JPS60238652A - Air conditioner functioning as air heating and cooling - Google Patents

Air conditioner functioning as air heating and cooling

Info

Publication number
JPS60238652A
JPS60238652A JP8244485A JP8244485A JPS60238652A JP S60238652 A JPS60238652 A JP S60238652A JP 8244485 A JP8244485 A JP 8244485A JP 8244485 A JP8244485 A JP 8244485A JP S60238652 A JPS60238652 A JP S60238652A
Authority
JP
Japan
Prior art keywords
heat exchanger
air conditioner
cooling
outdoor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8244485A
Other languages
Japanese (ja)
Inventor
満田 健
柏崎 進
荒川 昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8244485A priority Critical patent/JPS60238652A/en
Publication of JPS60238652A publication Critical patent/JPS60238652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷暖房兼用空気調和機における暖房運転時の圧
縮機の負荷軽減に関するものである、〔発明の背景〕 従来この種の冷凍サイクルは第1図、第2図の如くなっ
ている。すなわち暖房運転時には圧縮機1、四方弁2、
室内側熱交換器8、逆止弁6、キャピラリ5、室外側熱
交換器5、四方弁2、圧縮機1の冷媒回路を形成し、室
外側送風機機11、室外側送風機9を運転することによ
り周知の暖房サイクルが得られる。この暖房運転時に外
気幅の上昇が発生した場合、室外側熱交換器5の吸熱量
が増加する。あるいは室内ユニットの吸込空気側に付い
ている除塵用のフィルタ〜が目詰りをおこしだ場合室内
側熱交換器8の放熱量が減少し圧縮機1からの吐出圧力
が上昇し圧縮機1の負荷が増加すると圧縮機1のロック
、又は運転亀流増710により圧縮機1の過電随時溶断
するヒーーズが溶断する恐れがある、これを防止する目
的で第1図、第2図に示す如く吐出圧力を感知する圧力
スイノチ10を暖房運転時高圧側になるパイプに設置し
、吐出圧力がある設定圧力になると圧力スイノチ10が
動作し、第1図の(@凍すイクルでは第6図にメ ゛ 
・ 示す妬く圧力スイノチ1Dの接点が10a−10bから
10a−10cに切換わることにより室外側送風機9が
停止する、又第2図の冷αサイクルでは第4図の如く圧
力スイノチ10の接点が10a−1[]bから10a−
10cに切換ワルコトニより電磁弁12に通電される7
第6図で室外側送風機9を停止させると室外側熱交換器
6での姑交侯M゛が減少し、吸熱量が減少する結果吐出
圧力は低ドするが、室外0I11銚交換器6の冷媒蒸発
温度も低下するため室外側熱交換器6に密着して設置し
である除焔サーモ16がUFFl、除霜サイクルに入っ
てし筐う可能性がある。又第4図の如く電磁弁12に通
電これ室内仙1熱交換器8で放熱した冷媒の一部f ’
It磁弁12を介して圧縮機1の吸込側にバイパスする
ことにより室外側熱交換器6への冷媒循環量が減少し室
外側熱交換器5での吸熱量が減少するため吐出圧力の低
下が期待されるが、室内ユニットのフィルター目詰り等
に起因する放熱量の極端な低下による吐出圧力増力口へ
の対応は不可能になる場合がある、 〔発明の目的〕 本発明は前記不具合を改良する目的でなされたものであ
る、 〔発明の概要〕 すなわち、第3図、第4図に示す負荷軽減方式の長所を
生かし、各々の欠点を改良した負荷軽減方式を提供する
ものであろう 上記目的のだめ、格外1μm1鎮父換器と室内側熱交換
器との中間と圧縮機の吸込側を連通ずるバイパス路を設
け、このバイパス路に′電磁弁を設置し、暖房運転時に
吐出圧力がある圧力以上になるとこの電磁弁を開路する
とともにこれと連動させて室外側送風機を停止すること
により前記不具合を改良したものである、 〔発明の実施例〕 以下本発明の一実惰例を第5図に示す、1il−を圧縮
機、2は四方弁、9は室外側送風機、10a。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to reducing the load on a compressor during heating operation in an air conditioner for heating and cooling. [Background of the Invention] Conventionally, this type of refrigeration cycle was the first It is as shown in Fig. 2. In other words, during heating operation, compressor 1, four-way valve 2,
Forming a refrigerant circuit of the indoor heat exchanger 8, check valve 6, capillary 5, outdoor heat exchanger 5, four-way valve 2, and compressor 1, and operating the outdoor blower 11 and the outdoor blower 9. This gives the well-known heating cycle. If the outside air width increases during this heating operation, the amount of heat absorbed by the outdoor heat exchanger 5 increases. Alternatively, if the dust removal filter attached to the intake air side of the indoor unit becomes clogged, the amount of heat released from the indoor heat exchanger 8 decreases, the discharge pressure from the compressor 1 increases, and the load on the compressor 1 increases. If this increases, there is a risk that the compressor 1 will lock or the heater, which is blown out at any time due to overcurrent in the compressor 1, may be blown out due to an increase in operating flow 710. To prevent this, the discharge is A pressure switch 10 that senses pressure is installed on a pipe that becomes a high-pressure side during heating operation, and when the discharge pressure reaches a certain set pressure, the pressure switch 10 operates and the screen shown in Figure 1 (@Freezing cycle in Figure 6) is activated.゛
- The outdoor fan 9 is stopped by switching the contacts of the pressure switch 1D from 10a-10b to 10a-10c, and in the cold α cycle shown in FIG. 2, the contacts of the pressure switch 10 change to 10a as shown in FIG. -1[]b to 10a-
Switching to 10c, the solenoid valve 12 is energized by Warukotoni 7
When the outdoor side blower 9 is stopped in FIG. Since the refrigerant evaporation temperature also decreases, there is a possibility that the flame removal thermometer 16, which is installed in close contact with the outdoor heat exchanger 6, enters the UFFL or defrost cycle. In addition, as shown in Fig. 4, the solenoid valve 12 is energized, and a portion of the refrigerant heat radiated by the indoor heat exchanger 1 f'
By bypassing it to the suction side of the compressor 1 via the magnetic valve 12, the amount of refrigerant circulated to the outdoor heat exchanger 6 is reduced, and the amount of heat absorbed by the outdoor heat exchanger 5 is reduced, resulting in a decrease in discharge pressure. However, it may become impossible to deal with the discharge pressure booster port due to an extreme decrease in the amount of heat dissipated due to filter clogging of the indoor unit, etc. [Objective of the Invention] The present invention solves the above problems. [Summary of the Invention] In other words, the present invention aims to provide a load reduction method that takes advantage of the advantages of the load reduction methods shown in Figs. 3 and 4 and improves the drawbacks of each of them. To achieve the above purpose, we installed a bypass passage that communicates between the 1 μm 1-temperature exchanger and the indoor heat exchanger and the suction side of the compressor, and installed a solenoid valve in this bypass passage to control the discharge pressure during heating operation. When the pressure exceeds a certain level, this solenoid valve is opened and the outdoor blower is stopped in conjunction with this, thereby improving the above-described problem. In Fig. 5, 1il- is a compressor, 2 is a four-way valve, 9 is an outdoor blower, and 10a.

1Llb・10cは圧力スイッチ10の接点、11は室
内側送風機、12は第2図に示した電磁弁、16は除霜
サーモ、14け主操作スイッチ、15は切換スイッチで
ある。主操作スイッチ14、切換スイッチ15をONす
ると周知の暖房運転をおこなう。この場会外気篇の上昇
によr+4外側熱交換器6の吸熱量増加、あるいは室内
ユニットのフィルター目詰り等により室内側熱交換器8
の放熱量減少に起因して吐出圧力が上昇すると、ある設
定圧力で圧力スイッチ10が動作し圧力スイソチ10 
(iり ra 点カ10 a 10 bカ’) 10 
a 10 cに切換わり、IQbに接続さtした室外側
送風機9が停止すると同時に1[]Cに#:続婆れた電
磁弁12に通tt−aれ、室内側熱交換器8で放熱され
た冷媒の一部が電磁弁12を介して圧縮機1の吸込側に
バイパスされる。圧縮機1の吸込側に前述の如くキャピ
ラリ4で減圧される前の高圧冷媒が注入されるため、圧
縮機1の吸込圧力が上昇し、吸込温度も上昇するため室
外側熱交換器6の蒸発温度低下を防止することができ、
常に室外側熱交換器6の温度をある一定流度以上に保つ
ことができるため、除霜サーモ16が動作する可能性が
なく、過負荷時の除霜入りを防止することができる。又
電磁弁12による冷媒の−Tffltバイパス万式と室
外側送風機9の停止方式の2段の負荷軽減方式を採用し
ているため、室内ユニットのフィルター目詰り等による
室内側熱交換器8の放熱量が極端に減少しても、室外側
熱交換器6での吸@量減少が多いため吐出圧力の上昇を
防止することができる。
1Llb and 10c are contacts of the pressure switch 10, 11 is an indoor blower, 12 is a solenoid valve shown in FIG. 2, 16 is a defrosting thermometer, a 14-digit main operation switch, and 15 is a changeover switch. When the main operation switch 14 and the changeover switch 15 are turned on, a well-known heating operation is performed. In this case, the amount of heat absorbed by the r+4 outside heat exchanger 6 increases due to a rise in outside air, or the indoor heat exchanger 8 increases due to clogging of the indoor unit's filter, etc.
When the discharge pressure increases due to a decrease in the amount of heat dissipated, the pressure switch 10 operates at a certain set pressure and the pressure switch 10
(Iri ra pointka 10 a 10 bka') 10
a 10 c, the outdoor fan 9 connected to IQb stops, and at the same time, the air is passed through the solenoid valve 12 connected to 1[]C, and the heat is radiated by the indoor heat exchanger 8. A part of the refrigerant is bypassed to the suction side of the compressor 1 via the solenoid valve 12. Since the high-pressure refrigerant before being depressurized by the capillary 4 is injected into the suction side of the compressor 1 as described above, the suction pressure of the compressor 1 increases and the suction temperature also increases, causing evaporation in the outdoor heat exchanger 6. Can prevent temperature drop,
Since the temperature of the outdoor heat exchanger 6 can always be maintained at a certain flow rate or higher, there is no possibility that the defrosting thermostat 16 will operate, and defrosting can be prevented from occurring during overload. In addition, a two-stage load reduction method is adopted, including a -Tfflt bypass of the refrigerant using the solenoid valve 12 and a method of stopping the outdoor fan 9, so that the indoor heat exchanger 8 is prevented from being discharged due to the indoor unit's filter clogging, etc. Even if the amount of heat is extremely reduced, the amount of suction in the outdoor heat exchanger 6 is largely reduced, so that the discharge pressure can be prevented from increasing.

〔発明の効果〕 以上述べた如く本発明による暖房過負荷時の負荷軽減方
式として電磁弁12による冷媒の一部バイパス方式と室
外側送風機9を停dzする方式とを連動させることによ
り、従来の負荷Qjlj減方式の欠点を改良することが
でき、ユニットの信頼性および品質を高めることができ
る。
[Effects of the Invention] As described above, as a load reduction method during heating overload according to the present invention, by linking the refrigerant partial bypass method using the solenoid valve 12 and the method of stopping the outdoor fan 9, it is possible to overcome the conventional method. The drawbacks of the load Qjlj reduction method can be improved, and the reliability and quality of the unit can be improved.

又実施例では暖房時の吐出圧力を検知することにより、
電磁弁12、室外側送風機9を制御したが、暖房時高圧
になるバイブの温度を検知する方式、あるいは暖房時室
内ユニットの吐出空気帖度を検知する方式で電磁弁12
、室外側送風機9を制御することにより前述のものと同
じ効果が期待できることはいう贅でもない。
In addition, in the embodiment, by detecting the discharge pressure during heating,
The solenoid valve 12 and the outdoor blower 9 are controlled by a method that detects the temperature of the vibrator, which becomes high pressure during heating, or a method that detects the discharge air pressure of the indoor unit during heating.
It is no exaggeration to say that the same effects as those described above can be expected by controlling the outdoor side blower 9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第6図、第4図は各々従来の冷凍
サイクル図、電気回路図を示し、第5図は本発明の電気
回路図を示す。 1・・・圧縮機、2・・・四方弁、6・・・室外側熱交
換器4.6・・・キャピラリ、5,7・・・逆止弁、8
・・・室内側絶交換器、9・・・室外側送風機、10・
・・圧力スイノ−/−110a、10b、10c’、・
・圧力スイノチ1Uの吸点、11・・・室内側送風機、
12・・・電磁弁、15・・・除霜ザーモ、14・・・
主操作スイッチ、15・・・切換スイッチ、 第 l 図 v2図
1, 2, 6, and 4 respectively show a conventional refrigeration cycle diagram and an electric circuit diagram, and FIG. 5 shows an electric circuit diagram of the present invention. 1... Compressor, 2... Four-way valve, 6... Outdoor heat exchanger 4.6... Capillary, 5, 7... Check valve, 8
... Indoor isolation exchanger, 9... Outdoor blower, 10.
・・Pressure Sino-/-110a, 10b, 10c',・
・Suction point of pressure suinochi 1U, 11... indoor blower,
12... Solenoid valve, 15... Defrost thermostat, 14...
Main operation switch, 15... Selector switch, Figure l Figure v2

Claims (1)

【特許請求の範囲】 1、 圧縮機、四方弁、′室外側熱交換器、キャピラリ
、“学内側熱交換器等よりなる冷凍サイクルと室内(1
111送風機、室外側送風機を有する冷暖可能空気調和
機において、室外側熱交換器と室内側熱交換器との間と
圧縮機の吸込側を連通するバイパス路を設け、このバイ
パス路に電磁弁を設置6シ、暖房運転時に冷媒の吐出圧
力が設定圧力以上になった場合前記電磁弁を開路すると
ともに室外側送風機が停止する構成としたことを特徴と
する冷暖房兼用空気調和機。 2、暖房運転時の吐出圧力検知を高圧側パイプの温度を
検知して行う特許請求の範囲第1項記載の冷暖房兼用空
気調和機。 6、 暖房運転時の吐出圧力の検知を室内ユニットの吐
出空気温度を検知して行う特許請求の範囲第1項記載の
冷暖房兼用空気調和機。
[Claims] 1. A refrigeration cycle consisting of a compressor, a four-way valve, an outdoor heat exchanger, a capillary, an internal heat exchanger, etc.
111 In an air conditioner capable of cooling and heating having an outdoor blower, a bypass passage is provided that communicates between the outdoor heat exchanger and the indoor heat exchanger and the suction side of the compressor, and a solenoid valve is installed in this bypass passage. 6. An air conditioner for both cooling and heating, characterized in that the solenoid valve is opened and the outdoor blower is stopped when the discharge pressure of the refrigerant exceeds a set pressure during heating operation. 2. The heating and cooling air conditioner according to claim 1, wherein the discharge pressure during heating operation is detected by detecting the temperature of the high-pressure side pipe. 6. The heating and cooling air conditioner according to claim 1, wherein the discharge pressure during heating operation is detected by detecting the discharge air temperature of the indoor unit.
JP8244485A 1985-04-19 1985-04-19 Air conditioner functioning as air heating and cooling Pending JPS60238652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8244485A JPS60238652A (en) 1985-04-19 1985-04-19 Air conditioner functioning as air heating and cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8244485A JPS60238652A (en) 1985-04-19 1985-04-19 Air conditioner functioning as air heating and cooling

Publications (1)

Publication Number Publication Date
JPS60238652A true JPS60238652A (en) 1985-11-27

Family

ID=13774695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8244485A Pending JPS60238652A (en) 1985-04-19 1985-04-19 Air conditioner functioning as air heating and cooling

Country Status (1)

Country Link
JP (1) JPS60238652A (en)

Similar Documents

Publication Publication Date Title
JPS636368A (en) Air conditioner
JPH0529830B2 (en)
JPS58193055A (en) Heat pump type air conditioner
JP3004676B2 (en) Refrigeration cycle device
JPS60238652A (en) Air conditioner functioning as air heating and cooling
US5069040A (en) Coil bypass arrangement
JP3341486B2 (en) Operation control device for air conditioner
JPH07120116A (en) Cooler
JPH0217370A (en) Operation control device for air conditioning device
JPH0233110Y2 (en)
JPS6321457A (en) Refrigeration cycle device
JPS60144549A (en) Method of controlling defrosting operation of air conditioner
JPS62213654A (en) Heat pump type refrigeration cycle
JPH0544676Y2 (en)
JPS59119158A (en) Air-cooling heat pump type air conditioner
JPS59195066A (en) Heat pump type air conditioner
JPS60169062A (en) Defroster for air conditioner
JPS6029562A (en) Defroster for air conditioner
JPS6146860A (en) Defrostation control method of heat pump type room air conditioner
JPS60142171A (en) Method of controlling operation of heat pump type floor heating apparatus
JPS58124174A (en) Refrigeration cycle of air conditioner
JPS62200136A (en) Defroster for air conditioner
JPS62210370A (en) Cooling device
JPS6127457A (en) Defrostation controller for air conditioner
JPS63140267A (en) Heat pump type air conditioner