JPS59193214A - Preparation of steel used in parts for constituting transmission apparatus - Google Patents

Preparation of steel used in parts for constituting transmission apparatus

Info

Publication number
JPS59193214A
JPS59193214A JP6787483A JP6787483A JPS59193214A JP S59193214 A JPS59193214 A JP S59193214A JP 6787483 A JP6787483 A JP 6787483A JP 6787483 A JP6787483 A JP 6787483A JP S59193214 A JPS59193214 A JP S59193214A
Authority
JP
Japan
Prior art keywords
less
nitriding
parts
steel
steel composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6787483A
Other languages
Japanese (ja)
Inventor
Toshio Otsubo
大坪 俊雄
Yuzo Kawamura
河村 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Mitsubishi Ltd
Original Assignee
Caterpillar Mitsubishi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Mitsubishi Ltd filed Critical Caterpillar Mitsubishi Ltd
Priority to JP6787483A priority Critical patent/JPS59193214A/en
Publication of JPS59193214A publication Critical patent/JPS59193214A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To inexpensively prepare steel used in the parts for constituting a transmission apparatus excellent in various characterisics, by a method wherein an alloyed steel composition containing C, Mn, Si, V, Al and S in a specific composition is subjected to hot forging or rolling while the forged or rolled steel composition is subjected to nitriding treatment after cooling. CONSTITUTION:An alloyed steel composition containing 0.35-0.65% C, 0.6-1.5% Mn, 0.15-0.35% Si, 0.1-0.3% V, 0.01-0.05% Al and 0.5% or less S as chemical components is subjected to hot forging of rolling while the forged or rolled steel composition is further subjected to nitriding treatment at about 500-600 deg.C for about 20hr in an NH3-gas atmosphere after cooled under a proper condition to obain steel used in parts for constituting a transmission apparatus constituted of light load gear parts such as an initial speed reducing gear having high strength and tenacity in the core part thereof and high dimensional accuracy. In this case, if necessary, surface hardness during nitriding can be obtained by further containing 1.0-1.5% Cr and, is impurities, Ni is pref. limited to 0.25% or less. Mo to 0.10% or less, Cu to 0.35% or less and P to 0.050% or less, respectively.

Description

【発明の詳細な説明】 この発明は、例えばエンジンの初減速歯車等の軽負荷歯
車部品に代表される伝導装置構成部品用鋼の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing steel for transmission device components, typified by light load gear parts such as the initial reduction gear of an engine.

一般にエンジンの初減速歯車等の軽負荷歯車部品は耐久
性、伝動効率、騒音等の面からある程度の表面及び芯部
の強度と同時に、靭性が要求され、更には高い寸法精度
を必要とされるなど厳しい物性条件が課せられている。
In general, light-load gear parts such as the initial reduction gear of an engine require a certain degree of surface and core strength and toughness from the viewpoint of durability, transmission efficiency, noise, etc., and also require high dimensional accuracy. Strict physical property conditions are imposed.

例えば、ある初減速歯車については表面硬さHR/jr
Ng3以上、HV’130まテノ硬化深さ0.7〜0.
/。
For example, for a certain initial reduction gear, the surface hardness HR/jr
Ng3 or more, HV'130, teno hardening depth 0.7-0.
/.

關及び芯部硬さHRC,20〜、?5が要求される。Seal and core hardness HRC, 20~? 5 is required.

このよつな請求に応えるため、従来より種々の方法が試
行されている。そのうち比較的炭素量の高い炭素鋼或い
は合金銅をg周質する方法は、安価に製造できる利点は
あるが、ピッチの細かい歯車等においては焼割れの危険
性が大きく、また硬さ分布、精度共安定した品質を望む
ことが難かしい。
In order to meet these demands, various methods have been tried in the past. Among these methods, the method of using carbon steel or alloy copper with a relatively high carbon content as a periphery has the advantage that it can be manufactured at low cost, but there is a high risk of quench cracking in gears with fine pitches, and it also has problems with hardness distribution and precision. It is difficult to expect co-stable quality.

また低炭素合金鋼を浸炭処理(−た後、焼入焼戻し金施
す方法は、広く用いられているが、処理温度がqoo℃
以上と高いところから、寸法精度に限界があり、これが
機械騒音の原因の一つとなっている。
In addition, the method of carburizing low carbon alloy steel (-) followed by quenching and tempering is widely used, but the treatment temperature is qoo°C.
Due to the above-mentioned height, there is a limit to the dimensional accuracy, which is one of the causes of machine noise.

一方窒化処理によシ目的とする軽負荷歯車部品を製造す
る方法においては、これらの部品が高度の耐久性と強度
を要求されるため、ある程度の芯部強度と比較的深い窒
化層を必要としておす、シたがってこれ等の一般的な製
法としては、Cr、 MO% AI等を含む高焼入性の
合金鋼、例えばSCM系或いはSACM系の低〜中炭素
鋼を調質して所定の硬さとした後、機械加工を施した上
でアンモニアガス雰囲気中でSθO〜600℃程度に加
熱して表層部に窒化層を形成して高い表面硬さを得ると
いう方法が採用されている。
On the other hand, in the method of manufacturing light-load gear parts by nitriding, these parts require a high degree of durability and strength, so a certain degree of core strength and a relatively deep nitrided layer are required. Therefore, the general manufacturing method for these is to heat a highly hardenable alloy steel containing Cr, MO% AI, etc., such as SCM-based or SACM-based low to medium carbon steel, to a specified level. After hardening, a method is adopted in which the material is machined and then heated in an ammonia gas atmosphere to about SθO to 600° C. to form a nitrided layer on the surface layer to obtain high surface hardness.

しかしながら、以上の方法においては芯部強度を得るた
めに前処理として調質を必要とすると同時に、部品の質
量によっては高い焼入性が要求されるため、その分材料
費が高くなり、更に窒化処理に長時間を要するという難
点がある。
However, in the above method, heat refining is required as a pretreatment to obtain core strength, and at the same time, high hardenability is required depending on the mass of the part, which increases the material cost and nitriding. The problem is that it takes a long time to process.

この発明は、上記実情に鑑み以上の条件を全て備えるよ
うな伝導装置構成部品用鋼を製造する方法を開発する目
的で鋭意研究の結果、■による析出硬化を利用した鋼は
非調質鋼と呼ばれ、焼入焼戻工程を省略できるため、既
に実用化が進められているが、この非調質鋼について適
正な化学成分範囲を選定することによυ優れた窒化性を
合わせ持たすことができることを見出し、この知見に基
いて所期の伝導装置構成部品用鋼製造法を完成したもの
である。この発明によれば所期の初減速歯車の軽負荷歯
車部品等を廉価な材料費で、短時間に製造することがで
きる。
In view of the above circumstances, this invention was made as a result of intensive research aimed at developing a method for producing steel for transmission device components that satisfies all of the above conditions. This type of steel is already being put into practical use because it allows the quenching and tempering process to be omitted.However, by selecting an appropriate chemical composition range for this non-tempered steel, it is possible to have excellent nitriding properties. Based on this knowledge, they completed a method for manufacturing steel for components of transmission devices. According to this invention, it is possible to manufacture light-load gear parts of the intended initial reduction gear in a short time with low material costs.

具体的にはこの発明は、C: 0.3g−0,4g%、
Mn:0、/、 〜/、5%、St : 0./!3:
 〜0.3.!r %、V ; 0./〜0.3 %、
Al : o、ot〜o、os%、s ; o、s%以
下の化学成分全含有する合金鋼組成を、熱間鍛造または
圧延後、適当な条件で冷却し、更に9化処理するもので
ある。
Specifically, this invention includes C: 0.3g-0.4g%,
Mn: 0, /, ~/, 5%, St: 0. /! 3:
~0.3. ! r%, V; 0. /~0.3%,
Al: o, ot~o, os%, s; After hot forging or rolling, an alloy steel composition containing all chemical components of o, ot to o, os%, s is cooled under appropriate conditions and further subjected to 9ization treatment. be.

ここで、化学成分中Cの添加割合は所定の強度を得るた
めの適正な範囲一として足められた。
Here, the addition ratio of C in the chemical components was set as an appropriate range for obtaining a predetermined strength.

またMnは脱酸剤として作用させるとともに、フェライ
ト強化による強度の確保を目的として加えられるもので
あるが、Sの含有量が低い場合にはMnが/、5%を越
えると、被剛性が低下するため、その上限を/、5%と
した。
In addition, Mn is added to act as a deoxidizing agent and to ensure strength by reinforcing ferrite, but if the S content is low, Mn exceeds 5%, and the stiffness decreases. Therefore, the upper limit was set to /, 5%.

siは脱酸剤及びフェライト強化元素として添加される
ものであり、その添加割合は製鋼プロセス上一般的な範
囲として定められた。
Si is added as a deoxidizing agent and a ferrite-strengthening element, and its addition ratio was determined as a general range for the steelmaking process.

Sは一般には有害不純物として扱われるが、被剛性を改
善する目的で、添加する場合も考慮してその上限f O
,!i%とした。
S is generally treated as a harmful impurity, but its upper limit f O
,! It was set as i%.

次にVは熱間圧延または熱間鍛造後の冷却過程において
製品に強度を与えるとともに、窒化性を改善する目的で
添加されるものであシ、その目−的のためにその添加割
合を0./〜0.3 %の範囲に設足した。
Next, V is added to give strength to the product during the cooling process after hot rolling or hot forging and to improve nitriding properties.For that purpose, the addition ratio is reduced to 0. .. /~0.3% range.

■の添加割合fO,/%以上としたのは、所定の窒化深
さ及び表面硬さを得るためである。
The reason for setting the addition ratio fO,/% or higher is to obtain a predetermined nitriding depth and surface hardness.

即ち、窒化深さについては窒化深さを増大させるには、
■、MO等が効果があるとされているが、V系非調質鋼
についてVの添加割合の影響を従来軽負荷歯車部品の標
準鋼として使用されたCr−MO系のSCMIIIIO
(+ /) )及びSACM 411&(+5)の比較
において示す(下記第1表及び第1〜3図)。
That is, in order to increase the nitriding depth,
■, MO, etc. are said to be effective, but the effect of the addition ratio of V on V-based non-thermal treated steel has been investigated using Cr-MO-based SCMIIIO, which is conventionally used as a standard steel for light-load gear parts.
(+/) ) and SACM 411 & (+5) (Table 1 and Figures 1 to 3 below).

第1表は、試料+1〜+6までの化学成分割合と30φ
の棒材に鍛伸後//!;0℃に再加熱し、/時間保持後
車体放冷した場合の機械的性質及び525℃で2/時間
、lIg時間窒化処理を行なった場合の表面硬さ、芯部
硬さを示すもので、+1〜+4は非調質鋼であって、4
−4はV量が低過ぎる場合、+1はV量が多少高い場合
を示す。
Table 1 shows the chemical component ratio of samples +1 to +6 and 30φ
After forging and stretching into a bar material //! This shows the mechanical properties when the car body is allowed to cool after being reheated to 0℃ and held for 1 hour, and the surface hardness and core hardness when nitriding is performed at 525℃ for 2 hours and 1Ig hours. , +1 to +4 are non-tempered steels, and 4
-4 indicates that the V amount is too low, and +1 indicates that the V amount is somewhat high.

第1、−図は第1表の+1〜+6の左2jt ”Cで2
/時間、pg時間窒化処理した場合の窒化深さと硬度の
関係を示すもので、第3図は+1〜+6の!;、2s 
℃での窒化処理を、窒化処理時間と窒化深さとの関係に
おいて示すものである。
1st, - figure is 2jt "C" to the left of +1 to +6 in Table 1.
Figure 3 shows the relationship between nitriding depth and hardness when nitriding is carried out for /hour, pg hours. ;, 2s
The nitriding treatment at 0.degree. C. is shown in terms of the relationship between the nitriding treatment time and the nitriding depth.

以上の結果ではV;θ、OA %程度(≠4)では寧ろ
SCM++θの方が窒化深さが深い。V二0.70%程
度(+5)でやつとSCM ’1170を上回る効果が
得られており、この点からV;0.10%以上が必要が
ある。
According to the above results, when V; θ and OA are approximately 4% (≠4), the nitriding depth is deeper in SCM++θ. At about 0.70% (+5) of V2, an effect exceeding that of SCM '1170 was obtained, and from this point, V2 of 0.10% or more is required.

tev;0..20%(+2)とv;o、33%を比べ
ると、醸かにVの多い方が深い屋化層が得ら几るが、一
般に窒化部品に要求される深さは0.7〜0.5叫程度
であジ、これを得るにはV;0.2〜0.3%で十分で
ある。長時間窒化処理全行った場合には、■;0.コチ
も0.3%も窒化深さに差がなくなる( 1! 、2図
)。
tev;0. .. Comparing 20% (+2) and v; o, 33%, the more V there is, the deeper the layer is obtained, but generally the depth required for nitrided parts is 0.7 to 0. V: 0.2 to 0.3% is sufficient to obtain this value. When the entire nitriding treatment is performed for a long time, ■;0. There is no difference in nitriding depth by 0.3% for flatheads (Figures 1! and 2).

また芯部硬式については、多くの場合HRCノ0〜30
程度であるが、中にはHRCB〜35程度と若干高緊硬
さが8曹とさハ、る場合もおる。
In addition, for hard core type, in most cases HRC No. 0 to 30
However, in some cases, the HRCB is about 35 and the hardness is slightly higher than 8C.

第1表によると、HRC20〜30程度であれば、V;
θ、01− %(+4 )でも可能であるが、HRC,
2J〜3.5程度の要求に応えることができない8しか
しv ; o、lo係以上で必れば、HRC,2J〜3
5程度の要求にも応えることができる。
According to Table 1, if HRC is about 20 to 30, V;
θ, 01-% (+4) is also possible, but HRC,
Cannot meet the demands of 2J to 3.5 8 However, if it is necessary for o, lo or above, HRC, 2J to 3
It can also meet the demands of about 5.

一万■の添加割合をθ。3%以下とした第1の球出は、
前述のように要求される窒化深さ0、/〜o、s喘を得
るには、V:0.30%で十分であり、経済性の而から
上限全0.30係とするものである。
The addition rate of 10,000 ■ is θ. The first ball launch was 3% or less.
In order to obtain the required nitriding depth of 0, / to o, s as described above, V: 0.30% is sufficient, and from the viewpoint of economy, the upper limit is set at 0.30%. .

また第2の理由1d、従来酵負荷歯上部品用鋼に要求さ
r、る伸びの下限げg〜70俤程1規程1fしくは10
係であるが、V:0.、j:lチ(≠1)では下限に5
亥当する9、7%(E L ’)  でを)す、したが
って伸びの下限を70係付近とするために、■の上限全
0.30チとしたものである。
In addition, the second reason 1d is that the lower limit of elongation required for conventional fermentation-loaded gear parts steel is 1f or 10 for 70 yen.
Regarding the V:0. , for j:lch (≠1), the lower limit is 5
Therefore, in order to set the lower limit of elongation to around 70%, the upper limit of (2) is set to 0.30 inches.

一方AIの闇゛については、−化時のイ′ン面硬さに影
響するが(訊コ、3図)、その効果はθ、/係以下では
大差はない。寧ろ、A]量が多くなると、AIN  の
形成によりVの析出硬化能が損われ、丑だ化合物層増加
による脆化も進行するため、Alの添加量は通宮脱酸剤
として必要とされる含有量である0、O/〜O,OS%
とした。
On the other hand, the darkness of AI does affect the hardness of the inner surface when it is turned into - (see Figure 3), but the effect is not much different below θ. On the contrary, when the amount of A] increases, the precipitation hardening ability of V is impaired due to the formation of AIN, and embrittlement progresses due to the increase in the oxidized compound layer, so the amount of Al added is required as a deoxidizing agent. The content is 0, O/~O, OS%
And so.

なおCrについては窒化時の表面硬さに関連があるため
、特に必要とする場合には/、0〜7.5−の範囲で加
えればよい。
Note that Cr is related to the surface hardness during nitriding, so if it is particularly required, it may be added in the range of 0 to 7.5.

またpSNi、 MO,cuは意図的に添加するもので
はないが、製造プロセス上不純物として含むことを考慮
し、上限をP;0.05%、Ni;0.コ5係、Mo:
O,/%、Cu;0.Jj%である。
Further, pSNi, MO, and cu are not intentionally added, but considering that they are included as impurities in the manufacturing process, the upper limits are set as follows: P: 0.05%, Ni: 0.05%. Section 5, Mo:
O,/%, Cu; 0. Jj%.

以上のような合金鋼組成は熱間鍛造または圧延後、適当
な条件で冷却する。
After hot forging or rolling, the alloy steel composition as described above is cooled under appropriate conditions.

例えば700〜1.00℃の温度範囲をS〜700℃/
分の冷却速度で、空冷等により冷却する。
For example, the temperature range of 700 to 1.00℃ is S to 700℃/
Cool by air cooling, etc. at a cooling rate of 100 min.

その後、通常の方法で窒化処理を行う。例えばアンモニ
アガス雰囲気中でSOO〜1.00℃に再加熱すること
によシ窒化処理を行う。そして窒化処理に際して従来の
SCMμダ0(+6)、 SACM4113 (+ 5
 )では所定の窒化深さの製品を得るだめに、50時間
近くの窒化処理時間を要したものを、この発明ではI時
間程度の窒化処理で所定の窒化深さの製品を得ることが
できる(第3図参照)、 以上喪するに、この発明によれば焼入性同上のための合
金成分が不要となシ、より廉価な材料を使用することが
できると同時に、焼入、焼戻し工程を省略でき、また窒
化性向上による窒化時間が短縮されるため、軽負荷歯車
部品等の伝導装置構成部品用鋼の製造工程を簡略にする
ことができる。
Thereafter, nitriding treatment is performed using a normal method. For example, the nitriding treatment is performed by reheating to SOO to 1.00° C. in an ammonia gas atmosphere. Then, during the nitriding process, the conventional SCM μda 0 (+6), SACM4113 (+5
) required nearly 50 hours of nitriding time to obtain a product with a predetermined nitriding depth, but with this invention, a product with a predetermined nitriding depth can be obtained with a nitriding process of approximately I hours ( (See Figure 3), but according to the present invention, there is no need for alloy components for hardenability, it is possible to use cheaper materials, and at the same time, the quenching and tempering steps can be reduced. Since it can be omitted and the nitriding time is shortened due to improved nitriding properties, the manufacturing process of steel for transmission device components such as light-load gear parts can be simplified.

以下、この発明の実施例を示す。Examples of this invention will be shown below.

実施例1 (1)  サンプルの成分、熱処理履歴及び硬さこの実
施例に使用するサンプル成分及び熱処理履歴、硬さを下
記iiu表に示す。
Example 1 (1) Sample components, heat treatment history, and hardness The sample components, heat treatment history, and hardness used in this example are shown in Table IIIU below.

第2表 (2)窒化層の硬さ勾配 第4図はテストピースにより本発明鋼(cL)と比較試
料であるS CM ’I’IO鋼(b)を52S℃で1
5時間ガス窒化した場合の窒化層の表面からの硬さ勾配
を示すものであり、同図において例え−ばHVII3θ
の深さを窒化深さとした場合、(cL)は0.3!;r
trm、(b)は0.23tttynで、(ロ))は(
b)の約ハS倍の窒化深さを示した。
Table 2 (2) Hardness gradient of nitrided layer
This figure shows the hardness gradient from the surface of the nitrided layer when gas nitrided for 5 hours.
When the depth of is taken as the nitriding depth, (cL) is 0.3! ;r
trm, (b) is 0.23tttyn, (b)) is (
The nitriding depth was approximately HaS times that of b).

第S図は、上記同様な方法で本発明鋼(a)、比較試料
であるSCMダダO鋼(b)、SACMAグS鋼−(c
)を525℃で175時間窒化した場合の窒化層の表面
からの硬さ勾配を示す。これによれば、(C)は表面硬
さは高いが、窒化深さは意外に伸びず、本発明鋼(α)
に対して劣る。したがって、本発明のように、表面硬さ
HR/!;Ng!r程度以上−の硬さが要求される部品
に対しては本発明が最も短時間で、所定の窒化深さが得
られ、最適な方法であることが明らかである。
FIG.
) is nitrided at 525° C. for 175 hours, and shows the hardness gradient from the surface of the nitrided layer. According to this, although (C) has a high surface hardness, the nitriding depth does not increase unexpectedly, and the invention steel (α)
inferior to. Therefore, as in the present invention, the surface hardness HR/! ;Ng! It is clear that the present invention is the most suitable method for parts requiring a hardness of about r or more, as it can achieve the desired nitriding depth in the shortest time.

なお上記is待時間lIg q間の両サイクルのサンプ
ルとも表面の化合物層の厚さは〃μ以下−で問題とはな
らなかった。
In addition, the thickness of the compound layer on the surface of both samples during the above-mentioned is waiting time lIgq was less than .mu.m, and did not pose any problem.

(3)窒化時間 罪6図は、本発明鋼(cL)、S CM 1tllO鋼
(b)、SACMAqS鋼(C)のそれぞれのテストピ
ースについて525℃におけるHV’130iでの窒化
深さと窒化時間の関係を示すものであるが、これにおい
ても本発明の方法を用いた(α)は、(b)、(c)に
比べて同一時間で深い窒化層が得られることが明らかで
ある。
(3) Nitriding time Figure 6 shows the nitriding depth and nitriding time at HV'130i at 525°C for the test pieces of the invention steel (cL), S CM 1tllO steel (b), and SACMAqS steel (C). Although this shows the relationship, it is clear that in (α) using the method of the present invention, a deep nitrided layer can be obtained in the same time compared to (b) and (c).

実施例コ 以下の合金鋼組成のギヤスカベンジポンプドリブンギア
ーについて窒化処理を行った場合の表面硬さ、芯部硬さ
、硬さ勾配等について示す、。
EXAMPLE 1 The surface hardness, core hardness, hardness gradient, etc. of gear scavenge pump driven gears having the following alloy steel compositions are shown when nitriding is performed.

(1)合金鋼組成 (2)窒化粂件 (c)  加熱温度:!;2J℃、加熱時間;、2/時
間(b)加熱温度:5.25℃、加熱時間;72時間(
3)結果 窒化処理の結果は下記第3表に示す1.これによれば表
面硬さ、硬さ勾配、硬さ深さ、いずれについても本発明
鋼は従来のS CM ’t’lO鋼に比べて優れた結果
を得ることができた。、第   3   表
(1) Alloy steel composition (2) Nitriding material (c) Heating temperature:! ; 2J°C, heating time; 2/hour (b) Heating temperature: 5.25°C, heating time; 72 hours (
3) Results The results of the nitriding treatment are shown in Table 3 below. According to this, the steel of the present invention was able to obtain superior results compared to the conventional SCM 't'lO steel in terms of surface hardness, hardness gradient, and hardness depth. , Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1、コ図は、明細書中第1表に示すサンプル+1〜+
−6を5.25℃の温度条件下で、それぞれ−1を時間
、l1g時間窒化処理を行った場合の窒化深さと硬度の
関係曲線、第3図は同上のサンブール+−1〜+6を5
25℃の温度条件下で、窒化処理を行った場合の窒化処
理時間と窒化深さの関係曲線、第4図は実施例1におい
て本発明鋼(α)、SCMqpo鋼(b)のテストピー
スを、Sコ、11−℃でlり時間ガス窒化処理した場合
の窒化層の表面からの硬−さ勾配を示す図、第S図は、
同上の方法で本発明鋼(α)、SCMvao鋼(b)1
.SACM14鋼(c)のテストピースを、SSS℃で
ttg時間ガス窒化した場合の窒化層の表面からの硬さ
勾配を示す図、第4図は、本発明#1(α)、SCMl
tθ鋼(b)、SACMAjS鋼(C)のテストピース
について515− ℃におけるKV II3θまでの窒
化深さと窒イユ時間の関係を示す図である。 7 第4図 −73− 第6図 ’J     10   20   3(J    4
(J    りLJ1ぐイ乙σγ間(e1間)
The first figure shows samples +1 to + shown in Table 1 in the specification.
Figure 3 shows the relationship curve between nitriding depth and hardness when -6 is nitrided for -1 hour and l1g time under the temperature condition of 5.25℃, respectively.
Figure 4 shows the relationship curve between nitriding time and nitriding depth when nitriding is performed under a temperature condition of 25°C. , S is a diagram showing the hardness gradient from the surface of the nitrided layer when gas nitriding is performed at 11-℃ for 1 hour.
Invention steel (α), SCMvao steel (b) 1 by the same method as above.
.. Figure 4 shows the hardness gradient from the surface of the nitrided layer when a test piece of SACM14 steel (c) was gas nitrided at SSS°C for ttg hours.
FIG. 3 is a diagram showing the relationship between the nitriding depth up to KV II3θ and the nitriding time at 515-°C for test pieces of tθ steel (b) and SACMAjS steel (C). 7 Figure 4-73- Figure 6'J 10 20 3 (J 4
(Between J and LJ1 and O and σγ (between e1)

Claims (1)

【特許請求の範囲】 fil  C; 0.3!t 〜0.A !r%、Mn
”、0.A 〜/、sq6、SiO,/ & 〜0.3
5 %、V:0./ 〜0.3%、Al;o、o/〜0
.05 %、S:0.jt%以下の化学成分を含有する
合金鋼組成を、熱間鍛造または圧延後、適当な条件で冷
却し、更に窒化処理することを特徴とする伝導装置構成
部品用鋼の製造法。 (2)伝導装置が初減速歯車等の軽負荷歯車部品で構成
される特許請求の範囲第(1)項記載の製造法。 ’(3) 、合金鋼組成中にCr;/、θ〜/、S%を
含む特許請求の範囲第(1)項又は第(2)項記載の製
造法。 (4)合金鋼組成がNi;0,25%以下、Mo”、0
./θチ以下、cu;o、3s%以下、P;0.050
%以下である特許請求の範囲′第(1)項又は(2)項
に記載の製造法。
[Claims] fil C; 0.3! t~0. A! r%, Mn
”, 0.A ~/, sq6, SiO, / & ~0.3
5%, V:0. / ~0.3%, Al; o, o/~0
.. 05%, S:0. 1. A method for producing steel for transmission device components, which comprises hot forging or rolling an alloy steel composition containing chemical components of jt% or less, cooling it under appropriate conditions, and further subjecting it to nitriding treatment. (2) The manufacturing method according to claim (1), wherein the transmission device is comprised of light-load gear components such as an initial reduction gear. (3) The manufacturing method according to claim (1) or (2), wherein the alloy steel composition contains Cr;/, θ~/, S%. (4) Alloy steel composition is Ni; 0.25% or less, Mo'', 0
.. /θ chi or less, cu; o, 3s% or less, P; 0.050
% or less, the manufacturing method according to claim '(1) or (2).
JP6787483A 1983-04-19 1983-04-19 Preparation of steel used in parts for constituting transmission apparatus Pending JPS59193214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6787483A JPS59193214A (en) 1983-04-19 1983-04-19 Preparation of steel used in parts for constituting transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6787483A JPS59193214A (en) 1983-04-19 1983-04-19 Preparation of steel used in parts for constituting transmission apparatus

Publications (1)

Publication Number Publication Date
JPS59193214A true JPS59193214A (en) 1984-11-01

Family

ID=13357497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6787483A Pending JPS59193214A (en) 1983-04-19 1983-04-19 Preparation of steel used in parts for constituting transmission apparatus

Country Status (1)

Country Link
JP (1) JPS59193214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196323A (en) * 1986-02-25 1987-08-29 Daido Steel Co Ltd Manufacture of high frequency quenched parts
EP2474379A1 (en) * 2011-01-07 2012-07-11 Aisin Seiki Kabushiki Kaisha Method of manufacturing a gear by a skiving process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286920A (en) * 1976-01-16 1977-07-20 Daido Steel Co Ltd Soft nitriding low alloy steel
JPS53113214A (en) * 1977-03-15 1978-10-03 Nisshin Steel Co Ltd Steel for nitriding use having high core hardness after nitriding treatment
JPS55161065A (en) * 1979-05-22 1980-12-15 Daido Steel Co Ltd Manufacture of mission synchro mechanism parts having least strain
JPS56119760A (en) * 1980-02-26 1981-09-19 Daido Steel Co Ltd Carbonitriding steel
JPS58171558A (en) * 1982-03-31 1983-10-08 Sanyo Tokushu Seikou Kk Tough nitriding steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286920A (en) * 1976-01-16 1977-07-20 Daido Steel Co Ltd Soft nitriding low alloy steel
JPS53113214A (en) * 1977-03-15 1978-10-03 Nisshin Steel Co Ltd Steel for nitriding use having high core hardness after nitriding treatment
JPS55161065A (en) * 1979-05-22 1980-12-15 Daido Steel Co Ltd Manufacture of mission synchro mechanism parts having least strain
JPS56119760A (en) * 1980-02-26 1981-09-19 Daido Steel Co Ltd Carbonitriding steel
JPS58171558A (en) * 1982-03-31 1983-10-08 Sanyo Tokushu Seikou Kk Tough nitriding steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196323A (en) * 1986-02-25 1987-08-29 Daido Steel Co Ltd Manufacture of high frequency quenched parts
EP2474379A1 (en) * 2011-01-07 2012-07-11 Aisin Seiki Kabushiki Kaisha Method of manufacturing a gear by a skiving process
US8819936B2 (en) 2011-01-07 2014-09-02 Aisin Seiki Kabushiki Kaisha Method of manufacturing gear

Similar Documents

Publication Publication Date Title
EP0933440B1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JPH04124216A (en) Production of high carbon steel sheet having superior formability
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
CN106133174B (en) The high strength steel of excellent in fatigue characteristics
JPH04349A (en) Bearing steel excellent in workability and rolling fatigue characteristic
JP3720750B2 (en) Connecting rod manufacturing method and connecting rod
JP4488228B2 (en) Induction hardening steel
JPS59193214A (en) Preparation of steel used in parts for constituting transmission apparatus
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JPH0967644A (en) Carburizing steel for gear, excellent in gear cutting property
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JPS62205245A (en) Non-heattreated steel for hot forging
JPS6144159A (en) Steel for cold forging having superior suitability to carbonitriding
JPS59190321A (en) Production of parts for machine structural use having excellent soft nitriding characteristic and machinability
JPH0454736B2 (en)
JPS62127425A (en) Manufacture of induction-hardened gear
JPH0483848A (en) Carburizing gear steel having high fatigue strength
WO2024127969A1 (en) Crankshaft and method for producing crankshaft
JPS6075517A (en) Manufacture of nonrefined forged steel article
JPS58130269A (en) Manufacture of soft-nitrided article having large hardening depth
KR100501680B1 (en) Heat treatment method of boron alloys for gear
JPH02173241A (en) Case-hardening steel and its production