JPH02173241A - Case-hardening steel and its production - Google Patents

Case-hardening steel and its production

Info

Publication number
JPH02173241A
JPH02173241A JP32859488A JP32859488A JPH02173241A JP H02173241 A JPH02173241 A JP H02173241A JP 32859488 A JP32859488 A JP 32859488A JP 32859488 A JP32859488 A JP 32859488A JP H02173241 A JPH02173241 A JP H02173241A
Authority
JP
Japan
Prior art keywords
steel
case
carburized
carburizing
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32859488A
Other languages
Japanese (ja)
Inventor
Manabu Hirai
学 平井
Fukukazu Nakazato
中里 福和
Mitsuo Uno
宇野 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP32859488A priority Critical patent/JPH02173241A/en
Publication of JPH02173241A publication Critical patent/JPH02173241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To efficiently manufacture a case-hardening steel excellent in fatigue strength, etc., by applying carburizing and quenching to a case-hardening steel with a specific composition, subjecting the above steel to spheroidizing annealing in a carburizing atmosphere while specifying temperature, holding time, and cooling velocity, respectively. CONSTITUTION:A case-hardening steel which has a composition consisting of, by weight, 0.10-0.30% C, 0.03-0.50% Si, 0.30-1.80% Mn, 0.30-1.80% Cr, and the balance Fe with inevitable impurities and containing, if necessary, 0.05-0.35% Mo is carburized and quenched. Subsequently, the above steel is held in a carburizing atmosphere at a temp. between Ac1 and Ac1+(Ac3-Ac1)X0.4 for 2-4hr and cooled slowly at 20-30 deg.C/hr cooling rate to undergo spheroidizing annealing (where Ac1 and Ac3 mean the Ac1 transformation point and the Ac3 transformation point of a base phase, respectively). Further, the above steel is held at a temp. between Ac3 and (Ac3+30 deg.C) for a short time and then quenched, by which the case-hardening steel which consists of a base phase composed of martensite containing spheroidal cementite and a carburized layer having a composition consisting of 0.50-1.50% C and the balance Fe with inevitable impurities and a structure composed of martensite containing spheroidal cementite can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車、土木機械、産業機械等に使用される
歯車、シャフト等の機械部品用浸炭肌焼鋼およびその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carburized case-hardened steel for mechanical parts such as gears and shafts used in automobiles, civil engineering machines, industrial machines, etc., and a method for manufacturing the same.

[従来の技術] 従来、自動車部品の歯車やシャフトとして一般に使用さ
れる浸炭肌焼鋼においては、母相のC量を低(抑え(0
,15〜0.30重量%、以下重量%を単に%という)
、また表層部に浸炭処理を施して母材の靭性と表層部の
耐摩耗性を向上させることにより、疲労強度を多少なり
とも向上させようとするものであった。したがって母相
、浸炭層いずれにも後述する球状化セメンタイトが含ま
れておらず、その製造においても、単に浸炭焼入を行う
のみであった。
[Prior Art] Conventionally, in carburized case-hardened steel commonly used for gears and shafts of automobile parts, the amount of C in the matrix is low (low (0)).
, 15-0.30% by weight (hereinafter weight% is simply referred to as %)
In addition, it was attempted to improve the fatigue strength to some extent by carburizing the surface layer to improve the toughness of the base material and the wear resistance of the surface layer. Therefore, neither the matrix phase nor the carburized layer contains spheroidized cementite, which will be described later, and in its manufacture, only carburizing and quenching was performed.

かかる浸炭肌焼鋼は一般に疲労強度(靭性、耐摩耗性等
)が充分高(ない。特に、昨今のエンジンの高出力化の
要請に応えることができる程度には疲労強度が高くない
Such carburized case-hardened steel generally does not have sufficiently high fatigue strength (toughness, wear resistance, etc.). In particular, the fatigue strength is not high enough to meet the recent demands for higher engine output.

そこで、この疲労強度をより高めるべくいくつかの提案
がなされており、たとえば、■特開昭53−14623
3号公報では、鋼材表面に擬球状の炭化物(球状化セメ
ンタイト)を形成させる浸炭熱処理法が開示され、また
■特開昭59−35630号公報では、鋼材表面に擬球
状炭化物を形成させ、表面の粗大炭化物のみ除去した後
、直接焼入または空冷後回加熱焼入を行い、歯面研磨を
施す各工程を含む歯車の熱処理方法が開示されている。
Therefore, several proposals have been made to further increase this fatigue strength.
Publication No. 3 discloses a carburizing heat treatment method for forming pseudo-spherical carbides (spheroidized cementite) on the surface of steel materials, and Japanese Patent Application Laid-Open No. 59-35630 discloses a carburizing heat treatment method for forming pseudo-spherical carbides (spheroidized cementite) on the surface of steel materials. A method for heat treatment of gears is disclosed, which includes steps of removing only coarse carbides, performing direct quenching or air-cooling followed by heating quenching, and polishing tooth surfaces.

これら公報記載技術では、鋼材表面に球状の炭化物を形
成させている点で、それなりに疲労強度は向上している
In the techniques described in these publications, fatigue strength is improved to a certain extent by forming spherical carbides on the surface of the steel material.

[発明が解決しよとする課題] しかしながら、上記公報■、■に開示の浸炭肌焼鋼では
、球状化炭化物を鋼材表面に形成させたとはいえ、鋼材
組織の全体にわたって、母相中のセメンタイトを多量に
球状化させたものではないため、未だ満足すべき疲労強
度は得られなかった。
[Problems to be Solved by the Invention] However, in the carburized case-hardened steels disclosed in the above-mentioned publications (■) and (■), although spheroidized carbides are formed on the surface of the steel material, cementite in the matrix is formed throughout the steel structure. However, since it did not have a large amount of spheroidized particles, a satisfactory fatigue strength could not yet be obtained.

この理由としては、浸炭肌焼鋼の母相中のセメンタイト
を球状化することが困難であったこと、および母相中の
セメンタイトを球状化すると、疲労強度が向上するとい
うことが知られていなかったことが考えられる。
The reason for this is that it was difficult to spheroidize cementite in the matrix of carburized case-hardening steel, and it was not known that spheroidizing cementite in the matrix improves fatigue strength. It is possible that

また特に上記公報■に記載の技術では、製造工程が複雑
で、製造コストがかかりすぎるという難点もある。
In addition, the technique described in the above-mentioned Publication (2) in particular has the disadvantage that the manufacturing process is complicated and the manufacturing cost is too high.

そこで本発明者は、従来よりも優れた疲労強度をもつ浸
炭肌焼鋼について詳細な検討を行った結果、C濃度の高
い、高硬度のセメンタイトを球状化し、マルテンサイト
中に分布させることにより、マルテンサイト母相中のC
量は低(なり、母相の靭性は増大するとともに、マルテ
ンサイト浸炭層は耐摩耗性が増大するという知見を得た
Therefore, the present inventor conducted a detailed study on carburized case-hardened steel, which has a fatigue strength superior to that of conventional steels, and found that by spheroidizing high-hardness cementite with a high C concentration and distributing it in martensite, C in martensitic matrix
It was found that the wear resistance of the martensitic carburized layer increases as the toughness of the matrix increases and the wear resistance of the martensitic carburized layer increases.

本発明は以上の事情を背景になされたもので、その主目
的は、疲労強度等の優れた浸炭肌焼鋼およびその効率的
な製造方法を提供することにある。
The present invention was made against the background of the above-mentioned circumstances, and its main purpose is to provide a carburized case-hardened steel with excellent fatigue strength and an efficient manufacturing method thereof.

[課題を解決するための手段] 上記課題を解決するための本第1発明は、下記(A)の
母相の表面に下記(B)の浸炭層を有することを特徴と
するものである。
[Means for Solving the Problems] The first invention for solving the above problems is characterized by having a carburized layer shown below (B) on the surface of the parent phase shown below (A).

(A)重量%で、C: 0.10〜0.30%、Si:
0.03〜0.50%、Mn : 0.30〜1.80
%、Cr: 0.30〜1.80%を含有し、必要に応
じてMo: 0.05〜0.35%を含み、残部Feお
よび不可避的不純物からなり、その組織は球状化セメン
タイトを含有するマルテンサイトである母相。
(A) In weight%, C: 0.10-0.30%, Si:
0.03-0.50%, Mn: 0.30-1.80
%, Cr: 0.30 to 1.80%, Mo: 0.05 to 0.35% as necessary, the balance consists of Fe and inevitable impurities, and the structure contains spheroidized cementite. The matrix is martensite.

(B)重量%で、C: 0.50〜1.50%を含有し
、残部Feおよび不可避的不純物からなり、その組織は
球状化セメンタイトを含有するマルテンサイトである浸
炭層。
(B) A carburized layer containing C: 0.50 to 1.50% by weight, the remainder consisting of Fe and inevitable impurities, and whose structure is martensite containing spheroidized cementite.

また、本第二発明は、重量%で、c : o、 i o
〜0.30%、S i : 0.03〜0.50%、M
n:0.30〜1.80%、Cr:0.30〜1.80
%を含有し、必要に応じてMo0.05〜0.35%を
含み、残部Feおよび不可避的不純物からなる肌焼鋼に
、下記(A)〜(C)の処理をこの順で行うことを特徴
とするものである。
Further, in the second invention, in weight%, c: o, io
~0.30%, Si: 0.03~0.50%, M
n: 0.30-1.80%, Cr: 0.30-1.80
%, optionally containing 0.05 to 0.35% Mo, and the remainder consisting of Fe and unavoidable impurities, the following treatments (A) to (C) are performed in this order. This is a characteristic feature.

(A)浸炭焼入をする。(A) Carburize and quench.

(B)浸炭雰囲気中で、ActとAcl+ (Ac3A
ct)Xo、4との間の温度域で2〜4時間保持した後
、20〜b し、球状化焼鈍を行う。ただし、Acl;母相のAcl
変態点、Ac3;母相のAc3変態点である。
(B) In a carburizing atmosphere, Act and Acl+ (Ac3A
ct) After holding in a temperature range between Xo and 4 for 2 to 4 hours, spheroidizing annealing is performed at 20 to b. However, Acl; mother phase Acl
Transformation point, Ac3; Ac3 transformation point of the parent phase.

(C)Ac3と(Ac3+30)との間の温度域に短時
間保持した後、焼入をする。
(C) After being held in a temperature range between Ac3 and (Ac3+30) for a short time, quenching is performed.

[作 用] 一般に、Cは鋼に静的強度を付与するのに重要な役割を
担う元素であるが、過度に多量添加すると鋼の靭性が低
下してしまう。他方、C量が不足すると耐摩耗性が低下
する。また本発明者の得た知見によれば、全体としての
Ca度が同じ場合、Ca度の均一な単一相よりも、高C
濃度の球状化セメンタイトを母相中に分布させた形で含
むものの方が靭性、耐摩耗性が高い。
[Function] Generally, C is an element that plays an important role in imparting static strength to steel, but if it is added in an excessively large amount, the toughness of the steel will decrease. On the other hand, when the amount of C is insufficient, wear resistance decreases. Furthermore, according to the knowledge obtained by the present inventors, when the overall Ca content is the same, a high-C
Those containing a high concentration of spheroidized cementite distributed in the matrix have higher toughness and wear resistance.

そこで本発明にかかる浸炭肌焼鋼は、マルテンサイト母
相中のC量を所定範囲(0,10〜0.30%)に抑え
、かつセメンタイトを球状化したので、鋼の母相の靭性
が高い。一方、多量のかつCa度が高い(0,50〜1
.50%)セメンタイトを球状化し、これをマルテンサ
イト中に分布させたものであるから、そのマルテンサイ
ト浸炭層は特に高い耐摩耗性を有するものである。
Therefore, the carburized case-hardening steel according to the present invention suppresses the amount of C in the martensite matrix within a predetermined range (0.10 to 0.30%) and spheroidizes the cementite, thereby improving the toughness of the steel matrix. expensive. On the other hand, it has a large amount and a high Ca content (0.50 to 1
.. 50%) cementite is spheroidized and distributed in martensite, so the martensite carburized layer has particularly high wear resistance.

さらに、かかる浸炭肌焼鋼を製造するには、浸炭焼入後
、充分な球状化焼鈍を行い、母相、浸炭層ともに多量の
球状化セメンタイトを形成することが必要である。この
段階で、球状化セメンタイトを多量に形成しておかない
と、続(再加熱焼入の際にそれらが組織内に固溶してし
まう可能性があるからである。同じ理由から、球状化処
理後の焼入温度はなるべく低(し、その温度での保持時
間は短くする必要がある。
Furthermore, in order to manufacture such a carburized case-hardened steel, it is necessary to perform sufficient spheroidizing annealing after carburizing and quenching to form a large amount of spheroidized cementite in both the matrix and the carburized layer. If a large amount of spheroidized cementite is not formed at this stage, there is a possibility that it will become solid solution in the structure during subsequent reheating and quenching.For the same reason, spheroidization The quenching temperature after treatment should be as low as possible (and the holding time at that temperature should be shortened).

本発明にかかる浸炭肌焼鋼の製造方法では、浸炭焼入後
、上記条件を満足するような工程およびヒートパターン
で鋼を処理するものであるから、上記浸炭肌焼鋼を容易
に製造することができる。
In the method for producing carburized and case-hardened steel according to the present invention, after carburizing and quenching, the steel is processed through a process and heat pattern that satisfies the above conditions, so that the above-mentioned carburized and case-hardened steel can be easily produced. Can be done.

[発明の具体的構成] 以下本発明をさらに具体的に説明する。[Specific structure of the invention] The present invention will be explained in more detail below.

まず本発明における化学組成の限定理由について説明す
る。
First, the reason for limiting the chemical composition in the present invention will be explained.

C:前述の通り、Cは鋼に所定の静的強度を付与するの
に必要な元素であるが、反面、靭性を劣化させる。特に
、浸炭処理を施す肌焼鋼においては、静的強度と靭性の
バランスが必要であり、最低限の静的強度を得るには、
C濃度として0.1%が必要である。一方、マルテンサ
イト母相中のC量が0.3%を超えると靭性が低下する
。したがつて、マルテンサイト母相中のC量を0.1θ
〜0.30%と定めた。
C: As mentioned above, C is an element necessary to impart a certain static strength to steel, but on the other hand, it deteriorates toughness. In particular, case hardening steel that undergoes carburizing requires a balance between static strength and toughness, and to obtain the minimum static strength,
A C concentration of 0.1% is required. On the other hand, when the amount of C in the martensite matrix exceeds 0.3%, toughness decreases. Therefore, the amount of C in the martensite matrix is set to 0.1θ
It was set at ~0.30%.

他方、マルテンサイト浸炭層では、所期の耐摩耗性を得
るため最低0.5%のCが必要であるが、1.5%を超
えると、靭性が急激に低下する。したがって、マルテン
サイト浸炭層中のC量を0.5〜1、5%と定めた。
On the other hand, a martensitic carburized layer requires at least 0.5% C to obtain the desired wear resistance, but if it exceeds 1.5%, the toughness decreases rapidly. Therefore, the amount of C in the martensitic carburized layer was determined to be 0.5 to 1.5%.

Si ;Siは溶鋼の脱酸剤として不可欠な元素であり
、また、鋼に所定の静的強度を付与するのに必要な元素
である。しかしその含有量が0.03%未満の時は脱酸
作用に所望の効果が得られず、他方、0.50%を超え
るとSi酸化物の生成が著しく、靭性が劣化することか
ら、その含有量を0゜03〜0.50%と定めた。
Si: Si is an essential element as a deoxidizer for molten steel, and is also an element necessary to impart a certain static strength to steel. However, if the content is less than 0.03%, the desired deoxidizing effect cannot be obtained, while if it exceeds 0.50%, the formation of Si oxide is significant and the toughness is deteriorated. The content was determined to be 0.03% to 0.50%.

Mn;Mnは、溶鋼の脱酸に必要な元素であり、また鋼
に焼入性を付与するのに有効な元素であるが、含有量が
0.30%未満では脱酸作用に所望の効果を期待できず
、他方、1.80%を超えて含有させると被削性の低下
が起こることから、その含有量を0.30〜1.80%
と定めた。
Mn: Mn is an element necessary for deoxidizing molten steel and is also an effective element for imparting hardenability to steel, but if the content is less than 0.30%, it will not have the desired effect on deoxidizing action. On the other hand, if the content exceeds 1.80%, machinability will decrease, so the content should be reduced to 0.30 to 1.80%.
It was determined that

Cr ;Crは鋼に焼入性を付与するのに有効な元素で
ある。その含有量が0.30%未満では、焼入性向上に
所望の効果を得ることができず、他方1.80%を超え
て含有させると、浸炭処理時に粒界にCr酸化物を生成
し、疲労特性を低下させる。
Cr: Cr is an element effective in imparting hardenability to steel. If the content is less than 0.30%, the desired effect in improving hardenability cannot be obtained, while if the content exceeds 1.80%, Cr oxides will be generated at grain boundaries during carburizing. , reduce fatigue properties.

したがって、その含有量を0.30〜1.80%とした
Therefore, its content was set to 0.30 to 1.80%.

Mo;Moは、鋼材の焼入性および靭性を向上する作用
があるが、その含有量が0.05%未満では、前記作用
に所望の効果が得られず、他方、0゜35%を超えて含
有させると被削性が劣化することから、その含有量を0
.05〜0.35%とした。
Mo; Mo has the effect of improving the hardenability and toughness of steel materials, but if its content is less than 0.05%, the desired effect cannot be obtained; on the other hand, if it exceeds 0.35% Since machinability deteriorates if it is contained, its content is reduced to 0.
.. 05 to 0.35%.

次に、球状化処理条件について説明する。Next, the spheroidization processing conditions will be explained.

球状化処理をするにあたっては、母相、浸炭層すべてに
おいて確実に球状化を行う必要があるが、球状化焼鈍時
の保持温度がAcl変態点より低いと、セメンタイト球
状化が遅くなり、所望の球状化セメンタイトが形成され
ず、他方、Acl+(Ac3−Act)Xo、4の温度
を超えると、母相におけるセメンタイト球状化が困難に
なるため、温度域をAclとAcL+(Ac3−Acl
)XO94との間の温度域とした。
When performing spheroidization treatment, it is necessary to ensure spheroidization in both the matrix and the carburized layer, but if the holding temperature during spheroidization annealing is lower than the ACl transformation point, cementite spheroidization will be delayed and the desired result will not be achieved. On the other hand, if spheroidized cementite is not formed and the temperature exceeds Acl+(Ac3-Act)Xo,4, cementite spheroidization in the matrix becomes difficult.
) XO94.

また、上記温度保持時間が4時間を超えるか、あるいは
冷却速度が20℃/時間未満のときは浸炭部に形成され
た球状化セメンタイトが粗大化し、他方、保持時間が2
時間未満であるか、あるいは冷却速度が30℃/時間を
超えると、球状化セメンタイトが形成されにくいため、
保持時間を2〜4時間、冷却速度を20〜30°C/時
間とした。
Furthermore, when the temperature holding time exceeds 4 hours or the cooling rate is less than 20°C/hour, the spheroidized cementite formed in the carburized part becomes coarse;
If the cooling rate is less than 30°C/hour, or if the cooling rate exceeds 30°C/hour, spheroidized cementite is difficult to form.
The holding time was 2-4 hours, and the cooling rate was 20-30°C/hour.

なお、球状化焼鈍を浸炭雰囲気下で行うのは、浸炭層表
面部の脱炭を防止するためである。
Note that the reason why the spheroidizing annealing is performed in a carburizing atmosphere is to prevent decarburization of the surface portion of the carburized layer.

次に焼入条件について説明する。Next, the quenching conditions will be explained.

浸炭焼入により、肌焼鋼表面部を高Cにし、球状化焼鈍
によりセメンタイトを球状化した後の組織は、球状化セ
メンタイトを含む焼なまし組織となっている。そこでこ
の組織をマルテンサイトとするために焼入を行う。この
焼入は急冷速度を上げるため、水焼入が好適である。
After carburizing and quenching the surface of the case-hardened steel to a high C value and spheroidizing cementite by spheroidizing annealing, the structure is an annealed structure containing spheroidized cementite. Therefore, quenching is performed to convert this structure into martensite. Water quenching is suitable for this quenching in order to increase the quenching rate.

焼入の際、保持温度がAc3点より低いと、母相中にフ
ェライトが残留してしまう。他方、保持温度がAc3点
より30℃以上高い時、あるいは保持時間が長期にわた
るときは、球状化セメンタイトが組織中に固溶してしま
い、球状化セメンタイトを含むマルテンサイト組織が得
られない。したがって、保持温度はAc3変態点と(A
c3+30℃)との間の温度域に定め、短時間保持とし
た。なお、保持時間を特に限定しなかったのは、それが
保持温度と肌焼鋼の大きさとに依存するからである。
During quenching, if the holding temperature is lower than the Ac3 point, ferrite will remain in the matrix. On the other hand, when the holding temperature is 30° C. or more higher than the Ac3 point, or when the holding time is long, spheroidized cementite dissolves in the structure, and a martensitic structure containing spheroidized cementite cannot be obtained. Therefore, the holding temperature is the Ac3 transformation point and (A
The temperature was set at a temperature range between C3+30°C) and held for a short period of time. Note that the holding time was not particularly limited because it depends on the holding temperature and the size of the case hardening steel.

第4図に従来鋼の組織と本発明鋼の組織の概略図を示し
た。同図でわかるように、本発明鋼では浸炭層および母
相において球状化セメンタイトが充分分布したものとな
っている。
FIG. 4 shows a schematic diagram of the structure of the conventional steel and the structure of the steel of the present invention. As can be seen from the figure, in the steel of the present invention, spheroidized cementite is sufficiently distributed in the carburized layer and matrix.

[実施例] 次に実施例を説明する。[Example] Next, an example will be described.

第1表に示す化学成分の供試鋼を1250°Cにて1時
間加熱し、100mm径、30mm径に鍛伸し、以下の
調査工程にて調査を行った。
A sample steel having the chemical composition shown in Table 1 was heated at 1250° C. for 1 hour, forged and drawn to a diameter of 100 mm and a diameter of 30 mm, and investigated using the following investigation steps.

まず、30an径の鋼材を925℃に1時間加熱後空冷
し、焼準した後、2511I11径に旋削し、JIS3
号(2ausUノツチ)シャルピー試験片に加工を行い
、第1図〜第3図(ここで、第1図は本発明にかかる浸
炭処理のヒートパターン、第2図は従来の浸炭処理のヒ
ートパターン、第3図は他社で採用している浸炭ヒート
パターンをそれぞれ示す図である)に示すヒートパター
ンで浸炭処理を実施した。さらに、170℃にて1時間
焼もどしを行い、シ3 ットビーニング(φ0.3 M
、 47 m/s。
First, a steel material with a diameter of 30an was heated to 925°C for 1 hour, cooled in air, normalized, and then turned to a diameter of 2511I11, JIS 3
No. 2ausU notch) Charpy test piece was processed, and Figures 1 to 3 (here, Figure 1 is the heat pattern of carburizing treatment according to the present invention, Figure 2 is the heat pattern of conventional carburizing treatment, The carburizing process was carried out using the heat pattern shown in Figure 3, which shows the carburizing heat patterns used by other companies. Furthermore, it was tempered at 170°C for 1 hour, and then subjected to sheet beaning (φ0.3M).
, 47 m/s.

15分)を施した後、シャルピー衝撃試験を行った。15 minutes), then a Charpy impact test was conducted.

他方、1100I1径の鋼材は、925℃に5時間加熱
後空冷して焼準した後、第5図に示した歯車試験片(形
状二手歯車、モジュール=2.0、歯数:33、ピッチ
直径=66)に加工し、第1図〜第3図の浸炭処理を実
施した。さらに、170℃にて1時藺焼もどしを行い、
ショットピーニング処理を施し、動力循環式歯車疲労試
験機にて疲労強度を調査した。なお、疲労強度は107
回にて破壊を生じなかった強度(疲労限界)にて評価し
た。歯面疲労については、107回にて破壊を生じなか
った歯車の歯面の損傷程度を目視観察した。
On the other hand, a steel material with a diameter of 1100I was heated to 925°C for 5 hours, cooled in air, and normalized, and then the gear test piece shown in Fig. 5 (shape: two-handed gear, module = 2.0, number of teeth: 33, pitch diameter) was prepared. =66), and the carburizing treatment shown in Figs. 1 to 3 was carried out. Furthermore, we retempered the strawberries at 170℃ for 1 hour.
Shot peening treatment was performed, and fatigue strength was investigated using a power circulation gear fatigue tester. In addition, the fatigue strength is 107
Evaluation was made based on the strength (fatigue limit) at which no fracture occurred in the test. Regarding tooth surface fatigue, the degree of damage to the tooth surface of gears that did not break in 107 cycles was visually observed.

静的曲げ試験については30aui径鍛伸材を925℃
に1時間加熱後空冷して、焼準し、第6図に示す静的曲
げ試験片に加工後、第1図〜第3図のヒートパターンで
浸炭処理を実施した。さらに、170℃にて1時間焼も
どしを行い、ショットピニング処理を施し、102/S
の歪速度で静的曲げ強度を調査した。なお、静的曲げ強
度は、亀裂発生荷重にて評価した。
For static bending test, 30aui diameter forged material was heated to 925℃.
After heating for 1 hour, air-cooling, normalizing, and processing into the static bending test piece shown in FIG. 6, carburizing treatment was performed using the heat pattern shown in FIGS. 1 to 3. Furthermore, tempering was performed at 170℃ for 1 hour, shot pinning treatment was performed, and 102/S
The static bending strength was investigated at strain rates of . Note that the static bending strength was evaluated using the crack initiation load.

浸炭深さ(硬度Hv550の位置の表面からの深さ)に
ついては、301n11径の鋼材を925℃に1時間加
熱後空冷して焼準した後、25mo+径に旋削し、第1
図〜第3図のヒートパターンで浸炭処理をした後、測定
した。
Regarding the carburizing depth (depth from the surface at the position of hardness Hv550), a steel material with a diameter of 301n11 was heated to 925°C for 1 hour, cooled in air and normalized, then turned to a diameter of 25mo+, and
Measurements were taken after carburizing using the heat patterns shown in Figures 3 to 3.

以上の測定結果を第1表に示す。第1表中、各測定値は
同表中のヒートパターン類に示す処理を行った結果であ
る。また歯面疲労についての評価は、○:全く損傷なし
、△:軽微な損傷あり、×:著しい損傷あり、とした。
The above measurement results are shown in Table 1. In Table 1, each measured value is the result of performing the processing shown in the heat patterns in the same table. The tooth surface fatigue was evaluated as follows: ○: No damage at all, Δ: Slight damage, ×: Significant damage.

第1表から明らかなように、本発明鋼は、歯面疲労が全
く存在せず、耐摩耗性が優れている。また静的曲げ強度
、シャルピー衝撃値が従来鋼に比べて大きく、靭性が良
好である。
As is clear from Table 1, the steel of the present invention has no tooth surface fatigue and has excellent wear resistance. It also has higher static bending strength and Charpy impact value than conventional steel, and has good toughness.

疲労限界は従来鋼に比べて30%前後大きく、疲労強度
が太き(向上している。
The fatigue limit is approximately 30% higher than that of conventional steel, and the fatigue strength is greater (improved).

また、比較鋼中でも、第1図の浸炭処理を施したものは
、第2図の従来法により浸炭したものと比べて耐摩耗性
、靭性、疲労特性が優れており、本発明による浸炭肌焼
鋼製造方法が優れていることがわかる。
Furthermore, among the comparative steels, those subjected to the carburizing treatment shown in Fig. 1 have superior wear resistance, toughness, and fatigue properties compared to those carburized by the conventional method shown in Fig. It can be seen that the steel manufacturing method is superior.

[発明の効果] 以上の通り、本発明によれば、疲労強度等の優れた浸炭
肌焼鋼およびその効率的な製造方法を提供することがで
きる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide carburized case-hardened steel with excellent fatigue strength and the like and an efficient method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる浸炭処理のヒートパターン図、
第2図は従来法での浸炭処理のヒートパターン図、第3
図は他社特許における浸炭処理のヒートパターン図、第
4図は従来鋼(a)と本発明鋼(b)の組織の比較説明
図、第5図は歯車試験片の概略説明図、第6図は静的曲
げ試験片を示す図である。 第 図 筋 団 第 図 清 朋 第 第 図 第 図 (b)
FIG. 1 is a heat pattern diagram of carburizing treatment according to the present invention,
Figure 2 is a heat pattern diagram of carburizing treatment using the conventional method;
The figure is a heat pattern diagram of carburizing treatment in another company's patent, Figure 4 is a comparative illustration of the structures of conventional steel (a) and steel of the present invention (b), Figure 5 is a schematic diagram of a gear test piece, and Figure 6 is a diagram showing a static bending test piece. (b)

Claims (2)

【特許請求の範囲】[Claims] (1)下記(A)の母相の表面に下記(B)の浸炭層を
有することを特徴とする浸炭肌焼鋼。 (A)重量%で、C:0.10〜0.30%、Si:0
.03〜0.50%、Mn:0.30〜1.80%、C
r:0.30〜1.80%を含有し、必要に応じてMo
:0.05〜0.35%を含み、残部Feおよび不可避
的不純物からなり、その組織は球状化セメンタイトを含
有するマルテンサイトである母相。 (B)重量%で、C:0.50〜1.50%を含有し、
残部Feおよび不可避的不純物からなり、その組織は球
状化セメンタイトを含有するマルテンサイトである浸炭
層。
(1) A carburized case-hardening steel characterized by having the following carburized layer (B) on the surface of the parent phase shown below (A). (A) In weight%, C: 0.10-0.30%, Si: 0
.. 03-0.50%, Mn: 0.30-1.80%, C
r: Contains 0.30 to 1.80%, Mo
: Contains 0.05 to 0.35%, the remainder consists of Fe and unavoidable impurities, and its structure is a matrix of martensite containing spheroidized cementite. (B) Contains C: 0.50 to 1.50% in weight%,
The carburized layer is composed of the remainder Fe and unavoidable impurities, and its structure is martensite containing spheroidized cementite.
(2)重量%で、C:0.10〜0.30%、Si:0
.03〜0.50%、Mn:0.30〜1.80%、C
r:0.30〜1.80%を含有し、必要に応じてMo
0.05〜0.35%を含み、残部Feおよび不可避的
不純物からなる肌焼鋼に、下記(A)〜(C)の処理を
この順で行うことを特徴とする浸炭肌焼鋼の製造方法。 (A)浸炭焼入をする。 (B)浸炭雰囲気中で、Ac1とAc1+(Ac3−A
c1)×0.4との間の温度域で2〜4時間保持した後
、20〜30℃/時間の冷却速度で徐冷し、球状化焼鈍
を行う。ただし、Ac1;母相のAc1変態点、Ac3
;母相のAc3変態点である。 (C)Ac3と(Ac3+30)との間の温度域に短時
間保持した後、焼入をする。
(2) In weight%, C: 0.10-0.30%, Si: 0
.. 03-0.50%, Mn: 0.30-1.80%, C
r: Contains 0.30 to 1.80%, Mo
Manufacture of carburized case-hardened steel, which is characterized in that the following treatments (A) to (C) are performed in this order on case-hardened steel containing 0.05 to 0.35%, the balance being Fe and unavoidable impurities. Method. (A) Carburize and quench. (B) In a carburizing atmosphere, Ac1 and Ac1+ (Ac3-A
c1) x 0.4 for 2 to 4 hours, and then slowly cooled at a cooling rate of 20 to 30°C/hour to perform spheroidizing annealing. However, Ac1: Ac1 transformation point of the matrix, Ac3
; This is the Ac3 transformation point of the parent phase. (C) After being held in a temperature range between Ac3 and (Ac3+30) for a short time, quenching is performed.
JP32859488A 1988-12-26 1988-12-26 Case-hardening steel and its production Pending JPH02173241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32859488A JPH02173241A (en) 1988-12-26 1988-12-26 Case-hardening steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32859488A JPH02173241A (en) 1988-12-26 1988-12-26 Case-hardening steel and its production

Publications (1)

Publication Number Publication Date
JPH02173241A true JPH02173241A (en) 1990-07-04

Family

ID=18212021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32859488A Pending JPH02173241A (en) 1988-12-26 1988-12-26 Case-hardening steel and its production

Country Status (1)

Country Link
JP (1) JPH02173241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422643B2 (en) 2003-03-11 2008-09-09 Komatsu Ltd. Rolling element and method of producing the same
US7544255B2 (en) * 2003-03-04 2009-06-09 Komatsu Ltd. Rolling element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121659A (en) * 1976-03-01 1977-10-13 Gen Electric Reinforced polyesterrpolycarbonate compound and its producing method
JPS59189170A (en) * 1983-04-13 1984-10-26 Polyplastics Co Thermoplastic resin molding composition
JPS62268612A (en) * 1986-05-19 1987-11-21 Nitto Boseki Co Ltd Glass-fiber reinforced resin molded form

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121659A (en) * 1976-03-01 1977-10-13 Gen Electric Reinforced polyesterrpolycarbonate compound and its producing method
JPS59189170A (en) * 1983-04-13 1984-10-26 Polyplastics Co Thermoplastic resin molding composition
JPS62268612A (en) * 1986-05-19 1987-11-21 Nitto Boseki Co Ltd Glass-fiber reinforced resin molded form

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544255B2 (en) * 2003-03-04 2009-06-09 Komatsu Ltd. Rolling element
US7691212B2 (en) 2003-03-04 2010-04-06 Komatsu Ltd. Rolling element and method of producing the same
US7422643B2 (en) 2003-03-11 2008-09-09 Komatsu Ltd. Rolling element and method of producing the same
US7691213B2 (en) 2003-03-11 2010-04-06 Komatsu Ltd. Case hardened gear and method of producing the same

Similar Documents

Publication Publication Date Title
JP2012214900A (en) Method for manufacturing machine components
WO2006118243A1 (en) Carburized induction-hardened component
JP2001240941A (en) Bar wire rod for cold forging and its production method
JP2006213951A (en) Steel for carburized component excellent in cold workability, preventing coarsening of crystal grains in carburizing impact resistance and impact fatigue resistance
JP2579640B2 (en) Manufacturing method of high fatigue strength case hardened product
JPH0156124B2 (en)
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP5405325B2 (en) Differential gear and manufacturing method thereof
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2000063935A (en) Production of nitrided part
JPS5967365A (en) Production of machine parts
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JPH07102343A (en) Production of nitrided parts
JPH02173241A (en) Case-hardening steel and its production
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JP2006183095A (en) Method for producing gear excellent in fatigue strength on tooth surface
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPH08260039A (en) Production of carburized and case hardened steel
JPH05302117A (en) Production of hardening obviated steel for hot forging
KR101449040B1 (en) Method for manufacturing transmission gear of automobile
JPH02185954A (en) Carburized and case-hardened steel and its production
JPS62139812A (en) Manufacture of high strength and toughness cast steel
JPH0285342A (en) High temperature and short time case hardening steel
JPH02294462A (en) Carburizing quenching method for steel member
JPH0483848A (en) Carburizing gear steel having high fatigue strength