
JPS6173865A (en) Sintered iron alloy for valve seat
JPH0115577B2 (en)
JPS6164858A (en) Iron compound sintered alloy for valve seat