JPS60238430A - Method of obtaining metal titanium from anatase rich ore by aluminum thermite process and magnesium thermite process - Google Patents

Method of obtaining metal titanium from anatase rich ore by aluminum thermite process and magnesium thermite process

Info

Publication number
JPS60238430A
JPS60238430A JP9527985A JP9527985A JPS60238430A JP S60238430 A JPS60238430 A JP S60238430A JP 9527985 A JP9527985 A JP 9527985A JP 9527985 A JP9527985 A JP 9527985A JP S60238430 A JPS60238430 A JP S60238430A
Authority
JP
Japan
Prior art keywords
magnesium
aluminum
thermite
anatase
reaction feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9527985A
Other languages
Japanese (ja)
Inventor
ホセ マルシオ ハルデイム ペイクサオ
フアビオ テイクセイラ デ アルメイダ
マルセロ ホセ ダ フオンセカ モウラオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BARE DO RIO DOSE CO
Original Assignee
BARE DO RIO DOSE CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BARE DO RIO DOSE CO filed Critical BARE DO RIO DOSE CO
Publication of JPS60238430A publication Critical patent/JPS60238430A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1277Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using other metals, e.g. Al, Si, Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明G;170.0%〜99.9%(7) T i 
O2含量を持つアナターゼ精鉱からアルミニウムテルミ
ット法およびマグネシウムテルミット法を利用して金属
チタンを得る方法に関する。
Detailed description of the invention Invention G; 170.0% to 99.9% (7) T i
The present invention relates to a method for obtaining metallic titanium from anatase concentrate having an O2 content using an aluminum thermite method and a magnesium thermite method.

クロール(Kroll )法、すなわち精鉱をFA秦化
した後で1得られた四塩化物を不活性ガスあるいシウム
によって還元する方法によるように、−チタン鉱石の精
鉱から金属チタンを得る古典的方法を用いることにより
、スポンジを得て、それを次に仮焼する。金属チタンを
製造するもう−っの方法はヨウ化チタンの溶融塩中で電
気分解することである。
The classical method for obtaining titanium metal from titanium ore concentrates, such as by the Kroll method, i.e. by reducing the tetrachloride obtained after FA Qinization of the concentrate with an inert gas or with sium. By using a standard method, a sponge is obtained which is then calcined. Another method of producing titanium metal is electrolysis in a molten salt of titanium iodide.

上記方法は高価であり、それゆえ最終生成物の価格が上
がるので産業上幅広く利用され得ない。
The above method is expensive and therefore cannot be widely used in industry as it increases the price of the final product.

このため、金属チタンの製造コストを下げる目的で、幅
広〈産業規模で使用できるように新しい研究を行った。
For this reason, new research was carried out to lower the manufacturing cost of titanium metal so that it could be used on a wider industrial scale.

非常に満足のいく生成物が得られるまでアルミニウムテ
ルミット法およびマグネシウムテルミット法を用いて種
々の試験を行った。
Various tests were carried out using the aluminum thermite method and the magnesium thermite method until very satisfactory products were obtained.

実施した試験で得られた反応供給物は基本的に以下の組
成である。
The reaction feed obtained in the conducted tests essentially had the following composition:

@ 70.0%〜99.9%(D T i O2金含有
するアナターゼ精鉱。
@ 70.0% to 99.9% (D T i O2 gold-containing anatase concentrate.

(へ)還元剤としてのアルミニウムあるいはマグネシウ
ム粉末。
(f) Aluminum or magnesium powder as a reducing agent.

(へ) 反応過程に特別の熱を供給する促進剤としてア
ルカリ金属、すなわちナトリウム、カリウム、およびリ
チウムの塩素酸塩を用いた。
(f) Chlorates of alkali metals, namely sodium, potassium, and lithium, were used as promoters to supply extra heat to the reaction process.

ゆ 融剤として純粋かあるいはホタル石を含んだ酸化カ
ルシウムを使用した。
Calcium oxide, either pure or containing fluorite, was used as a fluxing agent.

T[t2精鉱から金属チタンを得るアルミニウムテルミ
ット法あるいはマグネシウムテルミット法は反応開始粉
末(粒状化の程度が100%〈100メツシユ、80%
〈325メツシユである)を押込んでそれによって液体
の金属チタン、およびアルミニウムおよびマグネシウム
のスラグを得ることから成る。 ′ アルミニウムあるいはマグネシウム粉末の粒状化の程度
、は、回収が良好であるように、粒子の平均直径が13
0μmである。
T[t2 The aluminum thermite method or magnesium thermite method for obtaining metallic titanium from concentrate uses reaction starting powder (the degree of granulation is 100% <100 mesh, 80%
325 mesh, thereby obtaining liquid metallic titanium and slags of aluminum and magnesium. ' The degree of granulation of the aluminum or magnesium powder is such that the average diameter of the particles is 13
It is 0 μm.

アルミニウムあるいはマグネシウム粉末、チタン精鉱、
および酸化用の塩(塩素酸塩およびアルカリの硝酸塩)
は適当な割合で混合しなければならない。
aluminum or magnesium powder, titanium concentrate,
and salts for oxidation (chlorates and nitrates of alkalis)
must be mixed in appropriate proportions.

混合物は均一にし、しかも上記物質は乾燥状態でなけれ
ばならない。
The mixture must be homogeneous and the materials must be dry.

反応は350℃の温度で予熱することによるか、あるい
は抵抗加熱により、あるいは適当な試薬(バリウム塩な
ど)によって開始してもよい。
The reaction may be initiated by preheating at a temperature of 350° C., or by resistance heating, or by a suitable reagent (such as a barium salt).

混合物にCaOを添加することはスラグの液温を低下さ
せるのに効果のある手段であるが、本方法に本質的では
ない。
Adding CaO to the mixture is an effective means of lowering the slag temperature, but is not essential to the method.

混合物にホタル石(CaF、、)を添加することはスラ
グを液体にするのに有効である。
Adding fluorspar (CaF, ) to the mixture is effective in making the slag liquid.

1.0torr以上の真空でキルンを用いてアルミニウ
ムテルミット法およびマグネシウムテルミット法を行っ
てもよい。
The aluminum thermite method and the magnesium thermite method may be performed using a kiln under a vacuum of 1.0 torr or more.

この場合、混合物をキルンの内部に置き、1、□tor
r以上の真空をつくり、焼成を電気抵抗により実施する
In this case, the mixture is placed inside the kiln and heated to 1, □tor
A vacuum of r or more is created and firing is performed using electric resistance.

低コスト生産の1=めにはアルミニウム粉末の代りに溶
融アルミニウムを用いてもよい。真空でキルンを用いる
には、チタン精鉱、アルカリの塩素酸塩および溶融アル
ミニウムの混合物をキルンの内部に置き、これをアルミ
ニウムの融点以上の温度で誘導加熱し、その結果発熱反
応を開始させてもよい。
For low cost production, molten aluminum may be used instead of aluminum powder. To use a kiln in vacuum, a mixture of titanium concentrate, alkali chlorate, and molten aluminum is placed inside the kiln and heated inductively to a temperature above the melting point of the aluminum, thus starting an exothermic reaction. Good too.

アルミニウムの溶融は外部から実施してもよい。Melting of the aluminum may also be carried out externally.

実施例; ■ 反応供給物 Tie、、75%のアナターゼ精鉱 52、 64% アルミニウム粉末 31.57% NaClO310,52% CaO5,62% 反応供給物の全重量 15.2kg よく区別された相でスラグが形成される。低い方の′部
分は金属化の程度が良好で、所望のバルーン(balo
on) (7) 「幾何学的様相(geometrtc
aspect)−1を示す。
Example: ■ Reaction feed Tie, 75% anatase concentrate 52, 64% Aluminum powder 31.57% NaClO3 10.52% CaO5.62% Total weight of reaction feed 15.2 kg Slag with well-separated phases is formed. The lower ′ part has a good degree of metallization and has the desired balloon shape.
on) (7) “Geometric aspect (geometrtc
aspect)-1.

収率−金属チタンのLffiで80% 開放型キルン ■ 反応供給物 TiO286,0%を含有づ“るアナターゼ精鉱 55
. 56% アルミニウム粉末 33.33% NaCf103 11.11% 供給物の全重量−14,4都 よく分離され区別された相でスラグと金属が形成される
Yield - 80% with Lffi of titanium metal Open kiln Reaction feed Anatase concentrate containing 86.0% TiO 55
.. 56% Aluminum powder 33.33% NaCf103 11.11% Total weight of feed - 14.4 Slag and metal are formed in well separated and distinct phases.

収率−金属チタンの重量で70% 開放型キルン ■ 反応供給物 Ti02B5.0%を含有するアナターゼ精鉱 53.
 48% アルミニウム粉末 32.08% KCj!03 8.02% CaO5,34% CaF 1.08% 反応供給物の全重量−18,1f 良好な流動性と優れた相分離性を備えた良く区別され′
lご相でスラグが形成される。
Yield - 70% by weight of titanium metal Open kiln ■ Reaction feed Anatase concentrate containing 5.0% Ti02B 53.
48% Aluminum powder 32.08% KCj! 03 8.02% CaO5,34% CaF 1.08% Total weight of reaction feed -18,1f Well-separated with good fluidity and excellent phase separation'
A slag is formed during the phase.

収率−金属チタンの重量で90.0% 真空密閉型キルン ■ 反応供給物 TiO294,0%を含有するアナターゼ精鉱 48.
 78% アルミニfクム粉末 32.52% NaClO312,19% CaO4,06% CaF2 2.45% 供給物の全重量−24,6Kg 相が良く区別され、スラグの流動性が良好で相分離が優
れた状態でスラグおよび金属が生成される。
Yield - 90.0% by weight of titanium metal Vacuum-sealed kiln ■ Reaction feed Anatase concentrate containing 94.0% TiO 48.
78% Aluminum f-cum powder 32.52% NaClO312,19% CaO4,06% CaF2 2.45% Total weight of feed -24,6Kg Phases were well differentiated, slag fluidity was good and phase separation was excellent. slag and metals are produced under these conditions.

収率−金属チタンの93.0% 真空密閉型キルン 実施例は木分蝉の当業者によりよく理解されるように提
示しており、これは本発明を限定するものではない。
Yield - 93.0% of titanium metal The vacuum-sealed kiln example is presented as will be well understood by those skilled in the art of woody cicadas and is not intended to limit the invention.

代理人 浅 村 皓 第1頁の続き 0発 明 者 マルセロ ホセ ダ ブラフオンセ力 
モウラオ ル
Agent: Akira AsamuraContinued from page 10 Inventor: Marcelo Jose da Bluffonce
Mourao Ru

Claims (7)

【特許請求の範囲】[Claims] (1) アルミニウムテルミット法およびマグネシウム
テルミット法により、70%〜99.9%゛のTlO2
を含有するアナターゼ精鉱から金属チタンを得る方法で
あって、いかなる型でもよいキルンを使って真空、貴ガ
ス雰囲気または人気中で、反応供給物の20%〜50%
割合でアルミニウム金属粉およびマグネシウム金属粉を
還元剤として用いることを特徴とづる上記方法。
(1) 70% to 99.9% TlO2 by aluminum thermite method and magnesium thermite method
A method for obtaining titanium metal from anatase concentrate containing 20% to 50% of the reaction feed using a kiln of any type in vacuum, noble gas atmosphere or heating.
The above method characterized in that aluminum metal powder and magnesium metal powder are used as reducing agents in proportion.
(2) 特許請求の範囲第1項に記載のアルミニウムテ
ルミット法およびマグネシウムテルミット法によりアナ
ターゼ精鉱から金属チタンを得る方法であって、反応供
給物に用いるアナターゼ精鉱が反応供給物の45.0%
〜60.0%割合であることを特徴とする上記方法。
(2) A method for obtaining metallic titanium from anatase concentrate by the aluminum thermite method and the magnesium thermite method according to claim 1, wherein the anatase concentrate used as the reaction feed is 45.0% of the reaction feed. %
The above method, characterized in that the proportion is 60.0%.
(3)特許請求の範囲第1項に記載のアルミニウムテル
ミット法およびマグネシウムテルミット法によりアナタ
ーゼ精鉱から金属チタンを得る方法であって、アルミニ
ウムあるいはマグネシウム還元剤を粉末の形態で反応供
給物の28%〜35%の割合で反応供給物に入れること
を特徴とする上記方法。
(3) A method for obtaining metallic titanium from anatase concentrate by the aluminum thermite method and the magnesium thermite method according to claim 1, wherein the aluminum or magnesium reducing agent is in the form of a powder in the amount of 28% of the reaction feed. 35% in the reaction feed.
(4)特許請求の範囲第1項に記載のアルミニウムテル
ミット法およびマグネシウムテルミット法によりアナタ
ーゼ精鉱から金属チタンを得る方法であって、反応に特
別の熱を供給する促進剤がナトリウム、カリウム、ある
いはリヂウムの如きアルカリ金属の塩素酸塩および硝酸
塩であることを特徴とする上記方法。
(4) A method for obtaining metallic titanium from anatase concentrate by the aluminum thermite method and the magnesium thermite method according to claim 1, wherein the promoter that supplies special heat to the reaction is sodium, potassium, or The above method, characterized in that the chlorates and nitrates of alkali metals such as lithium.
(5)特許請求の範囲第1項あるいは第4項に記載のア
ルミニウムテルミット法およびマグネシウムテルミット
法によりアナターゼ精鉱から金属チタンを得る方法であ
って、反応に特別の熱を供給する促進剤、すなわちアル
カリ金属の塩素酸塩および硝酸塩が反応供給物の6%〜
13%の割合で入ることを特徴どする上記方法。
(5) A method for obtaining metallic titanium from anatase concentrate by the aluminum thermite method and the magnesium thermite method according to claim 1 or 4, wherein a promoter that supplies special heat to the reaction, i.e. Alkali metal chlorates and nitrates from 6% of the reaction feed
The above method is characterized in that it enters at a rate of 13%.
(6) 特許請求の範囲第1項に記載の、アルミニウム
チルミツ1〜法およびマグネシウムテルミット法により
アナターゼ精鉱から金属チタンを得る方法であって、融
剤として反応供給物の0.1%〜25%の割合で酸化カ
ルシウムを使用することを特徴とする上記方法。
(6) A method for obtaining metallic titanium from anatase concentrate by the aluminum thermite method and the magnesium thermite method according to claim 1, wherein the flux is 0.1% or more of the reaction feed. The above method, characterized in that calcium oxide is used in a proportion of 25%.
(7)特許請求の範囲第1項あるいは第6項に記載の、
アルミニウムテルミット法およびマグネシウムテルミッ
ト法によりアナターゼ精鉱から金属チタンを得る方法で
あって、酸化カルシウム融剤にホタル石を融剤物質の0
.1%〜40%の割合で加えることを特徴とする上記方
法。
(7) As set forth in claim 1 or 6,
A method for obtaining metallic titanium from anatase concentrate by the aluminum thermite method and the magnesium thermite method, in which fluorite is added to the calcium oxide flux as a fluxing material.
.. The above method, characterized in that the addition is carried out at a rate of 1% to 40%.
JP9527985A 1984-05-04 1985-05-02 Method of obtaining metal titanium from anatase rich ore by aluminum thermite process and magnesium thermite process Pending JPS60238430A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR8402087A BR8402087A (en) 1984-05-04 1984-05-04 PROCESS OF OBTAINING METALLIC TITANIUM FROM ANASTASIA CONCENTRATE, BY ALUMINOTERMIA AND MAGNESIOTERMIA
BR8402087 1984-05-04

Publications (1)

Publication Number Publication Date
JPS60238430A true JPS60238430A (en) 1985-11-27

Family

ID=4035564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9527985A Pending JPS60238430A (en) 1984-05-04 1985-05-02 Method of obtaining metal titanium from anatase rich ore by aluminum thermite process and magnesium thermite process

Country Status (5)

Country Link
JP (1) JPS60238430A (en)
AU (1) AU575390B2 (en)
BR (1) BR8402087A (en)
FR (1) FR2563842B1 (en)
GB (1) GB2158102B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507696A (en) * 2011-12-22 2015-03-12 ユニヴァーサル テクニカル リソース サービシーズ インコーポレイテッド Apparatus and method for titanium extraction and refining
WO2019033784A1 (en) * 2017-08-18 2019-02-21 王武生 Method of producing titanium or titanium alloy directly by using titanium dioxide
US10400305B2 (en) 2016-09-14 2019-09-03 Universal Achemetal Titanium, Llc Method for producing titanium-aluminum-vanadium alloy
US11959185B2 (en) 2017-01-13 2024-04-16 Universal Achemetal Titanium, Llc Titanium master alloy for titanium-aluminum based alloys

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8703766A (en) * 1987-07-20 1989-01-31 Mamore Mineracao E Metalurgica MINING OPENING PROCESS
ES2783991T3 (en) 2003-07-04 2020-09-21 Commw Scient Ind Res Org Methods for the production of metallic compounds
CN100443603C (en) * 2005-10-26 2008-12-17 武汉科技大学 Method of preparing titanium and titanium alloy using titanium containing furnace clinker
CN101454467B (en) * 2006-03-27 2014-01-08 联邦科学及工业研究组织 Apparatus and methods for the production of metal compounds
WO2009129570A1 (en) 2008-04-21 2009-10-29 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for forming titanium-aluminium based alloys
US8834601B2 (en) 2009-12-18 2014-09-16 Commonwealth Scientific And Industrial Research Organisation Method for producing low aluminium titanium-aluminium alloys
RU2485194C1 (en) * 2012-02-13 2013-06-20 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Method for obtaining titanium-aluminium alloy from oxide titanium-containing material
GB201218675D0 (en) 2012-10-17 2012-11-28 Univ Bradford Improved method for metal production
CN107151752B (en) * 2017-06-13 2018-10-23 东北大学 The method for preparing titanium alloy with wash heat refining based on the reduction of aluminothermy self- propagating gradient

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220901A (en) * 1975-05-28 1977-02-17 Atomitsuku Enaajii Nat Niyuuku Improved aluminothermy
JPS543802A (en) * 1977-06-13 1979-01-12 Mitsubishi Heavy Ind Ltd Improved methane fermentation

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1704257A (en) * 1923-02-12 1929-03-05 Westinghouse Lamp Co Method of preparing refractory metals
US1533505A (en) * 1923-05-03 1925-04-14 Lubowsky Simon Joseph Method of producing metallic titanium or its alloys
GB333816A (en) * 1928-11-01 1930-08-21 Walther Mathesius An improved process for producing a titanium or ferrotitanium regulus
FR984164A (en) * 1949-04-04 1951-07-03 Dominion Magnesium Ltd Preparation of virtually pure titanium
GB675933A (en) * 1950-05-27 1952-07-16 Dominion Magnesium Ltd Thermal reduction of titania and zirconia
US2707679A (en) * 1951-01-04 1955-05-03 Westinghouse Electric Corp Methods of producing zirconium and titanium
US2904428A (en) * 1954-09-22 1959-09-15 Chicago Dev Corp Method of reducing titanium oxide
US2834667A (en) * 1954-11-10 1958-05-13 Dominion Magnesium Ltd Method of thermally reducing titanium oxide
GB795419A (en) * 1955-06-06 1958-05-21 Alfred Boecker Process for the manufacturing of titanium
FR1150348A (en) * 1955-06-06 1958-01-10 Process for preparing titanium
BE549070A (en) * 1955-07-20
US2777763A (en) * 1955-09-14 1957-01-15 Ethyl Corp Method of producing titanium
US3140170A (en) * 1962-11-23 1964-07-07 Thomas A Henrie Magnesium reduction of titanium oxides in a hydrogen atmosphere
GB985253A (en) * 1963-02-15 1965-03-03 Imp Metal Ind Kynoch Ltd Production of refractory metals
US3386817A (en) * 1965-09-10 1968-06-04 Dow Chemical Co Process for the reduction of metal oxides
FR2052082A5 (en) * 1969-07-11 1971-04-09 Commissariat Energie Atomique
CA950204A (en) * 1970-06-08 1974-07-02 Hans G. Brandstatter Direct reduction process for making titanium
FR2119174A6 (en) * 1970-12-23 1972-08-04 Commissariat Energie Atomique Recovery of high melting metals from oxides directly - using a magnesium and a fluoride slag
FR2138514B2 (en) * 1971-05-27 1974-04-05 Commissariat Energie Atomique
FR2514369B1 (en) * 1981-10-08 1987-01-30 Westinghouse Electric Corp METHOD FOR REDUCING A METAL OXIDE TO A METAL POWDER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220901A (en) * 1975-05-28 1977-02-17 Atomitsuku Enaajii Nat Niyuuku Improved aluminothermy
JPS543802A (en) * 1977-06-13 1979-01-12 Mitsubishi Heavy Ind Ltd Improved methane fermentation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507696A (en) * 2011-12-22 2015-03-12 ユニヴァーサル テクニカル リソース サービシーズ インコーポレイテッド Apparatus and method for titanium extraction and refining
JP2018048402A (en) * 2011-12-22 2018-03-29 ユニヴァーサル テクニカル リソース サービシーズ インコーポレイテッド Apparatus and method for extraction and refining of titanium
US10066308B2 (en) 2011-12-22 2018-09-04 Universal Technical Resource Services, Inc. System and method for extraction and refining of titanium
US10731264B2 (en) 2011-12-22 2020-08-04 Universal Achemetal Titanium, Llc System and method for extraction and refining of titanium
US10400305B2 (en) 2016-09-14 2019-09-03 Universal Achemetal Titanium, Llc Method for producing titanium-aluminum-vanadium alloy
US11959185B2 (en) 2017-01-13 2024-04-16 Universal Achemetal Titanium, Llc Titanium master alloy for titanium-aluminum based alloys
WO2019033784A1 (en) * 2017-08-18 2019-02-21 王武生 Method of producing titanium or titanium alloy directly by using titanium dioxide

Also Published As

Publication number Publication date
AU575390B2 (en) 1988-07-28
AU4166085A (en) 1985-11-07
FR2563842A1 (en) 1985-11-08
GB2158102A (en) 1985-11-06
BR8402087A (en) 1985-12-10
GB2158102B (en) 1988-08-03
GB8509673D0 (en) 1985-05-22
FR2563842B1 (en) 1991-04-19

Similar Documents

Publication Publication Date Title
JPS60238430A (en) Method of obtaining metal titanium from anatase rich ore by aluminum thermite process and magnesium thermite process
JPH10502418A (en) Manufacturing method of elemental materials
US3725054A (en) Aluminum-molybdenum-titanium master alloy
US3424626A (en) Low silica welding composition
US3625676A (en) Vanadium-aluminum-titanium master alloys
EP0360792A1 (en) Process for making zero valent titanium from an alkali metal fluotitanate
US3953579A (en) Methods of making reactive metal silicide
US3597192A (en) Preparation of tantalum metal
JPH0115571B2 (en)
US3320100A (en) Submerged arc flux composition and method of making the same
JPH0238545B2 (en)
US2267298A (en) Method of producing highly pure manganese titanium alloys
JPH0469211B2 (en)
US4062677A (en) Tungsten-titanium-aluminum master alloy
US2049291A (en) Method of making copper-titanium alloys
JPH0256409B2 (en)
US4119457A (en) Molybdenum-titanium-zirconium-aluminum master alloys
US1089773A (en) Method of making titanium and other alloys.
US2361925A (en) Preparation of manganese products
US3798078A (en) Welding substance and method of making same
US2955935A (en) Manufacture of aluminum titanium alloys
JPS599608B2 (en) Magnesium manufacturing method
RU2549820C1 (en) Method for aluminothermic obtainment of ferroalloys
JPS62158835A (en) Refining method for al-li alloy
US1432289A (en) Method of reducing metals and making alloys