JPS6024172B2 - Nitriding steel with high core hardness after nitriding without preheat treatment - Google Patents

Nitriding steel with high core hardness after nitriding without preheat treatment

Info

Publication number
JPS6024172B2
JPS6024172B2 JP2758477A JP2758477A JPS6024172B2 JP S6024172 B2 JPS6024172 B2 JP S6024172B2 JP 2758477 A JP2758477 A JP 2758477A JP 2758477 A JP2758477 A JP 2758477A JP S6024172 B2 JPS6024172 B2 JP S6024172B2
Authority
JP
Japan
Prior art keywords
nitriding
steel
amount
hardness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2758477A
Other languages
Japanese (ja)
Other versions
JPS53113214A (en
Inventor
煕久 大熊
喜雄 入谷
謙一 藤井
幸男 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2758477A priority Critical patent/JPS6024172B2/en
Publication of JPS53113214A publication Critical patent/JPS53113214A/en
Publication of JPS6024172B2 publication Critical patent/JPS6024172B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】 本発明は窒化用鋼に係るものであり、特にC量とV量、
およびC量とCr量の相関量ならびにSi量を適切にバ
ランスさせることによって、窒化処理後にかたい窒化層
と深い硬化層を生成し、しかも特別な熱処理による予備
処理を行なわなくとも窒化処理後において非常に高い芯
部硬度を保持させることに成功した窒化用鋼に関するも
のである。
[Detailed description of the invention] The present invention relates to steel for nitriding, and in particular, the amount of C and V,
By appropriately balancing the correlation between the amount of C and the amount of Cr, as well as the amount of Si, a hard nitrided layer and a deep hardened layer can be generated after the nitriding process, and even after the nitriding process, a hard nitrided layer and a deep hardened layer can be created without any special pretreatment by heat treatment. This invention relates to a nitriding steel that has successfully maintained extremely high core hardness.

一般に、鋼に耐摩耗性や耐疲労特性などを付与するため
には、特殊鋼を焼入れ競もどし処理したり、あるいは肌
暁鋼を浸炭焼入れ処理することが行なわれているが、こ
れらの熱処理は銅の変態点以上の高い温度に加熱した後
に焼入れ処理を施すために、加熱中にオーステナィト結
晶粒の粗大化や、焼入れ時の熱処理歪みの発生などが問
題となる。
Generally, in order to impart wear resistance and fatigue resistance to steel, special steel is hardened and tempered, or roughened steel is carburized and quenched, but these heat treatments Because the quenching treatment is performed after heating to a high temperature above the transformation point of copper, problems such as coarsening of austenite crystal grains during heating and generation of heat treatment distortion during quenching arise.

これに対し、窒化処理は鋼の変態V点以下の比較的低い
温度で処理するために、オーステナイト結晶粒の粗大化
が熱処理歪みの発生もなく、しかも非常に高い表面硬度
が得られる特徴を有しているので、自動車部品、事務磯
部品などに数多〈使用されている。
On the other hand, nitriding treatment is performed at a relatively low temperature below the transformation point V of the steel, so it is characterized by coarsening of austenite grains, without the occurrence of heat treatment distortion, and in addition, extremely high surface hardness can be obtained. Because of this, it is widely used in automobile parts, office parts, etc.

従来、この窒化処理には、普通鋼、肌暁鍵、低合金鋼な
どの各種の材料が適用されているが、このうち、特に耐
摩耗性、強度および鋤性が要求される用途に対しては、
低合金鋼や窒化鋼にあらかじめ熱処理を施して強度およ
び鋤性に適した組織に調整したあとに窒化処理を行なう
のが通常であり、このため従釆の鋼では熱処理工程の増
加が余儀なくされており、また500〜600午○の温
度での窒化処理中に素材強度が低下するなどの問題があ
った。
Conventionally, various materials have been applied to this nitriding treatment, such as ordinary steel, sapphire steel, and low-alloy steel. teeth,
Normally, low-alloy steel and nitriding steel are heat-treated in advance to adjust the structure to suit strength and plowability before nitriding treatment, which necessitates an increase in the heat treatment process for conventional steels. In addition, there was a problem that the strength of the material decreased during the nitriding treatment at a temperature of 500 to 600 pm.

したがって、かたい窒化層を有すると共に芯部硬度の高
い鋤性な室化処理成品を得ることは至難であった。本発
明は、かかる耐摩耗性、強度および靭性が要求される場
合の従来の窒化鋼の欠点を改善することを主目的として
なされたもので、C量とV量の相関量、およびC量とC
r量の相関量、およびSi量を適切にバランスさせるな
らば、窒化処理後に非常にかたい窒化層(Hv650以
上)と深い硬化層を生成し、特別な前処理を施さなくて
もよく、窒化処理中には析出硬化によって素材強度の軟
化を妨げて非常に高い芯部硬度を有する窒化用鋼が得ら
れることを知見したのである。
Therefore, it has been extremely difficult to obtain a chamber treated product that has a hard nitrided layer and has high core hardness and is plowable. The present invention was made with the main purpose of improving the drawbacks of conventional nitrided steels when such wear resistance, strength, and toughness are required. C
If the correlation amount of r amount and the amount of Si are appropriately balanced, a very hard nitrided layer (Hv650 or more) and a deep hardened layer will be generated after nitriding, and no special pretreatment is required. They discovered that precipitation hardening prevents softening of the material strength during treatment, resulting in a nitriding steel with extremely high core hardness.

すなわち本発明による窒化用鋼は、重量%で、C:0.
4%禾満、Si;0.36〜1.50%、Mn;0.3
〜2.0%、Cr;0.71越え〜3.0%未満、AI
:0.30%以下、V;0.21越え〜1.0%未満、
残部;鉄および製造上の不可避的不純物からなり、窒化
処理前の素材硬さが焼入れ焼房処理なしでHv20碗越
え〜500禾満の範囲にあることを特徴とし、予備熱処
理なしで窒化処理後に高い芯部硬度を有するものである
。本発明鋼においてその母材強度はC量とV量とに関連
し、また窒化処理後の表面硬度はC量とCr量に関連す
る。
That is, the steel for nitriding according to the present invention has C:0.
4% fullness, Si; 0.36-1.50%, Mn; 0.3
~2.0%, Cr; more than 0.71 ~ less than 3.0%, AI
: 0.30% or less, V; more than 0.21 to less than 1.0%,
The remainder: consists of iron and unavoidable impurities during manufacturing, and is characterized by having a material hardness before nitriding in the range of over 20 Hv to over 500 Hv without quenching and firing, and after nitriding without preheating. It has high core hardness. In the steel of the present invention, the strength of the base metal is related to the amount of C and the amount of V, and the surface hardness after nitriding is related to the amount of C and Cr.

これらについての実験結果を参照しつつ各元素の添加範
囲を上記のように限定した理由を述べる。Cは母材強度
ならびに窒化処理後の表面硬度に影響する。
The reasons for limiting the range of addition of each element as described above will be described with reference to experimental results regarding these. C affects the strength of the base material and the surface hardness after nitriding.

窒化後の表面硬度は、第1図に示すように、同一のCr
量で比較するとC量が増加すると低下する。第1図は、
下記の第1表に示すC量とCr量の異なる銅を、570
oC×3時間のタフトラィド処理(窒化処理)後、その
表面硬度(Hv;測定荷重は5k9)を測定したうえ、
この硬さに及ぼすC量とCd量の関係を知るべ〈同一硬
さの点をC量とCr量とで整理して結んだ線図である。
The surface hardness after nitriding is as shown in Figure 1.
Comparing the amounts, as the amount of C increases, it decreases. Figure 1 shows
Copper with different amounts of C and Cr shown in Table 1 below was 570
After oC × 3 hours of Toughtride treatment (nitriding treatment), the surface hardness (Hv; measurement load was 5k9) was measured, and
To understand the relationship between the amount of C and the amount of Cd that affect this hardness, it is necessary to understand the relationship between the amount of C and the amount of Cd. This is a diagram in which points of the same hardness are arranged and connected by the amount of C and the amount of Cr.

第 1 表 第1図の線図から明らかなように、0.71%Cr添加
材でHv650以上の表面硬度が得られるC量は0.4
%に対応している。
As is clear from the diagram in Table 1 and Figure 1, the amount of C required to obtain a surface hardness of Hv650 or higher with 0.71% Cr additive is 0.4.
It corresponds to %.

このため、本発明においてはC量の上限を0.4%未満
とする。Crは、窒素と結合して表面窒化層のかたさを
高めるので、拳化鋼においても最も重要な元素である。
Therefore, in the present invention, the upper limit of the amount of C is set to less than 0.4%. Since Cr combines with nitrogen to increase the hardness of the surface nitrided layer, it is also the most important element in hardened steel.

このCr量は、第1図に示すように、同一C量で比較す
るとCr量の増加に連れて表面硬度は高くなる。0.4
%未満のC量においてHv650〜1000の表面硬度
が得られるCr量は0.71を越え3.0%未満である
から、Cr量はこの範囲に限定する。
As shown in FIG. 1, if the Cr content is the same, the surface hardness increases as the Cr content increases. 0.4
The amount of Cr that can provide a surface hardness of Hv 650 to 1000 with a C amount of less than 0.7% is more than 0.71 and less than 3.0%, so the Cr amount is limited to this range.

本発明においては窒化処理後の表面硬度がHv650以
上となる窒化用鋼を得ることを一つの目標としており、
Cd量が0.71以下であってはC量との関係でこの目
標が達成できない。Vは、窒化処理中にバナジウム炭窒
化物を析出して素材強度の軟化を防止する。
In the present invention, one of the goals is to obtain a steel for nitriding with a surface hardness of Hv650 or more after nitriding treatment,
If the Cd content is 0.71 or less, this target cannot be achieved due to the relationship with the C content. V precipitates vanadium carbonitride during the nitriding process and prevents the strength of the material from softening.

第2図は、下記第2表のV量の異なる鋼を800〜85
0qoの温度で熱間圧延(圧延後の冷却速度は80oC
/min以下)し、その母材硬さを測定したうえ、その
結果を、第 2 表C量とV量との関係において、同一
硬さの点を結んで得た線図である。
Figure 2 shows steels with different amounts of V in Table 2 below, ranging from 800 to 85.
Hot rolling at a temperature of 0qo (cooling rate after rolling is 80oC)
/min) and measured the base material hardness, and the results are shown in Table 2. This is a diagram obtained by connecting points of the same hardness in relation to the amount of C and the amount of V.

Vによる析出硬化は鋼中のC量によって大幅に変化する
が、本発明においては、母材が浸炭処理品の母材強度(
芯部硬度)と同レベルのHv200を越え〜500未満
となることを一つの目標としており、C量が0.4%禾
満においてこのHv200を越え〜50氏未満の硬度が
得られるV量としては、第2図の結果から、0.21%
を越え〜1.0%未満であるから、本発明鋼のV量は0
.21%を越え〜1.0%未満とする。Siは、室化処
理後の母材の籾性を大幅に改善する。第3図は、下記第
3表のSi量の異なる鋼を窒化処理と同等の570oo
×4Hrの熱処理に供し、その母材衝撃値を測定した結
果を、Si量との関係で示したものである。第3図から
明らかなように、Si量が0.35%以下では衝撃値は
急激に低下する。このためSi量は0.36%以上とす
る。しかし1.50%を越えてSiを添加しても、その
効果は第3図からも明らかな如く小さいので、Si量の
範囲は0.36〜1.50%とした。第 3 表 Mnは脱酸剤として添加し、また競入性をも増す効果が
あるので、その範囲を0.3〜2.0%とする。
Precipitation hardening due to V varies greatly depending on the amount of C in the steel, but in the present invention, the base metal has the strength (
One of our goals is to achieve a hardness of Hv200 to less than 500, which is the same level as the core hardness), and the V amount that can achieve a hardness of Hv200 to less than 50 degrees when the C amount is 0.4%. is 0.21% from the results in Figure 2.
Since the amount of V in the steel of the present invention is more than 1.0% and less than 1.0%, the V content of the steel of the present invention is 0.
.. More than 21% and less than 1.0%. Si significantly improves the rice grain properties of the base material after chambering treatment. Figure 3 shows steels with different amounts of Si shown in Table 3 below, which are treated with 570 oo
The results of measuring the base material impact value after heat treatment for ×4 hours are shown in relation to the amount of Si. As is clear from FIG. 3, when the amount of Si is 0.35% or less, the impact value decreases rapidly. Therefore, the amount of Si is set to 0.36% or more. However, even if more than 1.50% of Si is added, the effect is small as is clear from FIG. 3, so the Si amount range is set to 0.36 to 1.50%. Table 3 Mn is added as a deoxidizing agent and also has the effect of increasing competitiveness, so its range is set at 0.3 to 2.0%.

AそもCrと同機に窒素と結合して表面の窒化層の硬度
を高めるが、Aそ添加量が多くなると製品の砂癖、表面
癖が多くなり製品価値を減少させるので0.3%以下と
する。
A and Cr combine with nitrogen to increase the hardness of the nitrided layer on the surface, but when the amount of A increases, the product becomes more sandy and surface rough, reducing the product value, so it is less than 0.3%. shall be.

以下に本発明鋼の実施例を挙げ、比較縦と対比させなが
ら本発明鋼の成分含有量の限定理由ならびに効果を具体
的に説明する。
Examples of the steel of the present invention will be given below, and the reason for limiting the component content and effects of the steel of the present invention will be specifically explained in comparison with a comparative example.

実施例 1 本例で供試した銅の化学成分(重量%)を第4表に示す
Example 1 Table 4 shows the chemical components (% by weight) of the copper tested in this example.

第 4 表 第4表の試料番号A〜日の各鋼を、仕上温度800qo
以上、巻取温度500〜700ooの通常の圧延条件で
圧延し、この圧延後の熱延ままの素材かたさHv(測定
荷重5k9)を測定した。
Table 4 Each steel of sample number A to day in Table 4 was heated to a finishing temperature of 800qo.
As described above, the material was rolled under normal rolling conditions with a winding temperature of 500 to 700 oo, and the hardness Hv of the hot-rolled material after this rolling (measured load 5k9) was measured.

各々の値を第4表中に表示した。このHv値から明らか
なように、本発明鋼B〜FはHv値が200を越え50
氏未満の範囲となり、Vが本発明範囲より低域の比較鋼
Aでは十分なるHv値が得られない。
Each value is shown in Table 4. As is clear from these Hv values, the steels B to F of the present invention have Hv values exceeding 200 and 50.
Comparative steel A, in which V is lower than the range of the present invention, cannot obtain a sufficient Hv value.

すなわち、C量が低い場合には、Hv200以上の硬度
を得るにはV量は0.21%以上必要であることが明ら
かである。またC量が0.4%の場合はV量が1.0%
でHv500が得られ(G鋼)、従来の浸炭処理材の母
材強度のようにHv200を越え〜50氏モ満の値を得
ようとすれば、V量は0.21%を越え1.0%未満の
添加が必要であることを示している。次に、試料番号D
、EおよびFの銅について、1250qC×1仇hin
の溶体化処理を行い、冷却速度を変えた場合の硬度に及
ぼす影響を調べ、第4図の結果を得た。
That is, it is clear that when the C content is low, the V content is required to be 0.21% or more in order to obtain a hardness of Hv200 or more. Also, when the C content is 0.4%, the V content is 1.0%.
If you try to obtain Hv500 (G steel), and if you try to obtain a value of Hv200 to 50 degrees, like the base metal strength of conventional carburized materials, the V amount will exceed 0.21% and 1. This indicates that it is necessary to add less than 0%. Next, sample number D
, E and F copper, 1250qC x 1 hin
The effect of changing the cooling rate on hardness was investigated, and the results shown in Figure 4 were obtained.

第4図の結果から明らかな如く、12〜240oo/m
inの範囲の冷却速度で冷却すると、バナジウム炭化物
による析出硬化が得られる。本発明鞠の製造において、
窒化処理を考慮して(素材硬度の低下を考慮して)過時
効状態とならないように、24ぴ○/min以下の冷却
速度で冷却して製造する必要がある。第5図はこの冷却
条件を満足して製造した試料番号○、EおよびFの各鋼
を、通常の窒化処理温度の570qoに保持した場合の
、その保持時間と硬度との関係を調べたものである。
As is clear from the results in Figure 4, 12~240oo/m
Precipitation hardening by vanadium carbides is obtained when cooling at a cooling rate in the range of in. In manufacturing the ball of the present invention,
In consideration of the nitriding treatment (taking into consideration the decrease in material hardness), it is necessary to manufacture the product by cooling at a cooling rate of 24 pi/min or less so as not to cause an over-aging state. Figure 5 shows the relationship between the holding time and hardness when the steels with sample numbers ○, E, and F, manufactured under these cooling conditions, were held at the normal nitriding temperature of 570 qo. It is.

第5図の結果から明らかな如く、8時間以下の処理であ
れば、素材のかたさの低下は見られない。従って通常の
タフトライド処理(570qo×3時間)を行ったとし
ても本発明鍵は高い芯部硬度を保持することが明らかで
ある。実施例 2 本例で供試した鋼の化学成分(重量%)を第5表に示す
As is clear from the results shown in FIG. 5, no decrease in the hardness of the material was observed if the treatment time was 8 hours or less. Therefore, it is clear that the key of the present invention maintains high core hardness even when subjected to the usual tuftride treatment (570 qo x 3 hours). Example 2 Table 5 shows the chemical composition (% by weight) of the steel tested in this example.

第 5 表 第5表の試料番号1〜Nの各鋼について、通常の圧延条
件で圧延後、窒化処理と同一の条件(57000×4H
r)で鱗鈍し、それぞれの衝撃値を調べて第6表の結果
を得た。
Table 5 Each of the steels with sample numbers 1 to N in Table 5 was rolled under normal rolling conditions and then subjected to nitriding under the same conditions (57000×4H
r), and the impact values of each were examined and the results shown in Table 6 were obtained.

なお、第6表には製品加工を行ったあとで窒化処理を施
す場合も考慮して、冷間圧延によって15%、30%の
冷延を行ったあと、熱処理を施した場合の衝撃値も表示
した。ただし、衝撃試験は2肋Uノッチ衝撃試験片によ
り室温(2300)で行った。第6表の結果から、Si
の増量に従って衝撃値が大幅に向上し、本発明鋼の場合
には加工による衝撃値低下の煩向も軽微であり、強度お
よび級性にすぐれた窒化処理品が得られることが明らか
である。
Table 6 also shows the impact values when heat treatment is performed after 15% and 30% cold rolling, taking into consideration cases where nitriding is performed after product processing. displayed. However, the impact test was conducted at room temperature (2300℃) using a 2-rib U-notch impact test piece. From the results in Table 6, it can be seen that Si
It is clear that the impact value significantly improves as the amount of steel increases, and in the case of the steel of the present invention, there is only a slight problem that the impact value decreases due to processing, and that a nitrided product with excellent strength and grade can be obtained.

例えばK鋼はJ鋼の約2倍の衝撃値を示し、Si量は第
3図の結果からも明らかなように、0.36%以上でな
ければ窒化処理後において十分な轍性が得られない。ま
た0.36%以上であれば、加工品であっても窒化処理
後において十分な級性を維持する。76 実施例 3 本例で供試した銅の化学成分(重量%)を第7表に示す
For example, K steel shows approximately twice the impact value of J steel, and as is clear from the results in Figure 3, sufficient rutting resistance cannot be obtained after nitriding unless the Si content is 0.36% or more. do not have. Moreover, if it is 0.36% or more, even processed products will maintain sufficient quality after nitriding treatment. 76 Example 3 Table 7 shows the chemical components (% by weight) of the copper sampled in this example.

第7表の各鋼○〜Sを、通常の圧延条件で圧延後、57
0qo×細rのタフトラィド窒化処理を施した。
After rolling each steel ○ to S in Table 7 under normal rolling conditions, 57
Tuftride nitriding treatment of 0 qo x fine r was performed.

得られた窒化処理品の断面硬度分布を測定して第6図に
示す結果を得た。第6図の結果から明らかなように、C
r量の増加につれて表面硬度は高くなり、この現象自体
は従釆公知の事実のとおりであるが、Crが0.7%以
下の場合(比較鋼○およびP)では、本発明で目的とす
る表面かたさHv650以上を得ることができない。
The cross-sectional hardness distribution of the obtained nitrided product was measured, and the results shown in FIG. 6 were obtained. As is clear from the results in Figure 6, C
As the amount of r increases, the surface hardness increases, and this phenomenon itself is a well-known fact, but in the case where Cr is 0.7% or less (comparative steels ○ and P), it is difficult to achieve the objective of the present invention. It is not possible to obtain a surface hardness of Hv650 or higher.

従って、本発明鋼の場合においてCr量は0.71%を
越える量を必要とする。第 7 表
Therefore, in the case of the steel of the present invention, the Cr content must exceed 0.71%. Table 7

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒化処理(57000×細rのタフトラィド処
理)後における表面硬度Hv(測定荷重5k9)に及ぼ
すC量とCr量の関係を示す図、第2図は圧延(通常の
熱延)後における母材強度(母材硬度)に及ぼすC量と
V量の関係を示す図、第3図は570qo×4Hrの焼
鈍後の母村の級性に及ぼすSi量の影響を示す図、第4
図は鋼の製造過程における冷却速度がバナジウム炭化物
の析出硬化挙動に及ぼす影響を示す冷却速度と母材硬度
との関係図、第5図は窒化処理温度に保持したときの保
持時間と母材硬度との関係図、第6図はCr量の異なる
銅を窒化処理した場合の断面硬度分布を示す図である。 第1図第2図 第5図 第6図 図 寸 船 第3図
Figure 1 shows the relationship between the amount of C and the amount of Cr on the surface hardness Hv (measured load 5k9) after nitriding treatment (57000 x fine r tuftride treatment), and Figure 2 shows the relationship between the amount of C and Cr after rolling (normal hot rolling). Figure 3 is a diagram showing the relationship between C content and V content on base material strength (base metal hardness) in
The figure shows the relationship between cooling rate and base metal hardness, showing the influence of cooling rate in the steel manufacturing process on the precipitation hardening behavior of vanadium carbides. Figure 5 shows the holding time and base metal hardness when held at the nitriding temperature. FIG. 6 is a diagram showing the cross-sectional hardness distribution when copper with different amounts of Cr is nitrided. Figure 1 Figure 2 Figure 5 Figure 6 Figure Dimensions Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、C;0.4%未満、Si;0.36〜1
.50%、Mn;0.3〜2.0%、Cr;0.71越
え〜3.0%未満、Al;0.30%以下、V;0.2
1越え〜1.0%未満、残部;鉄および製造上の不可避
的不純物からなり、窒化処理前の素材硬さが焼入れ焼戻
処理なしでHv200越え500未満の範囲にあること
を特徴とする予備熱処理なしで窒化処理後に高い芯部硬
度を有する窒化用鋼。
1% by weight, C: less than 0.4%, Si: 0.36-1
.. 50%, Mn; 0.3 to 2.0%, Cr; more than 0.71 to less than 3.0%, Al; 0.30% or less, V; 0.2
More than 1% to less than 1.0%, remainder: consisting of iron and unavoidable impurities during manufacturing, and characterized in that the material hardness before nitriding is in the range of more than 200 Hv and less than 500 Hv without quenching and tempering. Nitriding steel with high core hardness after nitriding without heat treatment.
JP2758477A 1977-03-15 1977-03-15 Nitriding steel with high core hardness after nitriding without preheat treatment Expired JPS6024172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2758477A JPS6024172B2 (en) 1977-03-15 1977-03-15 Nitriding steel with high core hardness after nitriding without preheat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2758477A JPS6024172B2 (en) 1977-03-15 1977-03-15 Nitriding steel with high core hardness after nitriding without preheat treatment

Publications (2)

Publication Number Publication Date
JPS53113214A JPS53113214A (en) 1978-10-03
JPS6024172B2 true JPS6024172B2 (en) 1985-06-11

Family

ID=12225000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2758477A Expired JPS6024172B2 (en) 1977-03-15 1977-03-15 Nitriding steel with high core hardness after nitriding without preheat treatment

Country Status (1)

Country Link
JP (1) JPS6024172B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193214A (en) * 1983-04-19 1984-11-01 Caterpillar Mitsubishi Ltd Preparation of steel used in parts for constituting transmission apparatus
US4853049A (en) * 1984-02-13 1989-08-01 Caterpillar Inc. Nitriding grade alloy steel article
US5810948A (en) * 1995-07-12 1998-09-22 Nippon Steel Corporation Nitriding steel excellent in formability and susceptibility to nitriding and press formed article thereof
WO2018071175A1 (en) * 2016-10-13 2018-04-19 Caterpillar Inc. Nitrided track pin for track chain assembly of machine

Also Published As

Publication number Publication date
JPS53113214A (en) 1978-10-03

Similar Documents

Publication Publication Date Title
JP2003193137A (en) Carburized and quenched member and production method therefor
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JPS6024172B2 (en) Nitriding steel with high core hardness after nitriding without preheat treatment
JP5632722B2 (en) Case-hardened steel with low heat treatment distortion
JP3629851B2 (en) Cold tool steel for plasma carburizing
JPH04154936A (en) Precipitation hardening nitriding steel
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JPS5946288B2 (en) Manufacturing method of case hardened steel
JP2600174B2 (en) Low alloy nitrocarburized steel
JPH05255733A (en) Production of carburized and case hardened steel material having delayed fracture resistance
JPH02166257A (en) Spheroidal graphite cast iron and its production
JPH0568526B2 (en)
JP2611241B2 (en) Low alloy nitrocarburized steel
JP3544460B2 (en) Method for producing hardened steel with excellent fatigue properties
JP3109146B2 (en) Manufacturing method of low strain high strength member
JPS61261427A (en) Production of steel having superior cold workability and preventing coarsening of grain during carburization heating
JPS63103052A (en) Case hardening steel for cold forging
JP2000345292A (en) Manufacture of nitrocarburizing steel and nitrocarburized parts
JPH0572442B2 (en)
JP4548760B2 (en) High-strength stainless steel with excellent corrosion resistance and wear resistance
KR20220169247A (en) High-strength wire rod with improved hydrogen delayed fracture resistance, heat treatment parts using the same, and methods for manufacturing thereof
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JPS5931850A (en) Soft-nitrided low-alloy steel
JPH04141521A (en) Production of induction hardened parts having shaft shape
KR101446133B1 (en) Nitrided Steels having High Strength and High Toughness