JP2842868B2 - Iron-based sintered alloy for valve seat - Google Patents

Iron-based sintered alloy for valve seat

Info

Publication number
JP2842868B2
JP2842868B2 JP62192710A JP19271087A JP2842868B2 JP 2842868 B2 JP2842868 B2 JP 2842868B2 JP 62192710 A JP62192710 A JP 62192710A JP 19271087 A JP19271087 A JP 19271087A JP 2842868 B2 JP2842868 B2 JP 2842868B2
Authority
JP
Japan
Prior art keywords
iron
valve seat
sintered alloy
based sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62192710A
Other languages
Japanese (ja)
Other versions
JPS6439349A (en
Inventor
真 阿部
一郎 谷本
章義 石橋
和俊 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Nissan Motor Co Ltd
Original Assignee
Riken Corp
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Nissan Motor Co Ltd filed Critical Riken Corp
Priority to JP62192710A priority Critical patent/JP2842868B2/en
Publication of JPS6439349A publication Critical patent/JPS6439349A/en
Application granted granted Critical
Publication of JP2842868B2 publication Critical patent/JP2842868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【発明の目的】 (産業上の利用分野) この発明は、自動車用等のエンジン部品であるバルブ
シートの素材として好適に利用されるバルブシート用鉄
基焼結合金に関するものである。 (従来の技術) 自動車用エンジン部品であるバルブシートは、自動車
用エンジンの高出力化や燃料の一つであるガソリンの無
鉛化に伴って、溶製材から焼結合金材へと次第に変換し
つつある。 そして、近年に至っては、自動車用エンジンの高出力
化、,高回転化、さらには過給器の付加等により、バル
ブシートの受ける熱的および機械的負荷はさらに増大す
る傾向にある。 このような自動車用エンジンのすう勢に対応し、バル
ブシートの耐摩耗性,高温強度,耐酸化性を向上する目
的で、Cr,Ni,Co,W,Mo等の合金元素を、基地への合金化
法や、硬質相の形態とした分散法により添加していた。 (発明が解決しようとする問題点) しかしながら、このような合金元素の添加によって素
材の耐摩耗性は向上するもののコストの高騰をもたらす
という問題点があった。また、こうした合金元素の添加
によってそれに見合うだけの効果が得られるかどうかに
ついては不明な点が多かった。 (発明の目的) この発明は、このような従来の問題点に着目してなさ
れたもので、自動車用エンジンの高出力化、高回転化に
よる熱的および機械的負荷の増大に対応できる高負荷エ
ンジン用の高性能バルブシート素材として好適なバルブ
シート用鉄基焼結合金を提供することを目的としてい
る。 【発明の構成】 (問題点を解決するための手段) この発明に係るバルブシート用鉄基焼結合金は、重量
%で、Mo:3〜14%、Ni:3〜14%、C:0.3〜1.5%を含み、
残部Feおよび不純物よりなり、Moを均一に固溶するFe粉
の焼結によりMoの大部分が鉄基地中に均一に固溶しある
いは数μmオーダーの金属間化合物として均一に分布し
た組織を有していることを特徴としているものであり、
悪に開発したFe−Ni−C系およびFe−Mo−C系鉄基焼結
合金をさらに改良し、FeにNiとMoとを同時に添加し、Mo
の大部分を鉄基地中に均一に分布させた組織とすること
により、耐摩耗性をさらに向上させるようにしたことを
特徴としているものである。 次に、この発明に係るバルブシート用鉄基焼結合金の
成分(重量%)および組織の限定理由について説明す
る。 Mo:3〜14% Moはその大部分が鉄基地中に均一に固溶しあるいは数
μmオーダーの金属間化合物として均一に分布すること
によって、耐摩耗性をより一層向上するのに有効な元素
である。 従来からバルブシート用焼結合金としてMoを含む材料
は使用されているが、このMoは主としてフェロモリブデ
ン粒子として添加され、このフェロモリブデン粒子が硬
質粒子として耐摩耗性向上のために使用されていた。と
ころが、このような使われ方をした場合に、モリブデン
が鉄基地中に拡散しにくいこともあってフェロモリブデ
ン粒子の周囲は強化されるものの他の部分は強化されな
いため、分散強化による基地強化が主体となり、モリブ
デンが鉄基地中に固溶することによる合金化すなわち固
溶強化による基地強化はさほど期待できなかった。 この発明においては、従来のフェロモリブデン粒子と
して添加することによる問題点にかんがみ、Moを鉄基地
中に均一に固溶させあるいは数μmオーダーの金属間化
合物として分散させた組織とすることにより、すなわち
具体的にはMoを溶融鉄中に均一に固溶させた溶湯をアト
マイズすることにより作成した粉末を原料粉末として使
用することによってMoの大部分を鉄基地中に均一に固溶
させることにより、Moのもつ耐摩耗性向上の効果を最大
限に活用するようにしたのである。 しかしながら、Mo量が3%未満では耐摩耗性向上の効
果が小さく、また、14%を超えると粉末成形時の成形性
が低下すると共に材質が硬くもろくなるので好ましくな
い。 したがって、Moは3〜14%の範囲とした。 このMoは鉄基地中に均一に分布させるために、前述し
たように、原料粉末の主体となる鉄粉中にモリブデンが
均一に分布したFe−Mo系、あるいはFe−Mo−Ni系の粉末
を使用する必要がある。ただし、高Mo,高Ni組成を狙う
場合は、成形性を確保するためにNi,Moの一部を200メッ
シュアンダーの微細な金属ニッケル,金属モリブデンと
して添加するのが望ましい。 Ni:3〜14% Niは合金の耐摩耗性を向上させるのに有効であるが、
3%未満ではこのような耐摩耗性向上の効果が十分に得
られず、14%を超えると金属組織中にオーステナイトと
マルテンサイトを生ずるようになって加工しずらくなる
とともに、脆くなるので好ましくない。 したがって、Ni量は3〜14%の範囲とした。 C:0.3〜1.5% Cは共析組成を目標とし、添加するMo量およびNi量に
よりフェライトおよび炭化物を生じない範囲となるよう
に必然的に決定される。この場合、上記のMo量およびNi
量に対応するC量は0.3〜1.5%となる。そして、C量が
共析組成よりも少ないとフェライトを生じて耐摩耗性が
低下するので好ましくなく、また逆にC量が共析組成よ
りも多いと炭化物を生じて加工しずらくなるとともに脆
くなるため好ましくない。 したがって、炭素量はフェライトおよび炭化物を生じ
ない範囲とすることが好ましいが、現実的には炭素量を
厳密にコントロールするのは原料粉末の酸素量や焼結炉
の雰囲気などに影響されるため難しく、若干、例えば5
体積%以下のフェライトおよび炭化物の組成は許容され
る。 (実施例) Moを溶融鉄中に均一に固溶させた溶湯をアトマイズす
ることにより作成した粒度が150〜200メッシュにピーク
を持つ5重量%モリブデンを均一に固溶する鉄粉に、20
0メッシュアンダーの金属ニッケル粉,黒鉛粉および金
属モリブデン粉をそれぞれ第2表のNo.5〜No.9の組成と
なるように加え、さらに金型成形の際において型抜けを
良くするために潤滑剤としてステアリン酸亜鉛を0.6重
量%加えた混合粉を調製し、各混合物をプレスにて7ton
/cm2の成形圧力で成形して成形体を得たのち、各成形体
を650℃で1時間脱ろうし、次いで1200℃で1時間焼成
して焼結させ、次に900℃まで炉冷し、900℃よりガス冷
却して外径46mm×内径30mm×高さ7.5mmのテストピース
(バルブシート)を作製した。 続いて、各テストピースに対し、硬度がHRB95前後と
なるように熱処理を行った後、所定の寸法に加工し、単
体摩耗試験を行ってバルブシート材としての適正を評価
した。 この評価に際しては、排気側バルブシートの使用条件
を想定し、第1表に示す条件で行った。この評価試験の
結果を同じく第2表に示す。 (比較例) 比較のために、Fe−Mo−C系の焼結合金(No.1)、Fe
−Ni−C系の焼結合金(No.2,3)、Mo量およびNi量が少
ない本発明比較焼結合金、フェロモリブデンの形でMoを
添加したFe−5%Mo−5%Ni焼結合金(No.10)をそれ
ぞれ用意し、前記実施例と同様にテストピースの作製し
て第1表に示す条件によりバルブシート材としての適正
を評価した。これらの結果を同じく第2表に示す。 第2表に示す結果より明らかなように、本発明材(N
o.5〜9)からなるバルブシートでは、従来の比較材(N
o.1〜3)からなるバルブシートに比べて耐摩網性がさ
らに向上していることが明らかであり、Mo量およびNi量
が少ない比較材(No.4)では耐摩耗性がさほど良くない
ことが認められた。 また、Moをフェロモリブデンの形で添加した比較材
(No.10)に比べて本発明材(No.5)は同一成分であり
ながら耐摩耗性がかなり良好であることが認められた。 【発明の効果】 以上説明してきたように、この発明に係るバルブシー
ト用鉄基焼結合金は、重量%で、Mo:3〜14%、Ni:3〜14
%、C:0.3〜1.5%を含み、残部Feおよび不純物よりな
り、Moを均一に固溶するFe粉の焼結によりMoの大部分が
鉄基地中に均一に固溶しあるいは数μmオーダーの金属
間化合物として均一に分布した組織を有しているもので
あるから、耐摩耗性に著しく優れた鉄基焼結合金であ
り、とくに自動車用エンジンの高出力化,高回転化によ
る熱的および機械的負荷の増大に対応できる高負荷エン
ジン用の高性能バルブシート素材として好適なバルブシ
ート用鉄基焼結合金であるという非常に優れた効果がも
たらされる。
Description: BACKGROUND OF THE INVENTION (Industrial Application Field) The present invention relates to an iron-based sintered alloy for a valve seat which is suitably used as a material for a valve seat as an engine part for an automobile or the like. Things. (Prior art) Valve seats, which are engine parts for automobiles, are gradually being converted from ingot materials to sintered alloy materials as the output of automobile engines is increased and gasoline, one of the fuels, is made lead-free. is there. In recent years, the thermal and mechanical loads on the valve seat tend to be further increased due to the increase in output and speed of the automobile engine and the addition of a supercharger. In order to respond to the trend of automobile engines and improve the wear resistance, high temperature strength, and oxidation resistance of valve seats, alloy elements such as Cr, Ni, Co, W, and Mo are added to the base metal. And a dispersion method in the form of a hard phase. (Problems to be Solved by the Invention) However, although the wear resistance of the material is improved by the addition of such an alloy element, there is a problem that the cost is increased. Also, there are many unclear points as to whether the addition of such an alloy element can provide a corresponding effect. (Object of the Invention) The present invention has been made in view of such conventional problems, and has a high load capable of coping with an increase in thermal and mechanical loads due to a high output and a high speed of a vehicle engine. It is an object of the present invention to provide an iron-based sintered alloy for a valve seat suitable as a high-performance valve seat material for an engine. (Means for Solving the Problems) The iron-based sintered alloy for a valve seat according to the present invention is, in terms of% by weight, Mo: 3 to 14%, Ni: 3 to 14%, and C: 0.3. ~ 1.5%
The sintering of Fe powder, which consists of the balance of Fe and impurities and uniformly dissolves Mo, has a structure in which most of Mo is uniformly dissolved in the iron matrix or uniformly distributed as an intermetallic compound on the order of several μm. Is characterized by the fact that
The Fe-Ni-C-based and Fe-Mo-C-based iron-based sintered alloys that were developed badly were further improved, and Ni and Mo were simultaneously added to Fe, and
Is characterized by having a structure in which most of the above are uniformly distributed in the iron base to further improve the wear resistance. Next, the components (% by weight) of the iron-based sintered alloy for a valve seat according to the present invention and the reasons for limiting the structure will be described. Mo: 3 to 14% Mo is an element that is effective for further improving wear resistance because most of Mo is uniformly dissolved in an iron matrix or uniformly distributed as an intermetallic compound on the order of several μm. It is. Conventionally, materials containing Mo have been used as sintered alloys for valve seats, but this Mo is mainly added as ferromolybdenum particles, and these ferromolybdenum particles have been used as hard particles to improve wear resistance. . However, when used in this way, molybdenum is difficult to diffuse into the iron base, and the periphery of the ferromolybdenum particles is strengthened, but the other parts are not strengthened. Alloying due to solid solution of molybdenum in the iron matrix, that is, strengthening of the matrix by solid solution strengthening could not be expected so much. In the present invention, in view of the problem caused by the addition as conventional ferromolybdenum particles, by forming a structure in which Mo is uniformly dissolved in an iron matrix or dispersed as an intermetallic compound of several μm order, Specifically, by using the powder created by atomizing a molten metal in which Mo is uniformly dissolved in molten iron as a raw material powder, most of Mo is uniformly dissolved in the iron matrix, This is to make the most of the effect of Mo on improving wear resistance. However, if the Mo content is less than 3%, the effect of improving the wear resistance is small, and if it exceeds 14%, the moldability during powder molding is reduced and the material becomes hard and brittle. Therefore, Mo was set in the range of 3 to 14%. As described above, in order to uniformly distribute Mo in the iron matrix, as described above, Fe-Mo-based powder in which molybdenum is uniformly distributed in iron powder, which is a main component of the raw material powder, or Fe-Mo-Ni-based powder. Must be used. However, when aiming for a high Mo and high Ni composition, it is desirable to add a part of Ni and Mo as fine metal nickel and metal molybdenum of 200 mesh or less in order to secure formability. Ni: 3-14% Ni is effective in improving the wear resistance of the alloy,
If it is less than 3%, the effect of improving the wear resistance cannot be sufficiently obtained, and if it exceeds 14%, austenite and martensite are generated in the metal structure, making it difficult to work and brittle. Absent. Therefore, the Ni content is in the range of 3 to 14%. C: 0.3-1.5% C aims at the eutectoid composition, and is inevitably determined by the amount of added Mo and the amount of Ni so as not to generate ferrite and carbide. In this case, the above Mo amount and Ni
The amount of C corresponding to the amount is 0.3 to 1.5%. When the amount of C is less than the eutectoid composition, ferrite is generated and the wear resistance is deteriorated, which is not preferable. On the contrary, when the amount of C is more than the eutectoid composition, carbides are formed, making it difficult to process and brittle. Is not preferred. Therefore, it is preferable that the carbon content be in a range that does not generate ferrite and carbides. However, it is actually difficult to precisely control the carbon content because it is affected by the oxygen content of the raw material powder and the atmosphere of the sintering furnace. , Slightly, eg 5
Ferrite and carbide compositions up to volume% are acceptable. (Example) An iron powder in which 5 wt% molybdenum having a particle size having a peak at 150 to 200 mesh, which is formed by atomizing a molten metal in which Mo is dissolved in molten iron uniformly, is uniformly dissolved in iron.
0 Add a mesh-under metal nickel powder, graphite powder and metal molybdenum powder so as to have the compositions of Nos. 5 to 9 in Table 2, respectively, and further lubricate the mold to improve mold release. A powder mixture containing 0.6% by weight of zinc stearate as an agent is prepared, and each mixture is pressed to 7 tons.
After molding at a molding pressure of / cm 2 , each compact was dewaxed at 650 ° C for 1 hour, then fired and sintered at 1200 ° C for 1 hour, and then furnace cooled to 900 ° C. Then, a test piece (valve seat) having an outer diameter of 46 mm, an inner diameter of 30 mm, and a height of 7.5 mm was produced by gas cooling from 900 ° C. Then, for each test piece, after the hardness was subjected to heat treatment so that H R B95 before and after processed into a predetermined size was evaluated properly as valve seat material by performing a simple abrasion test. This evaluation was performed under the conditions shown in Table 1, assuming the use conditions of the exhaust-side valve seat. The results of this evaluation test are also shown in Table 2. (Comparative Example) For comparison, a Fe-Mo-C-based sintered alloy (No. 1), Fe
-Ni-C based sintered alloy (No.2,3), comparative sintered alloy of the present invention having small amount of Mo and Ni, Fe-5% Mo-5% Ni sintered with addition of Mo in the form of ferromolybdenum Binders (No. 10) were prepared, and test pieces were prepared in the same manner as in the above Examples, and the suitability as a valve seat material was evaluated under the conditions shown in Table 1. These results are also shown in Table 2. As is clear from the results shown in Table 2, the material of the present invention (N
o.5 to 9), the conventional comparative material (N
It is clear that the mesh resistance is further improved as compared with the valve seats composed of o.1 to 3), and the comparative material (No. 4) having a small amount of Mo and Ni does not have good wear resistance. It was recognized that. In addition, it was confirmed that the material of the present invention (No. 5) had considerably the same abrasion resistance as the comparative material (No. 10) in which Mo was added in the form of ferromolybdenum, although it had the same components. As described above, the iron-based sintered alloy for a valve seat according to the present invention is Mo: 3 to 14% and Ni: 3 to 14% by weight.
%, C: contains 0.3-1.5%, the balance consists of Fe and impurities, and most of Mo is uniformly dissolved in the iron matrix by sintering of Fe powder that uniformly dissolves Mo, or in the order of several μm. Since it has a structure that is uniformly distributed as an intermetallic compound, it is an iron-based sintered alloy with remarkably excellent wear resistance. An extremely excellent effect is obtained that the iron-based sintered alloy for a valve seat is suitable as a high-performance valve seat material for a high-load engine that can cope with an increase in mechanical load.

フロントページの続き (72)発明者 谷本 一郎 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (72)発明者 石橋 章義 埼玉県熊谷市熊谷810 (72)発明者 武村 和俊 埼玉県熊谷市上之3167 (56)参考文献 特開 昭53−86605(JP,A) 特開 昭49−96912(JP,A)Continuation of front page    (72) Inventor Ichiro Tanimoto               2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Sun               Industrial Motor Co., Ltd. (72) Inventor Akiyoshi Ishibashi               810 Kumagaya, Kumagaya City, Saitama Prefecture (72) Inventor Kazutoshi Takemura               3167 Kamino, Kumagaya City, Saitama Prefecture                (56) References JP-A-53-86605 (JP, A)                 JP-A-49-96912 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.重量%で、Mo:3〜14%、Ni:3〜14%、C:0.3〜1.5%
を含み、残部Feおよび不純物よりなり、Moを均一に固溶
するFe粉の焼結によりMoの大部分が鉄基地中に均一に固
溶した固溶強化基地組織を有していることを特徴とする
バルブシート用鉄基焼結合金。 2.Moを均一に固溶するFe粉は、Moを溶融鉄中に均一に
固溶させた溶湯のアトマイズ粉末である特許請求の範囲
第1項に記載のバルブシート用鉄基焼結合金。
(57) [Claims] By weight, Mo: 3-14%, Ni: 3-14%, C: 0.3-1.5%
The main feature of Mo is that it has a solid solution strengthened matrix structure in which most of Mo is uniformly dissolved in the iron matrix by sintering of Fe powder that is composed of the balance of Fe and impurities and uniformly dissolves Mo. Iron-based sintered alloy for valve seats. 2. The iron-based sintered alloy for a valve seat according to claim 1, wherein the Fe powder that uniformly dissolves Mo is an atomized powder of a molten metal in which Mo is uniformly dissolved in molten iron.
JP62192710A 1987-08-03 1987-08-03 Iron-based sintered alloy for valve seat Expired - Fee Related JP2842868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62192710A JP2842868B2 (en) 1987-08-03 1987-08-03 Iron-based sintered alloy for valve seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62192710A JP2842868B2 (en) 1987-08-03 1987-08-03 Iron-based sintered alloy for valve seat

Publications (2)

Publication Number Publication Date
JPS6439349A JPS6439349A (en) 1989-02-09
JP2842868B2 true JP2842868B2 (en) 1999-01-06

Family

ID=16295768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62192710A Expired - Fee Related JP2842868B2 (en) 1987-08-03 1987-08-03 Iron-based sintered alloy for valve seat

Country Status (1)

Country Link
JP (1) JP2842868B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074214A1 (en) * 2015-10-30 2017-05-04 Центр Разработки Нефтедобывающего Оборудования Iron-based powder material for submersible centrifugal pump stages
WO2017074215A1 (en) * 2015-10-30 2017-05-04 Центр Разработки Нефтедобывающего Оборудования Iron-based powder material for submersible centrifugal pump stages

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996912A (en) * 1973-01-20 1974-09-13
JPS5386605A (en) * 1977-06-20 1978-07-31 Toyota Motor Corp Sintered alloy having wear resistance at high temperature

Also Published As

Publication number Publication date
JPS6439349A (en) 1989-02-09

Similar Documents

Publication Publication Date Title
US4422875A (en) Ferro-sintered alloys
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
US4021205A (en) Sintered powdered ferrous alloy article and process for producing the alloy article
WO2015141331A1 (en) Valve seat constituted of iron-based sintered alloy
JPH0350823B2 (en)
GB2109004A (en) Anti-wear sintered alloy and process for the manufacture thereof
JPH0350824B2 (en)
US5468310A (en) High temperature abrasion resistant copper alloy
WO2001007674A1 (en) Sintered steel material
US4696696A (en) Sintered alloy having improved wear resistance property
JPH076026B2 (en) Manufacturing method of ferrous sintered alloy members with excellent wear resistance
JP2842868B2 (en) Iron-based sintered alloy for valve seat
US4547336A (en) Method for the manufacture of piston ring inserts by a powder metallurgy technique
JP3434527B2 (en) Sintered alloy for valve seat
JPH05202451A (en) Sintered alloy for valve seat
JPH0555589B2 (en)
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JPH0555591B2 (en)
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JPH07109023B2 (en) Iron-based sintered alloy for valve sheet
JPH0593241A (en) Production of iron-base sintered alloy for valve seat
JPH0115583B2 (en)
JPH045746B2 (en)
JP3257349B2 (en) Iron-based sintered alloy with excellent strength and wear resistance
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees