JPS60241564A - Self-propelled roller driving device - Google Patents

Self-propelled roller driving device

Info

Publication number
JPS60241564A
JPS60241564A JP9780084A JP9780084A JPS60241564A JP S60241564 A JPS60241564 A JP S60241564A JP 9780084 A JP9780084 A JP 9780084A JP 9780084 A JP9780084 A JP 9780084A JP S60241564 A JPS60241564 A JP S60241564A
Authority
JP
Japan
Prior art keywords
self
propelled
rollers
drive shaft
driving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9780084A
Other languages
Japanese (ja)
Inventor
Atsushi Shiraishi
白石 厚
Yoshihiro Koyanagi
祥啓 小柳
Sumio Yoshikawa
純生 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP9780084A priority Critical patent/JPS60241564A/en
Publication of JPS60241564A publication Critical patent/JPS60241564A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/025Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a friction shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

PURPOSE:To accomplish low-priced and precise scanning feed by using three or more self-propelled rollers to always obtain designated contact pressure. CONSTITUTION:When a driving shaft 2 is rotated in one direction, self-propelled rollers 3A-3C contacting one another with a pitch angle of theta are respectively rotated in a designated direction by shafts 4A-4C, and further a self-propelled roller support portion 1 is moved in a designated direction by rotation of the driving shaft 2 on the same principle as the movement of a screw caused by rotation of the screw, because suitable contact pressure is applied to the rollers. Thus, a scanning portion 10 connected by a transmission member 11 is also moved in direction of an arrow X1 or X2 to perform a specified scanning. In this arrangement, even if there is an eccentric shifting of the driving shaft 2 or the assembling accuracy is bad, the driving shaft 2 is located at the central point formed by three self-propelled rollers, so that the shaft is uniformly brought into contact with the rollers.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、複数個の自走ローラを使用する自走ローラ
駆動方式によって、精密な走査送りを行ない得るように
した自走ローラ駆動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a self-propelled roller drive device capable of performing precise scanning and feeding using a self-propelled roller drive method using a plurality of self-propelled rollers.

(発明の技術的背景とその問題点) 自走ローラを使用した駆動方式は静摩擦を利用した回転
運動−直線運動変換方式として一般に佐及しており、ね
じ送り方式等に比較すればより安価に、またワイヤ、ベ
ルト等で引張る方式に比較すればより精度良く提供でき
るものである。
(Technical background of the invention and its problems) A drive system using self-propelled rollers is generally used as a rotary motion-linear motion conversion method using static friction, and is cheaper than a screw feeding method etc. Moreover, compared to the method of pulling with wires, belts, etc., it can be provided with higher accuracy.

第1図(A) 、 (B)は従来の自走ローラ駆動装置
による走査機構の一例を示すものであり、自走ローラ3
A、3Bは駆動軸2を挟んで挟持するように配設され、
駆動軸2に同心状に貫設された円筒状の自走り−ラ支持
部1に、両端を軸受等により支持される軸4A、 4B
にて回転自在となっている。また、自走a−ラ支持部1
の下方には、伝達部材11を介して画像出力ヘッド等が
取付けられている走査部10が垂設されており、走査部
10は平行に配列された2木のガイド軸12.13に聞
役されている。なお、ガイド軸12及び13は、駆動軸
2に対しても平行となっている。そして、自走ローラ支
持部1に軸支された自走ローラ3A、3Bは、駆動軸2
に対してそれぞれ第2図(A)のようにネジ等でいうピ
ンチ角θだけ傾斜して接しており、2個の自走ローラ3
A 、 3Bは同図(B)のような位置関係でそれぞれ
駆動軸2に接している。すなわち、ピッチ角0のネジを
想定すると、そのネジ溝に沿うように2個の自走ローラ
3A及び3Bは駆動軸2に所定の接触圧で接している。
FIGS. 1(A) and 1(B) show an example of a scanning mechanism using a conventional self-propelled roller drive device, in which the self-propelled roller 3
A and 3B are arranged to sandwich the drive shaft 2,
Shafts 4A and 4B are supported at both ends by bearings or the like in a cylindrical self-propelled support portion 1 extending concentrically through the drive shaft 2.
It can be rotated freely. In addition, the self-propelled a-ra support part 1
A scanning section 10 to which an image output head and the like are attached via a transmission member 11 is vertically disposed below. has been done. Note that the guide shafts 12 and 13 are also parallel to the drive shaft 2. The self-propelled rollers 3A and 3B pivotally supported by the self-propelled roller support section 1 are driven by a drive shaft 2.
As shown in FIG. 2(A), the two self-propelled rollers 3
A and 3B are in contact with the drive shaft 2, respectively, in a positional relationship as shown in FIG. That is, assuming a screw with a pitch angle of 0, the two self-propelled rollers 3A and 3B are in contact with the drive shaft 2 with a predetermined contact pressure along the screw groove.

ここで、駆動軸2がモーフ等の駆動源で一方向に回転さ
れると、ピンチ角θの傾斜でかつ所定の接触圧をもって
接している自走ローラ3^、3Bがそれぞれ駆動軸2の
回転に対応して回転することにより、ネジの作動と同じ
ように自走ローラ3A 、3Bが支持されている自走ロ
ーラ支持部lは駆動軸2の軸方向に沿って移動する。し
たがって、自走ローラ支持部1に伝達部材11で垂設さ
れている走査部lOも移動し、走査部IOはガイド軸1
2及び13−にを移動し、これにより走査を行なうこと
ができる。この場合、走査部10がガイド軸12及び1
3に貫設されているので、自走ローラ支持部1が駆動軸
2の回転によって回転することはない。また、駆動軸2
の回転方向を切換えることにより、自走ローラ支持部l
の移動方向を変えることができ、したがって走査部10
はX、方向又は×2方向に移動することができる。
Here, when the drive shaft 2 is rotated in one direction by a drive source such as a morph, the self-propelled rollers 3^ and 3B, which are inclined at a pinch angle θ and are in contact with each other with a predetermined contact pressure, rotate the drive shaft 2. By rotating in accordance with this, the self-propelled roller support portion l, on which the self-propelled rollers 3A and 3B are supported, moves along the axial direction of the drive shaft 2 in the same manner as the operation of a screw. Therefore, the scanning unit IO, which is vertically installed on the self-propelled roller support unit 1 by the transmission member 11, also moves, and the scanning unit IO
2 and 13-, thereby allowing scanning to be performed. In this case, the scanning unit 10
3, the self-propelled roller support part 1 does not rotate due to rotation of the drive shaft 2. In addition, drive shaft 2
By switching the rotation direction of the self-propelled roller support part l
can change the direction of movement of the scanning unit 10.
can move in the X, direction or the x2 direction.

この場合、自走口〜う3A、3Bと駆動軸2のそれぞれ
の軸の中心は、常に同一線上に並ぶような機構となって
いないと、自走ローラ3A、3Bと駆動軸2は所定の接
触圧が得られなくなるか、又は接触しなくなるため駆動
不可能となってしまう。そのため、自走ローラ3A、3
Bが駆動軸2から離れないようにする鋭落防止機構が必
要であり、また、各々高い加工精度及び組立精度が要求
されるので、安価に精密送りを行なうのは困難であると
いう欠点があった。
In this case, if the centers of the respective axes of the self-propelled rollers 3A, 3B and the drive shaft 2 are not always aligned on the same line, the self-propelled rollers 3A, 3B and the drive shaft 2 must Since contact pressure cannot be obtained or there is no contact, it becomes impossible to drive. Therefore, self-propelled rollers 3A, 3
A sharp fall prevention mechanism is required to prevent B from separating from the drive shaft 2, and high machining accuracy and assembly accuracy are required, so it is difficult to perform precision feeding at a low cost. Ta.

(発明の目的) この発明の目的は、3個以上の複数の自走ローラを用い
ることにより常に所定の接触圧が得られ、安価でかつ精
密な走査送りを可能にした自走ローラ駆動装置を提供す
ることにある。
(Object of the Invention) An object of the present invention is to provide a self-propelled roller drive device that uses three or more self-propelled rollers to constantly obtain a predetermined contact pressure and that enables inexpensive and precise scanning feed. It is about providing.

(発明の概要) この発明は自走ローラ駆動装置に関するもので、回転す
る駆動軸と、少なくとも3個の自走ローラを軸支した自
走ローラ支持部とで成り、各自走ローラを駆動軸に対し
互いに所定の角度ずつずれた位置に配して所定の接触圧
を持たせると共に、駆動軸の軸方向に対しそれぞれ所定
の角度だけ傾斜させて接するようにしたものである。
(Summary of the Invention) The present invention relates to a self-propelled roller drive device, which is composed of a rotating drive shaft and a self-propelled roller support portion that pivotally supports at least three self-propelled rollers. On the other hand, they are arranged at positions shifted by a predetermined angle from each other to provide a predetermined contact pressure, and are inclined at a predetermined angle with respect to the axial direction of the drive shaft.

(発明の実施例) この発明では、第1図(A)及び(B)に対応させて第
3図(A)及び(B)に示すように、3個の自走ローラ
3A、3B、3Gを自走ローラ支持部1に軸支し、自走
ローラ3A〜3Cを駆動軸2に3分割して配置すること
により、駆動軸2から自走ローラ3A〜3Cの中心位置
がずれないように固定している。ここに、自走ローラ3
A〜3Cはそれぞれの軸4A〜4Cが自走ローラ支持部
1に軸支されて回転自在になっており、自走ローラ3A
〜3Cは従来例で説明したと同様に、第2図(A)のよ
うにピッチ角θだけ傾斜して、ネジでいえばそのネジ溝
に沿うように駆動軸2に所定圧で接触している。第4図
は第3図(B)の駆動軸2と自走ローラ3A〜3Cの関
係を示す図で、自走ローラ3A〜3Cと駆動軸2の傾斜
関係に着目して示している。ここで、使用する自走ロー
ラ3A〜3Cの材質としてはたとえば金属又はゴム等で
あり、適度な硬さを有するものであるので、自走ローラ
3A〜3Cと駆動軸2との接触圧は適度に保持され得る
ようになっている。
(Embodiment of the invention) In this invention, as shown in FIGS. 3(A) and (B) corresponding to FIGS. 1(A) and (B), three self-propelled rollers 3A, 3B, 3G By supporting the self-propelled rollers 3A to 3C on the self-propelled roller support part 1 and arranging the self-propelled rollers 3A to 3C in three parts on the drive shaft 2, the center positions of the self-propelled rollers 3A to 3C do not deviate from the drive shaft 2. Fixed. Here, self-propelled roller 3
The shafts 4A to 4C of A to 3C are rotatably supported by the self-propelled roller support part 1, and the self-propelled rollers 3A
~3C is the same as explained in the conventional example, as shown in Fig. 2 (A), it is inclined by the pitch angle θ and contacts the drive shaft 2 with a predetermined pressure along the thread groove of the screw. There is. FIG. 4 is a diagram showing the relationship between the drive shaft 2 and the self-propelled rollers 3A to 3C in FIG. 3(B), focusing on the inclination relationship between the self-propelled rollers 3A to 3C and the drive shaft 2. Here, the material of the self-propelled rollers 3A to 3C used is, for example, metal or rubber, and has appropriate hardness, so the contact pressure between the self-propelled rollers 3A to 3C and the drive shaft 2 is moderate. It is designed so that it can be maintained.

このような構成において、まず駆動軸2が一方向に回転
されると、ピッチ角θをもって接している自走ローラ3
A 、38.3Gはそれぞれ軸4A、4B。
In such a configuration, when the drive shaft 2 is first rotated in one direction, the self-propelled roller 3 that is in contact with it at a pitch angle θ
A and 38.3G are axes 4A and 4B, respectively.

4Cにより所定方向に回転し、また適度な接触圧がかか
っているので、ネジが回転することによりネジが移動す
るのと同様な原理で、駆動軸2の回転により自走ローラ
支持部lは所定方向に摩擦の推力で移動する。
4C rotates in a predetermined direction, and appropriate contact pressure is applied, so the rotation of the drive shaft 2 causes the self-propelled roller support l to move in a predetermined direction, based on the same principle that a screw moves when it rotates. move in the direction by the thrust of friction.

これにより、伝達部材IIで連結されている走査部IO
も×1又は×2方向に移動され、所定の淀査を行なう、
ここで、駆動軸2の偏芯のずれがあったり、または自走
ローラ支持部lと駆動軸2との組立精度が悪かった場合
でも、3つの自走ローラ3^〜3Cで形成される中心点
に駆動軸2が存在することになり、駆動軸2に対し3個
の自走ローラは常に均一に接触することができるので、
接触圧変動による駆動不良を解消することができる。ま
た、従来例で説明したような自走ローラが駆動軸から離
れないようにする脱落防止機構は不要となる。そして、
適度な硬さを有する金属又はゴム等の材質で成る自走ロ
ーラ3A 、 3B、3Gと駆動軸2との接触圧は適度
に保持されるので、所定の摩擦力をもつことが可能であ
る。なお、4個以上の自走ローラを有しても同様の効果
を挙げることができる。また、上述の実施例では自走ロ
ーラ支持部1に垂設する走査部lOの負荷が大きい場合
、重みのアンバランスによって自走ローラ支持部lが駆
動軸2に対して傾斜することも考えられる。このような
場合には、第5図に示すように2組の自走ローラ機構2
0及び21をローラ支持部IA内に連設すれば、駆動軸
2の軸方向に対する安定性が増すので、上記走査部IO
の負荷に基づく傾斜を防止することができる。
As a result, the scanning unit IO connected by the transmission member II
is also moved in the x1 or x2 direction and performs a predetermined stagnation check,
Here, even if the eccentricity of the drive shaft 2 is misaligned or the assembly precision between the self-propelled roller support part l and the drive shaft 2 is poor, the center formed by the three self-propelled rollers 3^ to 3C The drive shaft 2 is present at the point, and the three self-propelled rollers can always be in uniform contact with the drive shaft 2, so
Drive failures caused by contact pressure fluctuations can be eliminated. Furthermore, there is no need for a falling-off prevention mechanism for preventing the self-propelled roller from separating from the drive shaft, as described in the conventional example. and,
Since the contact pressure between the drive shaft 2 and the self-propelled rollers 3A, 3B, 3G made of a material such as metal or rubber having appropriate hardness is maintained at an appropriate level, it is possible to have a predetermined frictional force. Note that the same effect can be achieved even if four or more self-propelled rollers are provided. Furthermore, in the above-described embodiment, if the load on the scanning unit lO vertically disposed on the self-propelled roller support part 1 is large, the self-propelled roller support part l may be tilted with respect to the drive shaft 2 due to unbalanced weight. . In such a case, two sets of self-propelled roller mechanisms 2 are used as shown in FIG.
If 0 and 21 are arranged consecutively in the roller support part IA, the stability in the axial direction of the drive shaft 2 will be increased, so that the scanning part IO
It is possible to prevent tilting due to the load.

(発明の効果) 以上のようにこの発明の自走ローラ駆動装置によれば、
駆動軸または自走ローラ軸関係の加り精度及びそれらを
組立る場合の組立精度をある程度悪くしても、充分な精
度をもつ精密送りか可能となり、かつ安価な自走ローラ
駆動装置を提供することができる。
(Effects of the Invention) As described above, according to the self-propelled roller drive device of the present invention,
To provide an inexpensive self-propelled roller drive device that enables precision feeding with sufficient accuracy even if the additional accuracy of the drive shaft or self-propelled roller shaft and the assembly accuracy when assembling them are degraded to some extent. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は従来の自走ローラ駆動装置の一例を示す
正面図、同図(B)はその側面図、第2図(A)及び(
B)は自走ローラと駆動軸との関係を示す図、第3図(
A)はこの発明による一実施例を示す正面図、同図(B
)はその側面図、第4図はその機構図、第5図はこの発
明の他の実施例を示す構造図である。 1、IA・・・自走ローラ支持部、2・・・駆動軸。 3A、38.30・・・自走ローラ、4A、4B・・・
自走ローラ軸、10・・・走査部、 +1・・・伝達部
材、12.13・・・ガイド軸。 出願人代理人 安 形 雄 三 第 I CA) CB) XI X2 第 3 (A) (B) XI −X2
FIG. 1(A) is a front view showing an example of a conventional self-propelled roller drive device, FIG. 1(B) is a side view thereof, and FIGS. 2(A) and (
B) is a diagram showing the relationship between the self-propelled roller and the drive shaft, and Figure 3 (
A) is a front view showing one embodiment of the present invention, and the same figure (B
) is a side view thereof, FIG. 4 is a mechanical diagram thereof, and FIG. 5 is a structural diagram showing another embodiment of the present invention. 1, IA... self-propelled roller support section, 2... drive shaft. 3A, 38.30... Self-propelled roller, 4A, 4B...
Self-propelled roller shaft, 10... Scanning section, +1... Transmission member, 12.13... Guide shaft. Applicant's agent Yu Yasugata 3rd ICA) CB) XI X2 3rd (A) (B) XI-X2

Claims (1)

【特許請求の範囲】[Claims] 回転する駆動軸と、少なくとも3個の自走ローラを軸支
した自走ローラ支持部とで成り、前記各自走ローラを前
記駆動軸に対し互いに所定の位置に配して所定角度ずつ
ずれた接触圧を持たせると共に、前記駆動軸の軸方向に
対しそれぞれ所定の角度だけ傾斜させて接するようにし
たことを特徴とする自走ローラ駆動装(。
Consisting of a rotating drive shaft and a self-propelled roller support section that pivotally supports at least three self-propelled rollers, each of the self-propelled rollers is disposed at a predetermined position relative to the drive shaft and makes contact with each other by a predetermined angle. A self-propelled roller drive device, characterized in that the drive shaft is applied with pressure and contacts the drive shaft at a predetermined angle with respect to its axial direction.
JP9780084A 1984-05-16 1984-05-16 Self-propelled roller driving device Pending JPS60241564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9780084A JPS60241564A (en) 1984-05-16 1984-05-16 Self-propelled roller driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9780084A JPS60241564A (en) 1984-05-16 1984-05-16 Self-propelled roller driving device

Publications (1)

Publication Number Publication Date
JPS60241564A true JPS60241564A (en) 1985-11-30

Family

ID=14201856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9780084A Pending JPS60241564A (en) 1984-05-16 1984-05-16 Self-propelled roller driving device

Country Status (1)

Country Link
JP (1) JPS60241564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD830806S1 (en) 2017-02-15 2018-10-16 Black & Decker Inc. Drain auger
US10626593B2 (en) 2016-04-05 2020-04-21 Black & Decker Inc. Powered drain auger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626593B2 (en) 2016-04-05 2020-04-21 Black & Decker Inc. Powered drain auger
US11512460B2 (en) 2016-04-05 2022-11-29 Black & Decker Inc. Drain cleaning device
US11965325B2 (en) 2016-04-05 2024-04-23 Black & Decker Inc. Drain cleaning device
USD830806S1 (en) 2017-02-15 2018-10-16 Black & Decker Inc. Drain auger

Similar Documents

Publication Publication Date Title
JPS622064A (en) Differential reduction gear mechanism of rolling ball type
JP2867386B2 (en) Feed screw support device
GB2033496A (en) Linear bearing apparatus
JP2700050B2 (en) Vertical and horizontal swing table mechanism
US4440038A (en) Lead screw and follower assembly
US5009296A (en) Power transmitting apparatus for use in vehicle
KR0148473B1 (en) Screw-nut feed mechanism
US4671017A (en) Method and apparatus for grinding a rotary body
US6409413B1 (en) Large displacement spherical joint
US3371546A (en) Toric friction transmission with cross pin ratio changing control
JPS60241564A (en) Self-propelled roller driving device
JPH03270844A (en) Slide table mechanism
JP2759276B2 (en) Hydrostatic bearing
JPS63300836A (en) Fine positioning mechanism
JPH0481655B2 (en)
US3178949A (en) Friction drive apparatus
EP0005887A1 (en) Drive
JP2706212B2 (en) Feed screw movable bearing device
JP2570672B2 (en) Micro rotating device
JPH0673791B2 (en) Friction feed mechanism
JPH06210012A (en) Load supporting mechanism for multiple divided collimator device of radiotherapy device
JPS6029385Y2 (en) XY moving table
DE102021122204A1 (en) Vibration drive device and image pickup device using the same
JPS61249241A (en) Supporting mechanism for feed internal thread
SU1371751A1 (en) Assembly for securing die to the press table